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Abstract

Given the vast size of the Earth's oceans, and the dynamics of their
currents, any attempt to give the exact location of a downed aircraft is
infinitely daunting. Instead of attempting the exact, what we propose
in this paper is an approach to the problem that maximizes search ef-
ficiency. Our approach will be developed over several steps: 1) develop
the disappearance interval and search radius, 2) model the trajec-
tory of the aircraft while still in the air using scenario and probabil-
ity analysis, 3) model the effects of the ocean's currents on the
fuselage at the crash site, and 4) apply Bayesian search methods to
maximize search efficiency. Using the aircraft's velocity, trajectory,
and location at time of last contact, we apply a modified version of the
equations of motion to determine the possible crash points within a
bounded region. Working within this region, we apply different prob-
ability distributions to the aircraft's location under varying scenarios
such as mechanical failure or bad weather conditions. We then analyze
the effects of ocean currents on the fuselage to determine a maximum
drift. Accordingly, our model will give us a series of estimates of the
aircraft's resting location on the seafloor. Each of these resting loca-
tions will be defined in a search area and assigned a probability so that
Bayesian search theory can be applied. Finally, we will address how to
test our model for accuracy and how our model might be improved by
available technology, such as advanced satellite tracking.
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1 Introduction

Given recent events concerning ocean downed aircraft, we understand
that efficient methods and models are needed to aid search and rescue
efforts. The sheer size of the Earth's oceans render any search and
rescue efforts formidable and so we will utilize well-developed mathe-
matical principles to aid in these efforts.

In this paper we present a model for locating aircraft lost at sea
and presumed to be downed. Our model takes into account critical
factors such as location, trajectory, and velocity at point of last contact.
Additional factors considered in the model are aircraft mass as well as
prevailing weather and ocean currents. This information is used in
our model to determine the most likely crash and resting sites of the
aircraft. The model maximizes search efficiency by minimizing the
time it takes to locate the aircraft.

1.1 Outline of Our Approach

The beginning of our paper will focus on developing the necessary
framework for the model to work. Here we consider the reasons which
may have caused the aircraft to go down. Reasons due to mechanical
failure or severe weather have different implications on pilot reaction.
Additionally, we consider the possible scenarios once the aircraft hits
the ocean; it may sink or may drift for an undetermined amount of
time before sinking. These scenarios are all considered throughout the
development of the model. Our priorities are as follows:

� Develop the model: Search Efficiency
Throughout the development of our model, we use a modified
versions of the equations of motion, probability distribution fit-
ting, and Bayesian search methods. The motivating idea is to
create efficient search techniques while working against a clock.
We identify the most probable crash sites and a maximum search
radius.

� Probability Density Fitting
Different distress scenarios imply different pilot reactions. We
identify the most probable causes of an aircraft crash to be: ex-
treme weather conditions or mechanical/human failure. Under
this scenario analysis, we fit a probability density function cen-
tered on the most probable crash sites which are considered to
be random variables.

� Bayesian Search Method
Given a bounded search region, we establish disjoint subregions
each with an assigned probability of containing the fuselage. Within
the sub regions, another probability of locating the plane is es-
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tablished and is based on factors such as water depth, search
equipment, and technology. Using Bayesian statistics, the re-
sults are a decreased probability in areas searched and increased
probability in the other subregions. This may seem like common
sense, but having an organized and systematic search method
based on probability theory will aid any ocean search and rescue
effort. Bayesian search methods were successfully employed in
the location of Air France Flight 447 [2].

� Analysis of Results: Suggestions for Improvement and
Implementation
Testing the model against unavailable real data proved difficult.
What we are confident in is the approach to the problem and the
modeling that we propose on maximizing the search efficiency.
We offer suggestions for further improvement and implementa-
tion of the model through simulation in ocean search and rescue
efforts.

1.2 Assumptions

Due to the complicated nature of locating missing aircraft, we will
introduce a few assumptions to our model.

