Today: 6.2 Geometric Sequences \& Compound Interest
Office hours: Today: 3-4 in PDL C-326 \& (DH 109 1:30-2 (f there are questions)
Tuesday 10-11 PDL C-326 \& 2:30-330 in CMU B-006.
To do: Section 6.1 is due Tuesday night.

Happy Mathgiving!

Recall from last time:

A sequence is called ARITHMETIC (additive) if the next term can be gotten from the previous one by always adding the same amount \boldsymbol{d}, called "the common difference" or the increment.

Then the n -th term is: $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{1}}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}$ where $n-1$ is the number of times the common difference is added.

For instance:
If $\$ P$ are invested at a rate of $r \times 100 \%$ in simple interest, then the interest is always $\$ r P$
The balances then form an arithmetic sequence with
$a_{1}=P$, and common difference $d=r P$
and the balance after the interest is applied t times is:

$$
S=P+(P r) t
$$

Ex: Suppose you invest $\$ 800$ at an annual simple interest rate of 7%.
Then each year you earn $d=r P=0.07 \times \$ 800=\$ 56$. This is the common difference.
Your balance in year n (after $\mathrm{n}-1$ years) is the principal $\$ 800$,
plus the interest $\$ 56$ added $\mathrm{n}-1$ times: $S_{n}=P+(r P)(n-1)$
year 1: $S_{1}=\$ 800$
year 2: $S_{2}=\$ 800+\$ 56=\$ 856$
year 3: $S_{3}=\$ 800+(\$ 56) * 2=\$ 912$
...etc...
$s_{3}-s_{2}=\$ 56 \leftarrow d$

A sequence is called GEOMETRIC (multiplicative) if the next term can be gotten from the previous one by always MULTIPLIED by the same amount m, called "the common ratio" (or the multiplier)
$\underset{\text { Then the } n \text {th term is: }}{\text { Ex: } 5,10,20,40, \ldots} \in m=2 \quad \frac{10}{5}=2, \frac{20}{10}=2, \ldots$

$$
\left\{\begin{array}{l}
a_{1}=m^{0} a_{1}=5 \\
a_{2}=m a_{1}=2(5) \\
a_{(3)}=m^{2} a_{1}=2^{2}(5) \\
a_{(4)}=m^{3} a_{1}=2^{3}(5) \\
a_{n}=m^{n-1} a_{1}
\end{array}\right.
$$

where $\mathrm{n}-1$ is the number of times the common ratio is multiplied (number of steps).
ex: In the sequence $5,10,20,40, \ldots$, , what is $a_{20}=\left(2^{19}\right) 5=2,621,440$.
Application:
If $\$ P$ are invested at a rate of $r \times 100 \%$ in COMPOUND interest, then the interest is applied to the entire balance.
The balances then form an geometric sequence with common ratio $m=1+r$ and the balance after the interest is compounded n times is:

$$
S=(1+r)^{n} P
$$

Ex: Suppose you invest $\$ 800$ at an interest rate of 7%, compounded annually.

$$
r=0.07=\frac{7}{100}
$$

Then the common ratio is: $m=1+r=1.07$
Your balance in year n (after n -1 years) is:
\rightarrow year 1: $S_{1}=\$ 800$
year 2: $S_{2}=\$ 800+0.07+\$ 800 \Rightarrow(1.07) \approx \$ 800=\$ 856$

$$
S_{4}=\$ 915.92+0.07 \$ 915.92 \cong \$ 980.03
$$

$$
=(1.07)^{3} 800=\$ 980.03
$$

2 types:
(1) Compounded m times a year.

If you merest $\$ P$ at $r \times 100 \%$ (nominal) annual rate compounded m times a year
then the bank is really giving you: $\frac{r}{m} \times 100 \%$ applied m times each year.
so t years alter the mitial deposit, your balance is:

$$
S=\left(1+\frac{r}{m}\right)^{m t} P
$$

Ex: $\$ 50,000$ at 10% annual rate, $\underbrace{\text { compounded quarterly }}_{m=2}$

$$
m=4
$$

You actually get $\frac{10 \%}{4}=2.5 \%$ every 3 month. .
(so your actual annual percencentage yield is higher than 10% !)
In year $10(\underbrace{a y e a r s}_{t=9}$ since nitial deposit)

$$
\begin{aligned}
S=\left(1+\frac{0.1}{4}\right)^{4 \times 9} \$ 50,000 & =(1.025)^{36} \$ 50,000 \\
& \simeq(121,626.77 \$
\end{aligned}
$$

(2) Continuously Pompountati)

If you deposit $\$ P$ at $6 \times 100 \%$ (nominal) annual rate, compounded continuously $(m \longrightarrow \infty)$
then your balance t years alter your to is decimal lour
then your balance t years allen your initial deposit is:
rote, in decimal /rom

v
(1) Find the future value in the 10th year if $\$ 50,000$ is invested at 5%
(a)
a) Compounded annually 9 compounding:

$$
\underbrace{}_{r=0.05}
$$

$\begin{aligned} S=(1.05) 50,000 & =\left(1+\frac{0.05}{12}\right)^{12 \times 9} 50,000=\underbrace{(1.00416666 \ldots}_{\text {bO TOT ROUND Compounded monthly, }})^{108} 50,000 . \\ & \simeq \$ 78,342.34\end{aligned}$

$$
\text { c) compounded continuously } S=50,000 e^{(0.05 \times 9)}
$$

$$
\left(S=P e^{r t}\right)
$$

For each investment situation in Problems 5-8, identify
(a) the annual interest rate, (b) the length of the invest-
2) ment in years, (c) the periodic interest rate, and (d) the number of periods of the investment.
Q) 8% compounded quarterly for 7 years
b.) 12% compounded monthly for 3 years
a) 8%, compounded quarterly $\frac{8}{8} 7$ pears

$$
r=0.08\left(=\frac{8}{100}\right)
$$

$$
t=7 \text { years }
$$

2% every 3 months $\rightarrow 0.02$ \# of periods $=4 \times 7=28$

$$
S=(1+0.02) \underline{P}
$$

b) 12% compounded monthly for $3 y$ rs

$$
\begin{aligned}
& r=0.12 \\
& t=3
\end{aligned}
$$

$$
\begin{aligned}
& 50,000 e \pi\left(\underline{\pi}(0.05 \times 9)=50,000 e^{0.45} \simeq 78,415.61\right. \\
& x 50,000 \text { e } \pi 0.05 \sqrt[\pi]{x} 9=50000\left(e^{0.05}\right) 9
\end{aligned}
$$

\# of periods: $3 \times 12=36$
What lump sum should be deposited in an account
3) that will earn 9%, compounded quarterly, to grow to $\$ 300,000$ for retirement 25 years?

$$
\begin{aligned}
300,000 & =\left(1+\frac{0.09}{4}\right)^{4 \times 25} P \quad \text { Solve } 100 P \\
300,000 & =(1.0225)^{100} P \\
P & =\frac{300,000}{(1.0225)^{100}}=32,418.25
\end{aligned}
$$

