8.3 Center of Mass (Centroid)

The **center of mass** of a system of weights (or of a region in the plane) is the point (\bar{x}, \bar{y}) where the system balances.

Basic Case: The center of mass of a system of two weights connected by a thin rod along the x-axis, with mass m_1 at coordinate x_1 and m_2 at coordinate x_2 , has x-coordinate:

$$\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \,.$$

(we deduce this formula from Archimedes' Law of Lever, a.k.a. "the See-saw Law": $m_1d_1=m_2d_2$)

Generalized to multiple weights in the xy-plane: The center of mass of a system of n weights: mass m_1 at point $P_1 = (x_1, y_1), \dots, m_n$ at point $P_n = (x_n, y_n)$ is the point with coordinates:

$$\begin{cases} \overline{x} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^n m_i x_i}{m} = \frac{\mathbf{M}_y}{\mathbf{m}} \\ \overline{y} = \frac{m_1 y_1 + m_2 y + \dots + m_n y_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^n m_i y_i}{m} = \frac{\mathbf{M}_x}{\mathbf{m}} \end{cases}$$

The numerators $M_y = \sum_{i=1}^n m_i x_i$ and $M_x = \sum_{i=1}^n m_i y_i$ are called the **moments of the system about the y-axis** and **x-axis**, respectively, and measure the tendency of the system to rotate about each axis (i.e. how unbalanced the system is with respect to each axis).

Example: Compute the moments and the center of mass for the system:

$$m_1 = 2$$
 at point $P_1 = (1,1)$
 $m_2 = 6$ at point $P_2 = (2,-1)$,
 $m_3 = 3$ at point $P_3 = (5,-2)$
 $m_4 = 1$ at point $P_4 = (7,2)$

$$\mathbf{M}_{x} = \sum_{i=1}^{n} m_{i} y_{i} =$$

$$M_y = \sum_{i=1}^n m_i x_i =$$

Total mass is m = 2 + 6 + 3 + 1 = 12.

Center of mass is at: $(\overline{x}, \overline{y}) = ??$

Calculus Problem: compute the centroid of a lamina (flat plate), of <u>uniform</u> density ρ , occupying a region $\mathcal R$ in the plane.

a) When $\mathcal R$ is the area under y = f(x):

Area:
$$A = \int_a^b f(x) dx$$
, Total mass: $m = \rho A$

$$M_y = \rho \int_a^b x f(x) \, dx, \qquad M_x = \rho \int_a^b \frac{1}{2} f^2(x) \, dx$$

The density
$$\rho$$
 cancels out, so the centroid is: $\bar{x} = \frac{M_y}{m} = ??$

$$\overline{y} = \frac{M_x}{m} = ??$$

Formulas:

b) When $\mathcal R$ is the area bounded above by y=f(x) and below by y=g(x):

Note: If \mathcal{R} has a line of symmetry, the centroid lies along that line (so a center of symmetry is a center of mass too!)

Ex1: Find the centroid of the region bounded by the curves: y = x + 2 and $y = x^2$. (answer: $(\bar{x}, \bar{y}) = (\frac{1}{2}, \frac{8}{5})$)

Ex 2: Find the center of mass of the triangle with vertices at points (-1, 0), (0,2) and (1,0). (answer: $(\bar{x}, \bar{y}) = (0, \frac{2}{3})$