� Any aircraft must communicate with air traffic control (ATC)
every thirty minutes. With current technologies, communication
between aircraft and ATC is more frequent for many aircraft and
thirty minute intervals is standard for other aircraft following
protocol. The thirty minute limit assumption gives a definite time
frame to work within which the aircraft disappeared. Our model
can be applied similarly in situations where radar contact is lost
but the aircraft continues to send basic information (velocity,
altitude, latitude and longitude) to satellite receivers (as many
modern aircraft do).

� The aircraft has crashed due to outside forces (weather) or a
mechanical error of some kind. Our model was not designed to
analyze a hijacking or intentional crash off-course.

� When confronted with a storm, a pilot will fly above or through
the storm. They will not attempt to fly around the storm unless
given authorized permission from ATC. This is in line with pro-
tocol; a pilot will not alter course unless he is authorized to do
so by ATC.

� The aircraft is not sending out any signals or information regard-
ing its location. If this were the case, our model would not be
necessary to locate the airplane.

� The aircraft will sustain damage upon crashing. Specifically, we
will assume the fuselage has separated from the wings of the
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aircraft. An aircraft is highly unlikely to undergo a major crash
and lose communication abilities if it has not sustained major
damage in some way.

1.3 Definition of Terms

� Disappearance Interval: Time in between last point of con-
tact and scheduled point of contact. If scheduled contact is not
made, then the disappearance interval is the maximum of the
time elapsed between points of contact. Our assumption is that
the disappearance interval is thirty minutes.

� Search Efficiency: Governing search principle; constant update
of high probability search areas through Bayesian analysis.

� Mayday Indicator: The location that the aircraft begins to
lose control in the sky.

� Crash Point: The location that the aircraft makes contact with
the water.

� Resting Location: The final location of the aircraft once it
reaches the ocean floor.

2 Probability Density of Mayday Indica-
tors

In order to apply the Bayesian search method, we first develop a prob-
ability density function (PDF) that will aid in prioritizing search areas
within the established radius. We consider the two scenarios that mo-
tivate our model development whose characteristics prescribe distinct
PDFs.

2.1 Storm Scenario

Given our assumption that a pilot will fly above or into the middle of
a storm, we consider the probable location of the craft as it is being
taken down by the storm. In this sense, the mayday indicators are best
modeled by a positively skewed log normal density function [10]:

f(x) =
1√
2πσ

x exp

(
− [ln(x)− µ]2

2σ2

)
(1)

with the mean, mode, variance and skewness defined:

Mean: eµ+σ2/2 (2)

Mode: eµ−σ
2

(3)
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Figure 1: A sample PDF in a storm scenario with the aircraft represented
by the black arrow. The red area highlights the highest probability locations
for mayday indicators and thus the highest density of mayday indicators

Variance: (eσ
2

− 1)e2µ+σ2

(4)

Skewness: (eσ
2

+ 2)
√
eσ2 − 1 (5)

where µ is the location parameter.
We will define the mode of our PDF to be the center of the storm.

We have chosen this designation as it is unlikely the aircraft will im-
mediately fall out of the sky once entering the storm (even though
it is possible) but will instead fly some undetermined distance before
crashing.

2.2 Mechanical Failure Scenario

The event of mechanical failure over the ocean expands the probable
search area. Under this scenario the location of the aircraft is best
modeled by a normal distribution with a higher probability of coasting
before hitting the water. The density function will have a negative
kurtosis to reflect this probability. The normal density function is
given by

f(x) =
1

2
√
π

exp

(
−(x− µ)2

σ2

)
(6)

with a typical mean (µ), a mode of µ, typical variance (σ2) and no
skew.

It is important to note that the normal distribution, due to its
negative kurtosis, will have a larger standard deviation and a higher
probability of mayday indicators in extreme ranges when compared to
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our log normal distribution. Thus the mayday indicator “hot spot”
will be larger for a mechanical failure scenario and our search area will
be expanded.

