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Abstract

We know that almost all Brauer trees are shaped like a star. Given such a
star and an odd prime [, we give an explicit method for constructing infinitely
many groups with this star as the Brauer tree of some [-block. Furthermore we
show, that there is an infinite family of Brauer trees which cannot be realized
in the principal block of any group.

1 Introduction

W. Feit showed in his paper [Fei84], that every Brauer tree is similar to an ‘unfolded’
Brauer tree of a covering group of a finite simple group. Feit calls two Brauer trees
similar if both are unfoldings of a third Brauer tree around its exceptional vertex.
Moreover he proved using the classification of the finite simple groups, that a Brauer
tree of a covering group of a finite simple group either has at most 248 edges or is a
straight line. On the one hand, in [FS90],[FS84],[FS82] P. Fong and B. Srinivasan
analysed Brauer trees for a given prime [ in classical groups and showed that they
are straight lines with the exceptional vertex sitting on a position depending on the
chosen parameters. On the other hand we know that the alternating groups have
straight lines as Brauer trees, too. Hence ‘most’ Brauer trees are unfolded straight
lines, i.e. stars as in Figure 1.

In this paper we investigate the class of star shaped Brauer trees. Before we for-
mulate our main results, we give a precise definition.

Definition 1.1 Let s be a nonnegative integer and ¢, f be positive integers. A star
shaped Brauer tree S, r as in Figure 1 is a tree with f rays with s edges and f
rays with ¢ edges, on the understanding that there are only f rays with ¢ edges if
s =0. If f > 1, the exceptional character, if it exists, is located in the center of
this star. If f = 1, we assume that an exceptional character exists and that s edges
are on one side and ¢ edges are on the other side of the exceptional vertex. We call
Sst,1 a basic tree.

Given any star as in Figure 1 we give methods for constructing groups with this
star as a Brauer tree. To be more precise we prove the following.

Theorem 1 Let [ be an odd prime. Let s be a nonnegative integer and let 6, ¢, f
be positve integers, such that ef | I — 1, where e := s+ ¢. Then there are infinitely
many groups having a cyclic {-block of defect 6 with Brauer tree S, f.

More specifically, we have the following.
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Figure 1: Sy r

(a) If s =0, hence e = t, there are infinitely many primes p such that the principal
I-block of GL.(p?) x (o) has a cyclic block of defect § and has Brauer tree
So,e,f- Here, o denotes the field automorphism of order f acting on GL.(p?).

(b) If s,t are positive and if e := s + ¢ is odd, there are infinitely many primes p
and a positive integer n such that GU,,(pf ) x (o) has a cyclic I-block of defect
0 with Brauer tree S, s. Here we let

. f, if fis odd,
" f/2, if fis even,

and o be the field automorphism of order f acting on GU,,(p” /) .

(c¢) If s,t are positive and if e := s + t is even, then there are infinitely many
primes p and a positive integer m such that Ga,,(pf) x (¢) has a cyclic I-block
of defect 6 with Brauer tree S, y. Here Ggm(pf ) denotes one of the groups
Spam (pf), SOF. (pf) or SO, (p?) and o the field autmorphism of order f
acting on Ga,, (pf).

In each case the star S, s is the planar embedded Brauer tree of the block.

After this constructive part we turn to the question whether every Brauer tree is
realizable in the principal block of some group. We show that it suffices to answer
this question for simple groups. Theorem 2 gives an infinite family of Brauer trees
which do not occur in any principal I-block.

Theorem 2 With the notation of Theorem 1, let s,¢ be positive integers with
s #tand s+t > 248. Then S, s is not the Brauer tree of any principal I-block.

By reducing the assertion of Theorem 2 to finite simple groups, we need the clas-
sification for its proof. Since we do not know the shape of the Brauer trees of the
principal blocks of E7(q) and Fs(g), we can only use the fact, that the number of
edges is less than 249 in these cases. This is the reason for restricting the class of
Brauer trees in Theorem 2. In fact, as we will see in Section 6, there are only a few
exceptions, where a principal [-block is an irregularly shaped star with less than
249 edges.

In Section 2 we ensure the existence of suitable primes needed as characteristics of
fields in subsequent chapters. In Sections 3, 4 and 5 we construct groups having an



l[-block with the desired Brauer tree. The question whether there are possible Brauer
trees, which cannot be realized in the principal block of some group is analysed in
Section 6. First we prove that it suffices to consider Brauer trees of simple groups
and then examine the Brauer trees of the principal blocks of simple groups.

