Grassmann Coordinates

and tableaux

Matthew Junge

Autumn 2012
Goals

1. Describe the classical embedding $G(k, n) \hookrightarrow \mathbb{P}^N$.
2. Characterize the image of the embedding
 - quadratic relations.
 - vanishing polynomials.
3. Reinterpret in terms of varieties and ideals.
4. Application: classify representations over $GL_n(\mathbb{C})$.
What is a Grassmannian?

A **Grassmannian** $G(k, n)$ is the set of all k-dimensional subspaces of \mathbb{C}^n.

For example,

$$G(1, 3) = \mathbb{P}^2$$

where we identify all lines.

$G(k, n)$ can be given a topology by embedding it as a subspace of \mathbb{P}^N.
The Embedding

- Fix n, k and fix a basis for \mathbb{C}^n.
- Let $S_k \in G(k, n)$ be k-dimensional subspace.

| Goal: | Map S_k to a point in $\mathbb{P}^{(n)-1}$. |
Let $\alpha_1, \ldots, \alpha_k \in \mathbb{C}^n$ be a basis for S_k, and let $A = \begin{bmatrix} \alpha_1 & \cdots \\ \vdots \\ \alpha_k & \cdots \end{bmatrix}$ be the corresponding $k \times n$ matrix.

Let $l = i_1 \ldots i_k$ with each $1 \leq i_j \leq n$ and $i_1 < i_2 < \cdots < i_k$.

Let A_l denote the $k \times k$ submatrix obtained by selecting the columns with suffixes i_1, \ldots, i_k.

$S_k \mapsto p_I \subseteq \mathbb{P}^\left(\binom{n}{k}\right)^{-1}$
Let $\alpha_1, \ldots, \alpha_k \in \mathbb{C}^n$ be a basis for S_k, and let $A = \begin{bmatrix} \alpha_1 & \cdots \\ \vdots \\ \alpha_k & \cdots \end{bmatrix}$ be the corresponding $k \times n$ matrix.

Let $l = i_1 \ldots i_k$ with each $1 \leq i_j \leq n$ and $i_1 < i_2 < \cdots < i_k$.

Let A_l denote the $k \times k$ submatrix obtained by selecting the columns with suffixes i_1, \ldots, i_k.

We define coordinate functions $\Phi_l(A_l) = \det A_l := p_l$.

This gives a map $\Phi : G(n, k) \to \mathbb{P}(\binom{n}{k})^{-1}$

$$S_k \mapsto (\ldots, p_l, \ldots), \quad \forall l.$$
Details About Embedding

Proposition

Φ is injective.

Messy argument with coordinates.
Details About Embedding

Proposition
\(\Phi \) is injective.

Messy argument with coordinates.

Proposition
\(\Phi \) is not surjective.
The Plücker Relations

\[G(k, n) \hookrightarrow \mathbb{P}(n)^{-1}. \]

Goal: Characterize the image of \(G(k, n) \). Let \(X = \Phi(G(k, n)) \).

The points in \(X \) satisfy certain quadratic relations.
Goal: Characterize the image of $G(k, n)$. Let $X = \Phi(G(k, n))$.

The points in X satisfy certain quadratic relations.

Proposition

The points in X do not satisfy any linear relations.
The Plücker Relations

Theorem (Plücker Relations)

Fix \(p \in X \). For all \(1 \leq s \leq n \) and any coordinates \(p_I, p_J \) with \(I = i_1 \ldots i_k \) and \(J = j_1 \ldots j_k \) it holds that

\[
p_I p_J = \sum_{\lambda=1}^{k} p_{i_1 \ldots i_{s-1} \lambda i_{s+1} \ldots i_k} p_{j_1 \ldots j_{\lambda-1} i_s j_{\lambda+1} \ldots j_k}.
\]
The Plücker Relations

Theorem (Plücker Relations)