3 Modeling Crash Sites

3.1 Known Values

There is a thirty minute window between communications with pilots
and ATC in which the aircraft can disappear (the disappearance inter-
val). At each “check in” with ATC, a pilot must report their location,
altitude, velocity, and intended path. Thus, from the last point of
contact, we are aware of the aircraft's altitude and velocity. We can
assume in the following thirty minutes that these will be held near
constant as needless changes in velocity waste fuel.

3.2 Trajectory of Aircraft From Mayday Indicator

We will use the following equations of motion and their modifications
as outlined by Wilson [12] to represent aerodynamic objects falling to
Earth at an initial horizontal velocity.

du

dt
= −guV

U2
,

dv

dt
= g

(
1− vV

U2

)
(7)

and
V 2

r
= g

u

V
,

dV

dt
= g

(
v

V
− V 2

U2

)
(8)

Where U = terminal velocity, g = 9.8m/s2, u = horizontal component
of velocity and v = vertical component of velocity.

Through manipulation and various substitutions we can conclude

d2y

dx2
=

g

u2
0

e2gs/U2

(9)

for an arc s. To approximate this curve we can enclose it between two
other curves, x < s < x+ y. Thus we can model the trajectory as

d2y

dx2
=

g

u2
0

e2gx/U2

, lies above the actual trajectory (10)

d2y

dx2
=

g

u2
0

e2gy/U2

, lies above the actual trajectory (11)

d2y

dx2
=

g

u2
0

e2g(x+y)/U2

, lies below the actual trajectory (12)
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It is simple to integrate (10) and (11), the solutions are

y =
U4

4gu2
0

(e2gx/U2

− 1)− U2x

2u2
0

(13)

and

y =
U2

g
log sec

gx

u0U
(14)

Each of these will provide upper bounds to the actual trajectory, with
(13) being most accurate for short trajectories and (14) being most
applicable in the case that initial altitude is large.

We can solve (12) given the substitution of

z = x+ y
dz

dx
=
dy

dx
+ 1,

d2z

dx2
=
d2y

dx2
(15)

and so the solution of (12), and the lower bound to our trajectory, is

y + x =
U3

g

[
log sec

(
gx

u0U

√
1− u2

0

U2
+ sin−1 u0

U

)
+ log

√
1− u2

0

U2

]
(16)

Depending upon the altitude of the flight, either (13) or (14) could be
averaged with (15) to determine a probable crash point.

3.3 Determining Aircraft Crash Points

At cruising speed, the average long-distance commercial airplane flies
at up to 900km/h. In our disappearance interval, this leaves 450km
as a maximum distance that the plane could have traveled. It is not
feasible to search this entire area or to test the probability at each
mayday indicator that the aircraft crashed.

Instead, we will test for ten probable mayday indicators based off
of the PDF. Within one standard deviation of the mean of our PDF
we will place seven probable mayday indicators (seventy percent of
mayday indicators), within two deviations we will place nine mayday
indicators (ninety percent) and within three deviations we will place
ten mayday indicators (one hundred percent). This approximately
parallels the 68 − 95 − 99.7 rule associated to normal distributions.
Mayday indicators will be placed such that the interval of the devi-
ation(s) is spanned but areas of highest probabilities will receive the
highest density of mayday indicators, see Figure 2.

We will then take each of these mayday indicators and apply our
modified trajectory equations to determine the crash point. The prob-
ability assigned to each mayday indicator that the aircraft lost control
at this point is now transfered to the crash site as the probability that
the aircraft made contact with the ocean at this point.
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Figure 2: An example of how mayday indicators (red dots) might be assigned
in a storm scenario

4 Modeling Aircraft Resting Location

After the aircraft has crashed and broken apart on impact, the fuselage
and other debris will begin to move with the currents, wind and/or
waves as they sink. We will once again employ modified forms of our
trajectory equations from Section 3.2 to model the path of the fuselage
as it sinks. It is important to note that the horizontal component
of velocity is now dependent upon the outside factors such as ocean
currents.