2 Primes and More

In Sections 3, 4 and 5 we will examine classical groups over finite fields whose
characteristic must satisfy several conditions. Here we show that such primes exist
and that there are infinitely many of them. Throughout this paper we fix an odd
prime [ and let T denote the residue class of x in Z/IZ for x € Z and |Z|; the order
of T in Z/IZ, if 1 1 x. We further denote the [-adic valuation by v;.

Proposition 2.1 Let | be an odd prime, and let §, k be positive integers such that
k|l —1. Then there are infinitely many primes p satisfying

P pt -1,

PH k1, (1)

Itp' =1 for1<i<k-—1.
Proof: Let a’ € Z be such that |a’|; = k. If v;((a/)* — 1) = 1, we set a” := a’. Else
we put a” := a’ 4+ 1 and observe that |a”|; = k and I? { (a”")¥ — 1. By [HupBla82,
La 8.1, y(a* — 1) = § with a := (a”)""". We apply Dirichlet’s Theorem ([Has64,

p.176]) to 1°T! and a, and find infinitely many ko in N such that a + kol°t! are
primes which satisfy (1). |

3 The Regularly Shaped Star

3.1 The Basic Tree

With the notation of the Main Theorem we let s = 0, i.e., e = ¢, and f be a positive
integer such that ef | [ — 1. We apply Proposition 2.1 to k = ef, fix one of the
primes and denote it by p. Hence,

Ipf —1landltp' —1foralll<i<ef—1. (2)

Put ¢ := p/ and denote the general linear group GL.(q) by G. Further let Ty < G
be a Coxeter torus (see [Hup67, p.187]) and Dy < T be the Sylow l-subgroup of
Ty. Then Dy is also a Sylow [-subgroup of G.

Lemma 3.1 We have Ng(Do) = Ng(To) and Ce(To) = Ty = Ca(Do).

Proof: For the first two equalities see [Hup67, pp. 187, Satz 7.3]. Let to € Ty with
(to) = Tp. Then the eigenvalues of ¢y (in an algebraic closure F, of F,) are a,a?, ...,

aqﬂ_l, where a is a generator of Fy.. For a suitable r € N let 29 := ¢ € Dy be an

element of order [. Then the eigenvalues of zg are a”,a"?, ..., a™®"". Because of
assumption (2) these eigenvalues are pairwise distinct. It follows that any element
in GL.(F,) which commutes with zg also commutes with ¢y. Since Cg(to) = Tp the
claim follows. |
By the Schur-Zassenhaus Theorem we have Cg(Dy) = Ty = Do x L < Ng(Dy).
Fix the principal block of C'¢(Dg) which has Dy as a defect group and consider its
canonical character 1p, ® 11,. This character corresponds uniquely to the principal
block by of Ng(Dp) by Theorem [Alp93, Thm. 15.1(5)]. By Brauer’s First Main
Theorem by corresponds to the principal block of G (with defect group Dy). From
[FS84] we know that the Brauer tree of the principal block of G is of the form
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e edges

with the exceptional vertex at one end. To obtain the star Sp. s, it remains to
unfold the basic tree by extending G.

3.2 Unfolding the Basic Tree

Let 0 : G — G, [gij] = [g};] be the restricted Frobenius automorphism of G' and
let G := G x (o). Note that |G| = |G| - f, hence Dy is a Sylow l-subgroup of G. We
examine what happens to the centralizer and normalizer of Dy when extending G.

Lemma 3.2 Let Dy, Ty be as above.
(a) We have Cg (D) = Tp.
(b) We have [Nz (Dy) : Na(Do)| = f.

Proof:
(a) Let tg € Ty be a generator of Dy, zg := t}; € Dy be an element of order
e—1
I with eigenvalues a”,a"9,...,a"? for a generator a of Fj.. Let g € G

and 0 < ¢ < f—1. Then (9,0%) € G centralizes (z,1) if and only if
a'(20) = g~ 209.

Assume (g,0') with ¢ > 0 centralizes 2. On the one hand g—*

Zog has the
same eigenvalues as zp. On the other hand, o%(z) has eigenvalues a?’,
(@®)e,..., (@ )9, Hence a” = (a7 and I | pi+tfko — 1 for some
0 < ko < e — 1, which contradicts (2). Thus the assumption is wrong.

(b) Let N := Ng(Dp) and N := Ne&(Dg). By the Frattini argument we have
G = GN, hence G/G = GN/G = N/(GNN) = N/N. As G/G is cyclic of
order f we get the assertion. |

As 1p, ® 1, is invariant in N (Dp) the inertia index of the principal block of G is

ec = TNy (Do) (Ip, ®11) : C4(Do)| = [Ng(Do) : Ca(Do)| = fe.
Hence the Brauer tree of the principal block of G has the desired number of edges.
From [Fei84, La 3.2] we know that the basic tree opens at the exceptional vertex
while expanding G to G.

