Solving LINEAR CONGRUENCES (Ch 19 \& Ch 20):

Using normal arithmetic, we can solve linear equations such as: $2 x=4$. (We'd get that $x=2$.)
But suppose that instead we have a congruence such as $2 x \equiv 4 \bmod \operatorname{m}$. Does this imply $x \equiv 2 \bmod \operatorname{m}$?
Case 1: Given a linear congruence of the form: $\boldsymbol{a x} \equiv \boldsymbol{a b} \boldsymbol{\operatorname { m o d } \boldsymbol { m }}$, how can we solve it for \boldsymbol{x} ?
(meaning: how do we find all possible congruence classes of x modulo m that satisfy the given congruence)
We know: $a x \equiv a b \bmod m \Leftrightarrow m \mid a(x-b) \Leftrightarrow a(x-b)=m k$ for some integer k. Some easy cases:
Case 1: If $\mathrm{a} \mid \mathrm{m}$, then $a(x-b)=m k \Leftrightarrow x-b=\frac{m}{a} k \Leftrightarrow x \equiv b \bmod \left(\frac{m}{a}\right)$.
Case 2: If $\operatorname{gcd}(a, m)=1$, then $m|a(x-b) \Leftrightarrow m|(x-b) \Leftrightarrow x \equiv b \bmod m$
(since m and a have no common factors, so all the factors of m must divide $x-b$)

Proposition 19.3.1: If a divides m, then: $a b_{1} \equiv a b_{2} \bmod m \Leftrightarrow b_{1} \equiv b_{2} \bmod \left(\frac{m}{a}\right)$
Ex: $2 x \equiv 4 \bmod 10 \Leftrightarrow x \equiv 2 \bmod 5$

Hence: $x \equiv$ \qquad or \qquad mod 10.

Proposition 19.3.2: If $\operatorname{gcd}(a, m)=1$, then $a b_{1} \equiv a b_{2} \bmod m \Leftrightarrow b_{1} \equiv b_{2} \bmod m$

$\mathrm{Ex}: 2 x \equiv 4 \bmod 7<=>x \equiv 2 \bmod 7$.

Case 2: More generally now, can we solve any linear congruence $\boldsymbol{a x} \equiv \boldsymbol{b} \boldsymbol{\operatorname { m o d }} \boldsymbol{m} \boldsymbol{?}$
Theorem 20.1.7: A linear congruence $\boldsymbol{a x} \equiv \boldsymbol{b} \boldsymbol{\operatorname { m o d }} \boldsymbol{m}$ has solutions if and only if $\boldsymbol{g c d}(\boldsymbol{a}, \boldsymbol{m}) \mid \boldsymbol{b}$. (in which case it has precisely $\operatorname{gcd}(a, m)$ different solutions modulo \boldsymbol{m})

Examples:
a) \quad Solve $14 x \equiv 21 \bmod 35$.

Note: $\operatorname{gcd}(14,35)=7$, which divides 21 , so there should be 7 solutions modulo 35 .

Solutions mod 5: $x \equiv 4 \bmod 5$
Solutions mod 35: $x \equiv 4,9,14,19,24,29$, or $34 \bmod 35$
b) \quad Solve $14 x \equiv 16 \bmod 35$.
c) How do we solve a congruence without obvious factors to "cancel", such as:

$$
3 x \equiv 7 \bmod 11 ?
$$

Thm 20.1.7 guarantees that this has one solution mod 11 (since $\operatorname{gcd}(3,11)=1)$, but what is it? If we could write 7 as a multiple of 3 (modulo 11), then we could use one of the previous methods. Here's how to do it:
(1) first use the Euclidean Algorithm, as if we're trying to compute $\operatorname{gcd}(3,11)$:
(2) then work backwards, one equation at a time, starting with the one before last:
(solve for 1 in the $2^{\text {nd }} \mathrm{eq}$)
(solve for 2 in $1^{\text {st }} \mathrm{eq}$ and replace in previous)
(collect all the coefficients of 3 and of 11)
we can thus determine how to write $\operatorname{gcd}(a, m)$ as a linear combination of a and m :

$$
1=4 * 3+(-1) *(11)
$$

(3) This allows us to write $b=7$ as a multiple of a :

$$
7=7 * 1=7 *(4 * 3-11)=28 * 3-7 * 11 \equiv 28 * 3 \bmod 11 \equiv 6 * 3 \bmod 11
$$

Replacing this in our congruence $3 x \equiv 7 \bmod 11$, we get that: $3 x \equiv 6 * 3 \bmod 11$ Hence, by Prop 19.3.2, we can now cancel the coefficient of x to get: $x \equiv 6 \bmod 11$.

This method described in c) is the gist of section 20.2.
EXERCISE: solve $23 x \equiv 16 \bmod 107$.