4.1 Important Values

To determine how the aircraft might be moved once it is in the ocean,
we need to know some basic values.

4.1.1 Weight of Fuselage

The fuselage will immediately begin to lose pressurization after the
crash as pressurized air is no longer being pumped into the cabin.
Thus the weight of the fuselage [1],

Wfuse = (1.051 + .102xIfuse)Vfuse (17)

will be determined by Ifuse =
I2p+I2b

2Ib
and its volume, Vfuse, where

Ip = pressure index and Ib = bending index.
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4.1.2 Inertia of Fuselage

The tendency for the fuselage not to move will be given by it’s inertia
[5]

J =

(
n∑
i=1

mix
2
i − xsck

n∑
i=1

)
(18)

where

xsck =

∑n
i=1mixi∑n
i=1mi

= center of gravity (19)

The fuselage will not be moved in any direction unless the inertia
is first overcome.

4.1.3 Drag Force

The drag force will be an important component in determining how
the aircraft moves in the water. Drag force is given by

Fd = cd(1/2)ρv2A (20)

where Fd = drag force in Newtons, cd is the drag coefficient equal to
0.045 [9], ρ = density of fluid, v = flow velocity and A is the charac-
teristic frontal area of the body. It is important to note that our drag
force will be a function of the density of the water which depends upon
water temperature and salinity. Ocean water density can be averaged
to 1027kg/m3 at sea surface but the exact value should be calculated
for the body of water the aircraft crashed into.

4.2 Possible Complications

4.2.1 Ocean Currents

Surface currents pose an interesting obstacle in the search of aircraft
lost at sea. Once the aircraft has crashed, it can be carried away in
many directions and at varying speeds, depending upon the currents
present. Fortunately, currents are well documented and monitored
with ample information on their strength and direction, as seen in
Figure 3. To determine how far the fuselage is likely to travel on any
given current, you simply need to know the velocity of the current, the
weight of the fuselage and the drag in water (the latter two of which we
have just shown how to calculate and the former of which is available
from a variety of sources).
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Figure 3: A visual representation of global ocean currents [8]

Figure 4: Global wind patterns [6]

4.2.2 Wind

The force of wind on the fuselage will be given by

F = APcd (21)

where A is the area of the object, P = 0.00256v2 is the wind pressure,
cd is the drag coefficient and v is the velocity of the wind. If wind
were to affect fuselage movement in water, this wind force would need
to be greater than the inertia of the fuselage. Note however that the
wind should have a minimal effect as the fuselage is aerodynamically
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designed and will not be moved like a sail boat. As such we will deal
specifically with the currents when determining fuselage movement.

However, debris movement in water can be affected by wind pat-
terns, this will play a large role in how to improve our model. It is
important to understand that as wind is the driving force behind sur-
face currents, the direction of the currents and wind are generally the
same, as can be seen in a quick comparison of Figures 3 and 4.

4.2.3 Waves

Waves, while seemingly important, are not a major role in the move-
ment of objects at sea. When a wave encounters an object on the
water, it appears to move it forward. However, when the wave falls
back, it takes the object with it back to its original location [11]. This
can be seen when examining buoys floating in the waves. Due to this,
the main role of waves in our model will be damaging the aircraft after
it has crashed into the water, leading to faster sinking of the fuselage.

4.3 Forecasting the Sinking Pattern

There are two scenarios to consider when the fuselage is sinking: one
in which the aircraft begins to sink immediately upon impact due to
previously sustained damage and another in which the aircraft drifts
with the currents before sinking. Note that in either scenario, the
fuselage will sink as if in a “nose dive”. This is due to the fact that as
the fuselage fills with water, it will naturally tip in whichever direction
is heavier and will sink in this manner. It is nearly impossible for the
fuselage to be perfectly balanced when hitting the water and to stay
in this equilibrium while filling with water and sinking, thus the case
will be ignored.