Fix \(p \in X \). For all \(1 \leq s \leq n \) and any coordinates \(p_I, p_J \) with \(I = i_1 \ldots i_k \) and \(J = j_1 \ldots j_k \) it holds that

\[
p_I p_J = \sum_{\lambda=1}^{k} p_{i_1 \ldots i_{s-1} j_\lambda i_{s+1} \ldots i_k} p_{j_1 \ldots j_{\lambda-1} i_s j_{\lambda+1} \ldots j_k}.
\]

Theorem (Surjectivity Theorem)

If \(p \in \mathbb{P}^N \) satisfies the Plücker relations then there is a \(k \)-space \(S_k \subseteq \mathbb{P}^n \) with coordinate \(p \).
Definition

Let $1 \leq i_1, \ldots, i_{k-1} \leq n$ and let $1 \leq j_1, \ldots, j_{k+1} \leq n$ be distinct numbers. Denote these two choices by I and J. We define a **quadratic basis polynomial**

\[
F_{IJ}(P) = \sum_{\lambda=1}^{k+1} (-1)^\lambda P_{i_1 \ldots i_{k-1} j_\lambda} P_{j_1 \ldots j_\lambda-1 j_{\lambda+1} \ldots j_{k+1}}
\]

with the P_L indeterminates.
Proposition

For all $p \in X$ and all I, J it holds that $F_{IJ}(p) = 0$.
For all $p \in X$ and all I,J it holds that $F_{IJ}(p) = 0$.

But what if $G(p) = 0$? For arbitrary homogeneous G.
Theorem (Basis Theorem I)

If \(G(P) \) is a homogeneous polynomial in the indeterminates \(\ldots, P_L, \ldots \) with \(L = l_1 \ldots l_k \) such that

\[
G(p) = 0, \quad \forall p \in X
\]

then

\[
G(P) = \sum_{I,J} A_{IJ}(P)F_{IJ}(P), \quad I = i_1 \ldots i_{k-1}, J = j_1 \ldots j_{k+1}
\]

(1)

with the \(F_{IJ} \) quadratic basis polynomials and \(A_{IJ} \) homogeneous polynomials in the \(P_L \).
We can embed $G(k, n)$ into $\mathbb{P}(k)^{n-1}$.

The image consists of points satisfying certain quadratic (Plücker) relations.

The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.
We can embed $G(k, n)$ into $\mathbb{P}(n)^{-1}$.

The image consists of points satisfying certain quadratic (Plücker) relations.

The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.

Up Next: This can all be reformulated and proven in terms of varieties and ideals in a coordinate free way.
Let E be a \mathbb{C}-vector space, recall that

$$\bigwedge^d E = \left(\bigotimes_1^d E \right) / T$$

with $T = \{v_1 \otimes \cdots \otimes v_d - \text{sign } (\sigma)v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}\}$.

1. $\bigwedge^d E$ is multilinear.
2. $\bigwedge^d E$ is anticommutative.
Fix $S_{n-d} \in G(n - d, n)$. Will map $G(n - d, n) \to \mathbb{P}^* \left(\wedge^d E \right)$ via

$$S_{n-d} \mapsto H_{S_{n-d}}.$$
Fix $S_{n-d} \in G(n - d, n)$. Will map $G(n - d, n) \to \mathbb{P}^* \left(\bigwedge^d E \right)$ via

$$S_{n-d} \mapsto H_{S_{n-d}}.$$

The kernel of the map $\bigwedge^d E \to \bigwedge^d (E/S_{n-d})$ is a hyperplane

$$H_{S_{n-d}} \subseteq \bigwedge^d E.$$

Recall that $\mathbb{P}^* (E)$ is the quotient of E in which we identify all hyperplanes.
Polynomials on $\mathbb{P}^*(\bigwedge^d E)$

For any $v_1, \ldots, v_d \in E$ we can define a linear form on $H \in \mathbb{P}^*(\bigwedge^d E)$.

$$\bigwedge^d E \xrightarrow{\pi} \left(\bigwedge^d E\right) / H := L$$

For $f \in L^*$.