4 The Irregularly Shaped Star I

Throughout this section we let | be an odd prime and s,t, f be positive integers
such that s +¢t =: e is odd and ef | I — 1. Put

o £ if f is odd,

") f/2, if fiseven.
Note that 2ef’ | I — 1. We then apply Proposition 2.1 to k = 2ef’, fix one of the

primes and denote it by p. Hence,

L p*f —1land Ifp' —1forall 1 <i<2ef —1. (3)
We put ¢ := p’" and denote by Gy, := GU,(q) the general unitary group over I,
i.e., the matrix group G, := {z € GL,(¢?) | 27" = E,}, where T is the matrix
obtained by raising each entry to its gth power. By condition (3), we have [ | ¢¢ +1

and [ 1 ¢ +1for 1 < j <e—1. Hence, | —q|; = e and |¢|; = 2e and by [FS90,
Sec.2], I is unitary for G,.
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4.1 Theoretical Background

Let us first recall some background information which will be of great use later.

Definition 4.1 Let m be a positive integer.

(a) A partition of m is a finite sequence A := (ay,...,ax) € N& such that a; < a;1;
and Zle a; = m. In this case we write A\ - m. Two partitions are equivalent
if their nonzero entries are equal.

(b) Let X = {z1,...,2;} C Ng with 21 < ... < 2; and let A - m be a partition.
Then X is a [-set of A, if there is an equivalent partition X' = (af,...,q])
such that x; :=a, 4+ (i—1) forall 1 <i <.

(¢) Let X C Ny be finite and let d be a nonnegtaive integer. For d # 0, the d-shift
of X is the set {0,1,...,d—1}U{x+d |z € X} and for d =0 it is X itself.
Two (3-sets are equivalent if one set is a d-shift of the other for some d € Ny.

(d) A hook v of a B-set X is a pair (y,z) € NZ such that 0 < y < z and y ¢
X,z € X. The length of such a hook is r := x — y and v is then an r-hook.

(e) Let A m be a partition, X a S-set for A and v = (y, z) an r-hook. We obtain
aset X7 := {y} UX \{z} by removing v. Analogously X is obtained from X;
by adding v. Note that X is a (-set for a partition A\; - m — r. Removing
r-hooks as often as possible from X will result in a unique (-set after a finite
number of steps, whose corresponding partition is called the r-core of A.

(f) For r € N consider an r-abacus consisting of r strings, numbered from left to
right by 0,1,...,r—1 and from top to bottom by 0,1, ... A position on string
1 and row w is numbered by i + wr. For a partition A and a (-set X for A
we obtain the corresponding abacus by putting a bead on string 7 and row ¢
(0<i<r—1,weNy) if and only if ¢ + wr is an element of X. Note that
removing or adding the r-hook (y, z) from X means to shuffle up or down the
bead belonging to x to the (free) position above or below, respectively. The
lowest bead on a string is called index bead.

In our situation we need to consider unipotent blocks and their unipotent characters,
which are analysed in [Lu77] or [Lu84].

Theorem 4.2 Let ! be unitary for G, and let e :=| — q|;.

(a) The unipotent characters of G,, are parametrized by the partitions of n. We
write x for the unipotent character which is parametrized by A+ n.

(b) Let xx, X be unipotent characters. Then xx and x, lie in the same block if
and only if X and x have the same e-core.

Proof: See [FS82]. [

Lemma 4.3 Let e be odd and 1 < s < (e — 1)/2. Then there is a positive integer
n and an e-core k = n — e such that the corresponding e-abacus has a bead on each
position of the first row, s even and t := e — s odd index beads. Moreover k is a
2-core.

Proof: Note that two positions, one below the other, are of different parity. First
put a bead on each position of the first row. Then put beads on strings 0 to 2s+1 on
the second row. Further put beads only on odd positions of the remaining strings of
the second row. Hence we get the desired number of odd and even index beads. B
Let 21 < ... < x} denote the beads in the above theorem. Then « F ZLOZ’ =:n—e,
with r = (e — (2s + 1))/2, hence n — e is of the form r(r + 1)/2.
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Theorem 4.4 Let B, be a unipotent block of G,, with cyclic defect group and cor-

responding e-core kK Fn—e. Let X = {x1,...,x} be a B-set for k and consider the
resulting e-abacus of X. We assume that there is at least one bead on each string,
otherwise we consider an equivalent B-set. The index beads p1, ... pe will be ordered

such that p1 > ... > pe. The partitions \,, obtained by adding the hook (p;, p; + €)
to k for 1 <i < e label the non-exceptional characters of By.