4.3.1 Sinking Upon Impact

Given Wilson’s modifications [12] of the equations of motion below we
want to analyze the effects of sinking in a “nose dive” position on an
aerodynamic object's horizontal and vertical trajectory.

du

dt
= −guV

U2
,

dv

dt
= g

(
1− vV

U2

)
(22)

and
V 2

r
= g

u

V
,

dV

dt
= g

(
v

V
− V 2

U2

)
(23)

where once again U = terminal velocity, g = 9.8m/s2, u = horizontal
component of velocity, v = vertical component of velocity and r = ra-
dius of curvature of the path.
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Rewriting the second portion of (23),

V
dV

dy
= g

(
1− V 2

U2

V

v

)
(24)

we can analyze the relation between the tangential and vertical veloc-
ities. It is easy to deduce that the increase in V with a vertical drop
from y, will be less than the increase in v with the same vertical drop;
the vertical velocity dominates the tangential velocity [12]. Hence, the
direction of a solid body in downward free-fall will be dominated by
the vertical velocity, minimizing the drag effects of the ocean current.

A further analysis considers the generalization to different mediums
with varying resistance. We start by considering the arc of drift with
respect to time. Noting that (22) may be integrated,

du

dt
=
du

ds

ds

dt
= V

du

ds
,

du

ds
= − gu

U2
, u = u0e

−gs/U2

(25)

reveals that horizontal velocity decreases exponentially with respect to
arc distance traveled and that

1

r
=

d2y
dx2

[1 + ( dydx )2]3/2
=

d2y
dx2

V 3

u3

= g
( u

V 3

)
(26)

This calculation shows that

d2y

dx2
=

g

u2
(27)

holds for all mediums of varying resistance [12].
Thus in this scenario, as the fuselage begins to sink immediately, it's

location can be approximated almost directly below the crash point.
We will define our search area as a circle of radius 3 nautical miles
(NM) around this point.

4.3.2 Drifting Before Sinking

If the fuselage is intact enough to not immediately begin sinking and
the force provided by the currents is strong enough to overcome the
inertia, the fuselage will begin floating in the direction of the currents.
However, a fuselage can only float for a certain amount of time. Air-
craft are not built air- or watertight, instead they are sealed to keep
high pressure air inside the cabin with pressurized air being constantly
pumped in. In the event of a crash, the cabin becomes de-pressurized.
The seals are then forced to work to prevent higher pressure water from
entering, a task they were not designed to do and will ultimately fail
at. Even in a fuselage undamaged by the crash, water will immediately
begin to enter the cabin, affecting the buoyancy of the fuselage.

13
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Once the buoyant force is less than the force of gravity:

Fb = gρV < gm (28)

for ρ = water density, V = volume, g = gravity and m = mass, the
fuselage will begin to sink. Knowing this, we have calculated that
it is highly unlikely that an object will drift more than one nautical
mile from its original crash site before beginning to sink. It is simply
too improbable that the fuselage is in good enough condition after the
crash to maintain buoyancy longer than that. Thus the search radius
outlined above will encompass any possibility of drifting and will work
in either scenario.

Note we have ignored the possibility that a storm could be present
and altering the drifting path. While a powerful storm could carry
the fuselage farther than any currents might be able to in the same
amount of time, it will also damage the fuselage more dramatically.
This will lead to a more rapid loss of buoyancy and, ultimately, the
fuselage sinking even faster than if the storm were absent.

5 Locating Aircraft in Search Areas

5.1 Application of Bayesian Search Theory

To optimize our search for the missing aircraft we will apply Bayesian
search methods based on our probabilities determined in the above
sections.