$$\left(\bigwedge^d E\right)^* \xleftarrow{\pi^*} L^*$$

$$\left(v_1 \wedge \cdots \wedge v_d \right)(H) := \left(v_1 \wedge \cdots \wedge v_d \right)(L^*) \sim \left(\pi^* f \right)(v_1 \wedge \cdots \wedge v_d)$$

\begin{align*}
&\begin{cases}
0 \\
\neq 0
\end{cases}
\end{align*}

Products of the $v_1 \wedge \cdots \wedge v_d$ live in $\text{Sym}^* \left(\bigwedge^d E \right)$.
Plücker Relations

Theorem (The Plücker Relations/Surjectivity)

The Plücker embedding is a bijection from $G(n - d, n)$ to the subvariety of $\mathbb{P}^\ast(\wedge^d E)$ defined by the quadratic equations

\[
(v_1 \wedge \cdots \wedge v_d) \cdot (w_1 \wedge \cdots \wedge w_d) = \sum_{i_1 < i_2 < \cdots < i_k} (v_1 \wedge \cdots \wedge v_{i_1} \wedge \cdots \wedge v_{i_k} \wedge w_{k+1} \wedge \cdots \wedge w_d)
\]
The Basis Theorem II

Theorem (The Basis Theorem II)

Let \tilde{Q} be the ideal generated by the Plücker Relations. It holds that

$$\mathcal{I}(\mathcal{Z}(\tilde{Q})) = \tilde{Q}.$$

Proof.

- We will prove that \tilde{Q} is prime.
- The Nullstellensatz immediately implies the result.
Proving Primality of \tilde{Q}.

Short-Story:

- Goal is to show that $\text{Sym}^* \left(\wedge^d E \right) / \tilde{Q}$ is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over $GL_n(\mathbb{C})$.

Proving Primality of \tilde{Q}.

Short-Story:

- Goal is to show that $\text{Sym}^\ast \left(\wedge^d E \right) / \tilde{Q}$ is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over $GL_n(\mathbb{C})$.

First we need to introduce the tableaux:
Let E be a \mathbb{C}-module. For fixed n, we let λ denote a weakly decreasing partition of n, i.e. for $n = 16$ a partition λ could be $\lambda = (6, 4, 4, 2)$

$$6 + 4 + 4 + 2 = 16.$$

The associated tableau (also denoted λ) is
From each λ we can construct a particular \mathbb{C}-module E^λ.

Start with cartesian product $E^{\times \lambda}$

Instead of n-tuples - put elements in boxes.
From each λ we can construct a particular \mathbb{C}-module E^λ.

Start with cartesian product $E^{\times \lambda}$

Instead of n-tuples - put elements in boxes.

If $n = 5$ and $\lambda = (2, 2, 1)$ we have an element $v \in E^{\times \lambda}$ is written

\[
\begin{array}{c|c}
V_1 & V_4 \\
V_2 & V_5 \\
V_3 & \\
\end{array}
\]
Let λ have s columns and let $d_i, i = 1, \ldots, s$ denote the length of the i^{th} column.

$$E \times \lambda \rightarrow \bigotimes_{i=1}^{s} d_i \bigwedge E : v \mapsto \wedge v$$

For example,

\[
\begin{array}{cc}
V_1 & V_4 \\
V_2 & V_5 \\
V_3 & \mapsto (V_1 \wedge V_2 \wedge V_3) \otimes (V_4 \wedge V_5)
\end{array}
\]
Let Q^λ be the submodule generated by

$$\wedge v - \sum \wedge w$$

The sum is over all w obtained from v with an exchange between two given columns with a given subset of boxes in the right chosen column.
The Schur Module: Step 4/4

\[E^\lambda := \left(\bigotimes_{i=1}^{s} d_i \bigwedge E \right) / Q^\lambda. \]

1. \[\lambda = \underbrace{\begin{array}{c} \hline \hline \hline \end{array}}_{n \text{ times}} \] then \(E^\lambda = \text{Sym}^n(E) \).

2. \[\lambda = \begin{array}{c} \hline \hline \hline \end{array} \] then \(E^\lambda = \bigwedge^n E \).
Let e_1, \ldots, e_n be a basis for E.