Proof: [FS90, p.10]. |

Theorem 4.5 Let G, By, p1,...,pc and A,,, 1 < i < e be as in Theorem 4.4.
Denote the subsequence of the even index beads in (p1,...,pe) by (01,...,05) and
the subsequence of the odd (remaining) beads by (11,...,7¢). We obtain two types
of partitions in Theorem 4.4:

® \oiyiy Ay, (bead o; was shuffled down for 1 <i<s),
o A, Ay, (bead T; was shuffled down for 1 < j <t).

Then the Brauer tree of B, is a basic tree of the following shape with the exceptional
character between x,, and Xr,:

0—0——O—@—0——0—0

XO'l X(Tz XG'S XTt XTl XTQ

Proof: [FS90, p.21] |
The preceeding theorem helps us finding a group with a block having S as
Brauer tree.

4.2 The Basic Tree

Let n, k be as in Lemma 4.3. We proceed to show that B has a cyclic defect group.

Lemma 4.6 Let m be odd. Then there is a cyclic irreducible subgroup in G., of
order ¢q™ 4+ 1, a Coxeter torus of G,,. Further, each cyclic irreducible subgroup of
Gy has order dividing ¢ + 1.

Proof: [Hup70, p.149). |
If m is even, then there is no cyclic irreducible subgroup in G,,, and we see the
reason for distinguishing between e odd and even.

By (3) a Sylow I-subgroup of a maximal irreducible subgroup T' < G, is also a
Sylow [-subgroup of G.. In particular the block B, has a cyclic defect group by
[CaEn94].

For the remainder of this section let us fix a Coxeter torus Ty of G, and the Sylow
l-subgroup Doy < Ty. By [Hup67, p.165] we see that there is a Coxeter torus T of
GLe(qz) with TO < Tl-

Lemma 4.7 Let G, and Ty be as above.
(a) We have Cq_ (Ty) = To and Cq, (To) = Ty X Gp—e.

(b) We have Ng, (Ty) = N, (To) X Gn—e, where Ng_(Tp) is a cyclic extension of
Ty of order e.

(c) We have Cg,, (Do) =Tp X Gp—e = Cq,, (To).
(d) We have Ng, (Do) = Ng,, (To)-
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Proof:

(a) We have Ty = T N G, hence with the assumptions (3) the first assertion
follows analogously to Lemma 3.1. As all eigenvalues of a generator ¢ of Ty
differ from 1, the second assertion follows by direct calculation of zt and tx
for z € CGL,,,(qQ)(TO)-

(b) Let x € Ngr, (42)(To) and 1 <7 < ¢°+1 with ged(¢° +1,7) = 1 and tz = xt".
Analogously to (a) we get the first equation. For the second see [Ca85, Prop.
3.3.6, La. 3.6.5].

(¢) Analogous to (a) and Lemma 3.1.
(d) With relations (3) we follow the proof of Theorem 7.3(1) in [Hup67]. [ |

By [Ca85, Sec. 13.7], G,_. has a unique cuspidal character x, since n —e =
r(r 4+ 1)/2. Similar to the end of subsection 3.1 we find the canonical character
11, ® xx of B,, whose Brauer tree is a basic tree.

4.3 Unfolding the Basic Tree

We now consider an extension of G, of suitable degree and analyse the correspond-
ing extensions of the blocks and their defect groups under consideration. Obviously
the restricted Frobenius automorphism « := @g , acts on Gy. Let

, { a?, if f=f"isodd

@ = o, if f=2f"is even.

Then |G,| = |G| - f and 1+ f. As G, and G,,_. are invariant under o, there
exists gg € G, such that go(o/(To))go_l =Ty. Put 0 :=(go,a’). Then G,, = G, (o).
Moreover Ty, Do, Ge, Gp—e, Ca. (Do) and Ng, (Dg) are invariant under o.

Lemma 4.8 We have Cy (Do) = Cg,, (Do) = Cg, (Do) X Gpn—e.

Proof: Analogous to Lemma 3.1 with (3). R R o
By [Alp93, Thm. 1(5)] there is a unique block B of G, covering B, with B =
(Bi)m.

Lemma 4.9 The cuspidal character x, 1s invariant under o\q,, _, -

Proof: We only need to show the assertion for o := O‘TG%P' Since the Deligne-

Lusztig varieties (see [Ca85, Sec. 7.7]) are permuted by o/, we have by [Ca85, Prop.
7.1.5, Thm. 7.7.11]

Gn—e — Gn_e
Ry (o) tg) = Ry (g) for all g € G, e,

hence o permutes unipotent characters of G, (see [Ca85, Sec.12]). Furthermore,
there is an «/-stable (B, N)-pair such that for all Levi subgroups L of G,,_.

