LAST HANDOUT: Prime numbers and some related facts (Ch 23-24)

Definition: An integer n = 2 is said to be prime if and only if the only positive divisors of nare 1 and n
(and it’s called composite otherwise).

Some examples: primes: 2, 3,5, 7, ... Not primes: -1,1,0, 6,21, 51
Thm 23.1.3 (and its converse) (Euclid): Aninteger p > 2 is a prime number ifandonlyifVa,b € Z,
plab = (plaorpl|b).
Example: 5/ab <> 5[a or 5/b, but a composite number like 10 can divide ab=(4)(15)=60 without dividing either factor.

Thm 23.3.1 (Fundamental Theorem of Arithmetic) (19" century)

Every positive integer n > 2 can be written uniquely as a product of powers of prime factors (wih the prime
factors in the product written in increasing order):
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where p; < p, < - < p are prime numbers, k > 1, and the exponents a; € Z".
(Proof: existence: by induction prop 23.1.2 pg 278, uniqueness: by contradiction on pg 283)
Examples: 200 = 23 x 52,81 = 3% etc

Note: One can use the prime factorization of an integer n, if known, to determine all the divisors of n.
Also, if we know the prime factorization of two integers a and b, we can determine the greatest common divisor. How?

Ex: 180=??
126=??
Ged(126, 180)=?7
Thm 23.5.1: There are infinitely many prime numbers (one of the “Proofs from the Book”)

Proof:

Suppose, by contradiction, that there are only finitely many prime numbers: p;,p3, s, ... px forsome k € Zt.

Consider the integer n = p;p,p3 ... p; + 1. This integer is not divisible by any of the prime numbers p; because
n= mod p;

This means that n cannot be written as a product of prime factors, which contradicts FTA. QED

Searching for large prime numbers is a favorite past time of many mathematicians who have access to powerful
computers. Currently, the largest known prime is: 2*?°®_1 (about 12.9 million digits, Aug 08).

(Curious for more? See http://primes.utm.edu/largest.html)

A few fun results about congruences modulo prime numbers, courtesy of 17" & 18" century mathematicians:


http://primes.utm.edu/largest.html

Fermat’s Little Theorem: (stated by Fermat, proved by Euler & others)

If p is a prime number and a is a positive integer not divisible by p, then a? ™! = 1 mod p.

(Cute proof on page 290, if curious)
Example: 62 =1 mod 13.

More interesting application: What is the reminder of 33%* modulo 11?

p=11is a prime, and 11 does not divide a=3. Hence, by FLT: ???
So 3304 — 330034 — ( )3034 = (

)(81)mod11=11%*7 +4mod 11 = 4 mod 11.
Wilson’s Theorem: (conjectured by Wilson, proved by Lagrange)

If p is a prime number, then (p —1)! = —1 mod p

(converse is also true) (proof in book and in solved pbls)
Example: 10! = —1 mod 11

Example: What is the remainder for 16! divided by 19?

Since 19 is a prime, by Wilson’s Theorem, 18! = —1 mod 19.

But, 18! = 16! (17)(18), so:

16! (17)(18) = —1 mod 19
16! (=2)(=1) = =1 mod 19

16! (2) = 18 mod 19
By prop 19.3.2 (since 2 does not divide 19):

16! = 9 mod 19

For Hwk 8, Pbl 7 (iii): note that 437 is NOT a prime, but can be written as the product of two primes.
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