RELATIONSHIPS:

•	Inclusion (subset)	$A \subseteq B$	\Leftrightarrow	$[x \in A \Rightarrow x \in B]$
•	Equality	A = B	\Leftrightarrow	$[A \subseteq B \text{ and } A \supseteq B] \qquad (\text{double inclusion})$
			\Leftrightarrow	$[x \in A \iff x \in B]$
•	Proper Subset	$A \subset B$	\Leftrightarrow	$A \subseteq B$ and $A \neq B$
			\Leftrightarrow	$[(x \in A \Rightarrow x \in B) \text{ and } (\text{there exists some } a \in B - A)]$

OPERATIONS on Sets (new sets from old):

•	Set Intersection:	$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
•	Set Union:	$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
•	Set Difference:	$A-B = \{x \mid x \in A \text{ and } x \notin B\}$
•	Set Complement:	$A^c = U - A = \{x \in U \mid x \notin A\}$ (U is some universal set containing A)
•	POWER Set:	$\mathcal{P}(A) = \{X X \subseteq A\}$. (the set whose elements are all the subsets of A) Note that by definition of $\mathcal{P}(A)$, $X \subseteq A \le \mathcal{P}(A)$
•	Cartesian Product:	$A \times B = \{(x, y) x \in A \text{ and } y \in B\}$ The set of all ordered pairs (x,y), with x an element of A and y an element of B. (this is in Ch 7 , section 7.7)

Venn Diagrams (useful to visualize sets, but please don't use in proofs!)

<u>EMPTY SET</u>: The empty set is the set with no elements: $\phi = \{\}$ (a.k.a. the <u>null set</u>)

Exercise: Prove that the empty set is a subset of any set.

Proof:

Examples:

- 1) Let $A = \{a, b, c, d, e\}$ and $B = \{x, y, a, z, c\}$. $A \cap B =$ $A \cup B =$ A - B =2) $(-3, 0]^{c} =$
- 3) If A={1,2,3} list all the elements of the following sets:
 - $\mathcal{P}(A) =$
 - $A \times A =$

It's important to distinguish between subsets and elements, and to use the correct notation!

Example: Suppose A={1,2,3}. Which of the following are correct statements?

$$1 = \{1\}, \quad 1 \in A, \quad 1 \subseteq A, \quad \{1\} \subseteq A, \quad \{1,2\} \subseteq A, \quad \{1,2\} \in A,$$
$$\{1,2\} \in \mathcal{P}(A), \quad \{1,2\} \notin \mathcal{P}(A), \quad \{\{1,2\}\} \in \mathcal{P}(A), \quad \{\{1,2\}\} \subseteq \mathcal{P}(A)$$

You should recall the following results, and be able to prove them:

Theorem 6.3.4

(i) Associativity of set union and intersection:

$$A \cup (B \cup C) = A \cap (B \cap C) =$$

- (ii) Commutativity: $A \cup B =$ $A \cap B =$
- (iii) Distributivity: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) =$
- (iv) De Morgan Laws: $(A \cup B)^c = (A \cap B)^c =$
- (v) Complementation: $A \cup A^c =$ $A \cap A^c =$
- (vi) Double complement: $(A^c)^c =$

Sample Proofs:

Use logical arguments from the definitions to show: (iii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof:

→ You try: prove the counterpart statement: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Use truth tables to prove: (iv) $(A \cup B)^c = A^c \cap B^c$

Proposition 6.2.4: $A \cup B = (A \cap B) \cup (A - B) \cup (B - A)$

→ Prove it by truth tables (in text) and by logical arguments (exercise)