(R 0e)) = B (Y0

which is 0 by the cuspidality of x,. By the uniqueness of x, the claim follows. W
We analyse the inertia index of 17, ® x4x:

Lemma 4.10 We have T, (py)(11, ® Xxx) = Ng, (Do)-
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Proof: Since Dy is invariant under o, N (Do) = (Ng,, (Do), o). Moreover 11, ®x
is invariant in Ng, (Dp) and x, under o by Lemma 4.9. [ |
Hence the number of edges of the Brauer tree of G, is

(T, (00 (17, ® x) : C, (Do) = [ -e.

By [Fei84, La. 3.2, La. 4.3], this Brauer tree is an f-fold unfolding of the basic tree
around its exceptional vertex.

Remark 4.11 The tree in Figure 1 is the planar embedded Brauer tree of the
unipotent block B: Assume the planar embedding is not as in Figure 1. Then there
are two rays of length s sitting next to each other. Let the labelling of the edges of
the Brauer trees be as in Figure 2 and Figure 3.

S:

K

Figure 3: Brauer tree of B

By [Alp93, Sec. 17] we can deduce the exact structure of the projective indecom-
posable modules corresponding to the simple modules from the Brauer tree. In
particular we know that under the above assumption

S
Sa1

is indecomposable as an B-module. However, the Brauer tree of B, indicates that
the restriction of this module to G,, decomposes as a direct sum S| @ S;. This is a
contradiction by [HupBla82, Thm. 7.20], as the degree f of the extension does not
divide I.

5 The Irregularly Shaped Star II

Throughout this section let s # ¢, f be positive integers such that s +¢ =: 2¢’ =: e
is even and ef | [ — 1. We apply Proposition 2.1 to k = ef, fix one of the (odd)
primes and denote it by p. Hence,

I|py =1 andltp' —1foralll<i<ef—1. (4)
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We put ¢ := p/ and denote the m x m matrix which has 1 on the anti-diagonal and
0 everywhere else by J,,,. Fix some a € F, such that X2 + X + a is irreducible in
F,[X] and put

J'm—l

By Ga,, we then mean one of the following matrix groups:
e The symplectic group Spam(q) = {9 € GLam(q) | ' Tomg = jgm}.
e The special orthogonal group SO, (q) = {9 € GLam(q) | 9'T2mg = Jam}.

e The special orthogonal group SOy, (q) = {g € GLam(q) | 9"35,,9 = I5..}-

5.1 Notation and Theoretical Background

Definition 5.1 (Compare [FS90]) (a) A symbol A = {X,Y} consists of an
unordered pair of sets X and Y of nonnegative integers. If X =Y, then A is
degenerate. Two symbols A = {X1,Y1} and Ay = {X5, Y2} are equivalent if
there is d € N such that

Xy = [0,d—1]U (X7 +d)and Y5 =1[0,d —1]U (Y1 +d)
OI'X1 = [0,d—1]U(X2+d) andY1:[07d—1]U(Y2—|—d)
We denote the equivalence class containing A by [A].
(b) The defect of a symbol A = {X,Y} is defined by def(A) = || X| — |V
the rank of A = {X,Y} is given by

= S Su- | (B

reX yeyY

, and

(¢) A cohook v of a symbol A = {X,Y} is a pair (y,z) € NZ with 0 <y < z and
y€Y and ze€X
ory¢ X and zxze€Y.

Then z —y =: k is called the length of v which is then called a k-cohook. The
symbol A’ obtained from deleting  from X (resp. Y') and adding y to Y (resp.
X) is said to be obtained from A by removing v. The e’-cocore Ay of X is
the unique symbol obtained by deleting e’-cohooks as often as possible. If A
is degenerate and A # A, both copies of A, are considered as the e’-cocore
of A (see [FS90]).

Definition 5.2 Let A = {X,Y} be a symbol and e’ be a positive integer. By
an e-abacus we mean an abacus with e = 2¢’ strings numbered from left to right
by 0;,...,(¢/ = 1);,0.,...,(¢/ — 1), and from top to bottom by 0,1,... With A
we associate an abacus diagram, called the e-unitary diagram, obtained as follows:
For a positive integer ¢ we put a bead on the i;-th string of row number ¢ if ¢ is
even and if ¢ + te’ =: 2’ is an element of X or if ¢ is odd and 2’ is an element of Y.
Analogously we put a bead on string 4, and row number ¢ if ¢ is even and i +te’ = '
is an element of Y or if ¢ is odd and z’ is an element of X. In these cases we say
the bead has number z; and z., respectively. The bead sticking last on its string is
called index-bead.
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Note that removing an e’-cohook v = (y, ) from a symbol A means pushing the
bead x up to the (free) position y lying above x.