Fill λ with the e_i.
- Weakly increasing across rows.
- Strictly increasing down columns.

Each such arrangement, T, is called a **standard filling**.

The image of this element in E^λ will be denoted by e_T.

\[
\begin{array}{ccc}
 e_1 & e_2 & e_2 \\
 e_3 & e_4 & e_5 \\
 e_5 & e_5 & \\
\end{array}
\longrightarrow e_T \in E^\lambda
Let e_1, \ldots, e_n be a basis for E.

Fill λ with the e_i.

- Weakly increasing across rows.
- Strictly increasing down columns.

Each such arrangement, T, is called a **standard filling**.

The image of this element in E^λ will be denoted by e_T.

\[
\begin{array}{ccc}
 e_1 & e_2 & e_2 \\
 e_3 & e_4 & e_5 \\
 e_5 & e_5 & \end{array}
\quad \rightarrow \quad e_T \in E^\lambda
\]

Theorem

E^λ is free on the e_T.
A New Polynomial Ring

\[\mathbb{C}[Z] := \mathbb{C}[\ldots, Z_{i,j}, \ldots], \quad i = 1, \ldots, m \quad j = 1, \ldots, n \]

For \(d \leq m \) choose \(0 \leq i_1 \leq \cdots \leq i_d \leq n \). Define the polynomial

\[D_{i_1 \ldots i_d} = \det \begin{bmatrix} Z_{1,i_1} & \cdots & Z_{1,i_d} \\ \vdots & \ddots & \vdots \\ Z_{d,i_1} & \cdots & Z_{d,i_d} \end{bmatrix} \]
A New Polynomial Ring

\[\mathbb{C}[Z] := \mathbb{C}[\ldots, Z_{i,j}, \ldots], \quad i = 1, \ldots, m \quad j = 1, \ldots, n \]

For \(d \leq m \) choose \(0 \leq i_1 \leq \cdots \leq i_d \leq n \). Define the polynomial

\[D_{i_1 \ldots i_d} = \det \begin{bmatrix} Z_{1,i_1} & \cdots & Z_{1,i_d} \\ \vdots & \ddots & \vdots \\ Z_{d,i_1} & \cdots & Z_{d,i_d} \end{bmatrix} \]

For an arbitrary filling \(T \) of \(\lambda \) with the numbers \(\{1, \ldots, n\} \),

\[D_T = \prod_{i=1}^{s} D_{T(1,i), T(2,i), \ldots, T(d,i)} \]

Corollary

The map \(e_T \mapsto D_T \) is an injective homomorphism \(E^\lambda \to \mathbb{C}[Z] \) and its image \(D^\lambda \) is free on the polynomials \(D_T \).
\(\lambda \) with \(s \) columns with lengths \(d_i \) each occurring with multiplicity \(a_i \).

\[
E^\lambda \simeq \text{Sym}^{a_1}(\bigwedge^{d_1} E) \otimes \cdots \otimes \text{Sym}^{a_s}(\bigwedge^{d_s} E)/Q^\lambda.
\]

Define

\[
S^*(E; d_1, \ldots, d_s) := \bigoplus_{(a_1, \ldots, a_s)} E^\lambda, \quad Q := \bigoplus_{(a_1, \ldots, a_s)} Q^\lambda.
\]

\[
R := \bigoplus_{(a_1, \ldots, a_s)} \text{Sym}^{a_1}(\bigwedge^{d_1} E) \otimes \cdots \otimes \text{Sym}^{a_s}(\bigwedge^{d_s} E)
\]

\[
R/Q = \bigoplus_{(a_1, \ldots, a_s)} E^\lambda
\]
Putting it Together.

We now have

1. \(R/Q = \bigoplus_{(a_1, \ldots, a_s)} E^\lambda. \)
2. \(E^\lambda \simeq D^\lambda \subseteq \mathbb{C}[Z] \) under the map \(e_T \mapsto D_T \)

Proposition

\(Q \) is a prime ideal.

Proof.

- \(R/Q \simeq \bigoplus D^\lambda \subseteq \mathbb{C}[Z] \) via \(e_T \mapsto D_T \).
- \(\bigoplus D^\lambda \) remains direct (requires proof) and thus is a subring.
- A subring of a polynomial ring is an integral domain.

\(\therefore \) \(Q \) is prime.
What about \tilde{Q}?

Back to $G(n - d, n)$ and \tilde{Q}. Corresponds to λ has columns of length d.

$$\bigoplus_a E^\lambda = \bigoplus_a \text{Sym}^a \left(\bigwedge^d E \right) / Q^\lambda = \text{Sym}^\cdot \left(\bigwedge^d E \right) / \tilde{Q}.$$

Which we just proved embeds as a subring of a polynomial ring.

Hence \tilde{Q} is prime as a special case.

Last item of business (time pending): Why is $\bigoplus D^\lambda$ direct?
A representation of $GL(n, \mathbb{C})$ on \mathbb{C} is a homomorphism $V : GL(n, \mathbb{C}) \to GL(m, \mathbb{C})$ for some m.

Let $X_{i,j} : GL(n, \mathbb{C}) \to \mathbb{C}$ be the coordinate function with $1 \leq i, j \leq n$.

We say that a representation, V, is polynomial if there is a basis v_1, \ldots, v_m of V such that for $g \in GL(n, \mathbb{C})$ we have

$$gv_b = \sum_a f_{ab}(g)v_a, \quad 1 \leq a, b \leq n.$$

With $f_{ab} \in \mathbb{C}[X_{ij}]$ (i.e. f_{ab} is a polynomial).
E^λ as a Polynomial Representation

Let $|\lambda| = n$, $e_T \in E^\lambda$ acts on a matrix $g \in GL(m, \mathbb{C})$ via the formula

$$g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'}$$

where the sum is taken over the n^m fillings of T' of obtained from T by replacing the entries (j_1, \ldots, j_m) by (i_1, \ldots, i_m).
E^λ as a Polynomial Representation

Let $|\lambda| = n$, $e_T \in E^\lambda$ acts on a matrix $g \in GL(m, \mathbb{C})$ via the formula

$$g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'}$$

where the sum is taken over the n^m fillings of T' of obtained from T by replacing the entries (j_1, \ldots, j_m) by (i_1, \ldots, i_m).

Theorem

As λ varies over all tableaux the E^λ classify uniquely all irreducible polynomial representations of $GL(n, \mathbb{C})$.

Proposition

Any sum of irreducible pairwise distinct representations is direct.

$\bigoplus D^\lambda$ remains direct.
Let \(|\lambda| = n\), \(e_T \in E^\lambda\) acts on a matrix \(g \in GL(m, \mathbb{C})\) via the formula

\[g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'} \]

where the sum is taken over the \(n^m\) fillings of \(T'\) of obtained from \(T\) by replacing the entries \((j_1, \ldots, j_m)\) by \((i_1, \ldots, i_m)\).

Theorem

As \(\lambda\) varies over all tableaux the \(E^\lambda\) classify uniquely all irreducible polynomial representations of \(GL(n, \mathbb{C})\).

Proposition

Any sum of irreducible pairwise distinct representations is direct.

\[\bigoplus D^\lambda \text{ remains direct.} \]
1. $G(k, n) \hookrightarrow \mathbb{P}^N$ in coordinates and $G(n - d, n) \hookrightarrow \mathbb{P}^* (\wedge^d E)$ via a coordinate free way.

2. Can classify the vanishing polynomials on the respective images.

3. All polynomial representations of $GL(m, k)$ have the form E^λ.
1. $G(k, n) \hookrightarrow \mathbb{P}^N$ in coordinates and $G(n - d, n) \hookrightarrow \mathbb{P}^* (\bigwedge^d E)$ via a coordinate free way.

2. Can classify the vanishing polynomials on the respective images.

3. All polynomial representations of $GL(m, k)$ have the form E^λ.

ANY QUESTIONS?