By ([Ca85, Sec. 13.8]) we have for a positive integer m:

Remark 5.3 The unipotent characters of Spasi(g) are parametrized by equivalence
classes of symbols of rank m and odd defect.

The unipotent characters of SO;‘m(q) are parametrized by equivalence classes of
symbols of rank m and defect divisible by 4.

The unipotent characters of SO, (q) are parametrized by equivalence classes of
symbols of rank m and defect congruent to 2 modulo 4. |
In what follows we need to take results from the theory of Deligne-Lusztig (see also
[Ca85, Sec. 13.7, 13.8]).

Theorem 5.4 Let m be a positive integer and x » be a unipotent character parametrized
by the symbol A. Then xa is cuspidal if and only if

(a) for Gam(q) = Spam(q), it is equivalent to {{0,1,...,2r},{}} for some positive
integer v (and m =r? + 1),

(b) for Gam(q) = SO°(q) (e = *1), it is equivalent to {{0,1,...,2r — 1},{}}
for some positive integer r (and m = r? with v odd if ¢ = —1, and r even
otherwise).

In these cases the cuspidal character is unique.

Lemma 5.5 Let s # t be positive integers with 0 < t < €' and s +t = 2¢'.
Then there is a symbol A = {X,Y'}, such that the corresponding e-unitary diagram
has a fully occupied first row, s index-beads corresponding to X and t index-beads
corresponding to 'Y .

Proof: We start with beads for X and Y at string 0; and 0., respectively.

Put a bead on each position of the first row. Then for each e/ <i < (¢/ —1—1t) put
a bead on each position i,.. Then there are no beads on row number 1 at ¢ positions
within the right part of the abacus. |
Given s, t, we let for the rest of this chapter A = {X,Y} be as in Lemma 5.5 with
|X| > |Y| and label its index-beads such that o1 > g2 > - - - > 05 correspond to X
and 7 > 7o+ > 1 correspond to Y. We put m := rk(A)+¢’. Considering Remark
5.3 we fix Span(q), if def(A) is odd, SO3,, (q) if def(A) is divisible by 4 or SO, (q)
if def(A) is even and not divisible by 4. Note, that the corresponding subgroup
Spa(m—en (@) SO;(m_e,)(q) or SOQ_(m_e/)(q) has a cuspidal unipotent character by

Theorem 5.4. By condition (4) we observe that [pf|; = 2¢/ =: e and | — pf|; =
e’. Hence, by [FS82], I is unitary for Ga,, and the cyclic unipotent I-blocks of
Go,, are parametrized by e’-cocores A. Assume B, to be a cyclic unipotent block

parametrized by A. By [FS90] we have:

Theorem 5.6 The symbols A, and A, obtained from A by adding the cohooks
(0i,0i +¢€) and (1,7, +€), 1 <1 < s and 1 < j < t label the non-exceptional
characters of Ba, denoted by Xo, and X, , respectively. Then s = e’'4-def(A) and t =
e/ — def(A). The Brauer tree of By is of the following shape with the exceptional
character between x,, and xr,:

Xoy Xos Xos Xt X1 X2

As this Brauer tree is the basic tree we first need to ensure that the symbol A exists
for all choices of s and t with s +¢ = 2¢’.
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5.2 The Basic Tree

We need to analyse the structure of the occurring defect groups. Let the notation
be as in the last section.

Lemma 5.7 Let m > € be positive integers.

(a) There is a subgroup of Sp2m(q) of the form Spaz(q) X Spam—e)(q). Moreover
there is an irreducible cyclic subgroup of Spam(q) of order ¢™ + 1 and each
irreducible cyclic subgroup of Spam(q) has an order dividing ¢™ + 1.

(b) There is a subgroup of SO5, (q) of the form SO5;(q) % SO;(m,é)

there is an irreducible cyclic subgroup of SOy (q) of order ¢™ + 1 and each

irreducible cyclic subgroup of SO, (q) has a order dividing ¢™ + 1.

(q). Moreover

(c) There is a subgroup of SO (q) which is isomorphic to SO5;(q) x SO55—2)
foree{+,-}.

Proof: See [Hup70]. |
Given s, t, let A, m and e’ be as in the last subsection. Then we denote the subgroups
of Gay, introduced above by Gaer, Gom—ey and Gaer X Gam—ery. Fix a cyclic
irreducible subgroup Ty in Gaer and the Sylow I-subgroup Dy of Ty which is, by
condition (4), also a Sylow [-subgroup of Ga.. By Theorem 4.4(ii) in [CaEn94], a
Sylow [-subgroup of G is a defect group for the unipotent block By. In particular
Bp has Ty as defect group.

Lemma 5.8 (a) We have Cg, ,(To) = To and Cag,,,(To) = To X Gapm—er) =
CG2m(D0)7

(b) Na,, (To) = Na,,, (To) X Gopm—ey =T % Cocr X Ga(m—ery, with a cyclic group
Caer of order 2¢’ and

(¢) Ng,,. (Do) = Na,,, (To)-

Proof: Analogously to Lemma 4.7 we get (a), (b), (d) and the first part of (c). For
the second part of (c) compare [Ca85, Prop. 3.3.6] and [Ca85, Cor. 3.6.5]. [ |

5.3 Unfolding the Basic Tree

We now consider extensions of the occurring groups. Let By, Ty, Dy and x be as
above. Obviously the restricted Frobenius automorphism o := &p, acts on Spam(q)
and SO5, (q). Tt remains to define a suitable action on SO, (q).

Remark 5.9 Let V be a 2m-dimensional vector space over F, with quadratic form
Q@ of Witt index m — 1 such that SO,,,(¢) is isomorphic to the corresponding
orthogonal group. Let the polynomial X? + X + a € F,[X] be irreducible and
(U1, ey Uy Uy ooy 0]) i= (01,...,Dapm) be a basis of V such that

m—1

2m

~ 2 2

Q( E x;0;) = E TiTom41—i + Tpy + Ty Tmg1 + AT, 4 1.
i=1 i=1

Then, for 0 <r < f, X?>+ X +a'(a) € Fy[X] is irreducible, too. Thus the following
quadratic forms @, are isometric to Q:

m—1

2m
r Vi) = iTom 41— i, + TmTmi1 +a ()], .
Q-(> x;0;) Tix o, + Ty +a "(a)x
i=1 i=1
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Hence, for each 0 < r < f, there is an automorphism ¢, € Aut(V) corresponding
to the isometry between (V, Q) and (V,Q,). Then o := (o, 1) acts on SO5,,(q)
by mapping [g; j]1<i j<om € SO3,,(q) to

o ([9ijh1<ij<om) = a(@((gijli<ij<om))-

Let the notation be as above. We use a*) to denote v and o/ depending on which
group Ga,, is considered. Put

Gam = Gam x (o).

Then \G’gm : Gop| = |a(*)\ = f, which is not divisible by I. As a(*)(TO) < Gy is
again a Coxeter torus, we find gg € G, such that go(a(*)(TO))ga1 =Ty. Put o:=
(907 O[(*)) S GQHL' Then G2m == G2ﬂl<a>' Then T07D07 GQma G2(m—6')(q)a OGQm (DO)
and Ng,. (Dp) are invariant under o.

With the relations (4) we have C, (Do) = Cag,,, (Do) = To X Ga(m—cr)- By [Alp93,
Thm. 15.1(5)], there is exactly one block B of Ga,, which covers By with B =

(B A)GM. The same argumentation as in Lemma 4.9 shows that, xa is invariant
under og, . It remains to analyse the inertia group of the canonical character
to determine the number of edges of the Brauer tree.

Lemma 5.10 We have Tn,, (Do) (11, ® xa) = Ng, (Do)

Proof: As Ng,, (Dp) is invariant under o we have Ng, (Do) = (Ng,,,(Do),0).
Moreover 17, ® xa is invariant under ¢ and under Ng,,, (Do). |
Hence the inertia index is |TN(;2 (D) (M) : Cg, (Do)| = f-2¢’ and the block under
consideration has 2¢’f = ef edfées. By [Fei84, La. 3.2] we have S, as Brauer

tree for B. By the same arguments as in Remark 4.11, this Brauer tree is also the
planar embedding.

6 Brauer Trees in Principal Blocks

In this section we discuss the question whether there are Brauer trees which cannot
be realized in the principal block of any group. Indeed we find in Theorem 2 an
infinite family of Brauer trees which do not occur in the principal block of any group.
To reduce the assertion of Theorem 2 to simple groups, we need the following lemma.

Lemma 6.1 Let G be a group with a cyclic Sylow l-subgroup and with Oy (G) = {1}.
(a) The product S over all minimal normal subgroups of G is simple with 1| |S].
(b) G is solvable or satisfies S < G < Aut(S).

Proof:

(a) Assume that M; # M, are minimal normal subgroups of G. Then [ | |M;]
and [ | |Mz], since Op(G) = {1}. Consider subgroups T; < M; of order [
for i = 1,2. As G has a cyclic Sylow [-subgroup, there a is ¢ € G with
g 1T1g = Ts. Since M is normal, My N My # {1}, which is a contradiction
to the minimality of M;. Hence there is a unique minimal normal subgroup
S, which is simple since it has a cyclic Sylow [-subgroup.

(b) Let C := Cg(S). If S is abelian, it is cyclic of order I. Let [C, C] denote the
commutator of C. By [Isa94, Cor 5.6], SN [C,C] = {1}. As S is the unique
minimal normal subgroup, we have [C, C] = {1}, hence C' is abelian. As G/C
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embeds into Aut(S) = Cy_1, it follows that G is solvable. If S is non-abelian,
then C NS = {1}. As C is a normal subgroup of G, we have C' = {1} by the
minimality and uniqueness of S as a minimal normal subgroup of G. Hence,
S < G = Ng(S) < Aut(S). Note that in this case, [ 1 |G : S| by [Ga52]. N

The previous lemma provides the reduction to prove Theorem 2.

Proof of Theorem 2: We show that most irregularly shaped stars do not occur as
Brauer trees of principal blocks of any group. Let G be an arbitrary group. Since
we consider the principal block, we may assume that Op(G) = {1}. Note that if
Ss.¢.r and Sy ¢ g are similar stars with s < ¢ and s’ < t/, then s =5 and t =¢'. If
G is solvable then the Brauer tree is a regularly shaped star with one edge on each
ray. Thus it cannot be similar to an irregularly shaped star. By Lemma 6.1, we
henceforth may assume that S < G < Aut(G) for some non-abelian simple group S.
It therefore suffices to prove the Theorem for non-abelian simple groups by [Fei84,
La. 4.3]. We consider these in turn.

(a) A, for n > 5: If A, has a cyclic Sylow l-subgroup, the Brauer tree of the
principal block is a straight line with the exceptional vertex sitting on one
end (see [JaT78]).

(b) Groups of Lie type:

PSL,(q),n>2,n#(2,2),(2,3): If I | ¢, we only need to consider n = 2
and ¢ = [. In this case the principal block of PSLs (1) is isomorphic to the
principal block of SLs (1), which is a basic tree for a regularly shaped star
by [Alp93, Chap.V, p.123]. If [ | ¢ — 1, we only need to consider n = 2.
From [Bu76] we know, that in this case the Brauer tree of the principal
block of PSL2(q) is a basic tree for a regularly shaped star. It remains
to consider the case [t ¢ and [ ¥ ¢ — 1. As above, the principal I-block
of PSL,(q) is isomorphic to the principal block of SL,(q). By [Fei84]
the principal block of SL,,(q) is in this case similar to the principal block
of GL,(q), which in turn has a basic tree for a regularly shaped star by
[FS84].

PSU,(¢?), n > 3, (n,q) # (3,2): The same argumentation as in case
PSL,(q) shows, that we may consider GU,,(¢?), and the results in Sec-
tion 4 complete the proof in this case.

PSp,(q), n > 2, n # (2,2): Let the I-Sylow sugroups of PSp,(q) be
cyclic. As |Z(Spn(q))| = ged(2,q — 1), we may apply the results of
Section 5, unless [ = 2. But in this case all occurring Brauer trees only
have one edge.

Qom+1(q), n > 3, ¢ odd: We may consider GOa,,+1(q) and apply the
results of Section 5, we may assume [ to be odd.

QF (q),95,,(q), n > 4. Assume [ to be odd. Then we may consider
GO, (q) and GO, (q), respectively, and apply the results of Section 5.

Eg(q): This group has a basic tree for an irregularly shaped star with
parameters (s, t, f) = (2,6, f) with 8f | I—1 and [ | ¢*+ 1 in its principal
block by [HiLueMal95].

E+(q), Es(q): The Brauer trees of those groups have less than 249 edges
(see [Fei84]).

Fy(q): This group provides no basic tree for an irregularly shaped star
in the principal block by [HiLue98].

3D4(¢): There is one basic tree for a star with parameters (s,t, f) =
(1,3, f) with f |1 —1 and 4l | ¢* — ¢*> +1 in its principal block by [Ge90].
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e 2E4(¢?): This group has a basic tree for an irregularly shaped star with
(s,t, f) = (1,4, f) with 5f | [—=1 and [ | ¢* +¢®+¢®+q+1 in its principal
block by [HiLue98].

o G2(q),? B2(q?),2 F4(¢?),2 G2(q?): There are no exceptions by [Hi90].

(¢) Sporadic groups: By [HiLux89] there are only two principal [-blocks with
Brauer trees S5+ f: In Jy for | = 19 the Brauer tree equals S7 51 and in Jy
for [ = 31, the Brauer tree equals S3.7,1
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