Let S be the set of all of our search areas, bounded and disjoint.
We have assigned a probability, pi, of the aircraft being in any Si
using our probability density function. For each Si there exists another
probability, qi, of finding the aircraft. This qi is dependent upon many
factors, such as the depth of the water and the effectiveness of the
chosen search vehicle. Bayesian search theory states that if we check
any of our search areas and do not find the aircraft, the probability,
p′i, of it being in Si is now

p′i =
pi(1− qi)

(1− pi) + pi(1− qi)
= pi

1− qi
1− piqi

(29)

and the updated probability, p′k, of the aircraft being in some other Sk
is

p′k = pk
1

1− piqi
(30)

Note that 0 < p′i < pi < 1 and pk < p′k < 1. Hence the probability of
the aircraft being where we have already searched decreases (but does
not vanish) and the probability of the aircraft being where we haven’t

14
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checked increases. Our probabilities will be constantly updated, giving
us the highest chance of locating the aircraft in the minimal amount
of time.

5.2 Recommended Search Vehicles

In any downed aircraft scenario, we recommend that unmanned aerial
vehicles (UAV) are immediately deployed to scout for potential sur-
vivor rafts and/or obvious debris. UAVs are fast and able to scour
large areas quickly without risk of human injury. The next course of
action we recommend depends upon if survivors are found or not.

5.2.1 If Survivors are Found

In the case that survivors are present, we recommend the tactic out-
lined by Furukawa et al in their paper on Bayesian search for multiple
targets [4]. In short, this paper tests the effectiveness of a combined
effort between UAVs and helicopters with rescue workers. The UAVs
fly ahead of the helicopters to locate the survivors and fly in circles
around the survivors, lighting the area and alerting the helicopters to
their location. The helicopters and rescue workers can then begin col-
lecting the survivors, bringing them back to a safe location. The paper
shows the combined efforts of UAVs and helicopter search and rescue
teams to be quite effective in the location and rescue of survivors. Once
each passenger has been found and brought to safety, we recommend
the search proceed as if no survivors are found.

5.2.2 If No Survivors are Found

In the case that no survivors are found, the main priority becomes
the location of the fuselage so that bodies of passengers and the black
box can be collected. In this scenario, we recommend that underwater
vehicles are deployed to search at least two areas of highest probability.
This allows for the timely search of multiple areas without requiring
the simultaneous search of all areas, which could become costly and
may not be feasible for the search team. If the fuselage is found,
searching is halted as bodies and important equipment are brought to
surface. Searching would continue with last calculated probabilities if
a passenger or some item of value is determined missing.

6 Testing the Model

Our model relies on specific information (wind speed, flight location,
storm locations, etc) available at the time of the crash and within a lim-
ited time frame after. As this data was not recorded, or at least is not

15
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available to the public, for well documented cases (such as Malaysian
Airlines Flight MH370 and Air France Flight 447) we unfortunately
cannot apply our model to them.

With this in mind we attempted to simulate an aircraft crash so
that our model could be tested. However, due to a lack of tools and
advanced technology at our disposal, our simulations were reduced to
trivial problems that did not challenge our model. The simulations
were too predictable and did not accurately represent the variability
in an actual aircraft crash. We could not in good faith claim that these
simulations truly tested our model.

Having said this, we firmly believe in the approach our model em-
ploys. We are confident that, given the right tools and technology, a
simulation could be constructed that mirrors realistic circumstances
that could then test our model for accuracy. In this scenario, we rec-
ommend the following course of action:

� Construct a probability density function based on the chance of
mechanical error or storm interference as outlined in Section 2.

� Using this PDF, determine potential mayday indicators.

� From each of these determined crash locations, apply our modi-
fied trajectory equations from Section 3.2 to determine the crash
points.

� Define a search area around each of these points of radius 3NM .

We are confident that, when tested under realistic circumstances, our
model will prove to accurately predict resting location of the aircraft.

7 Improving the Model

No model will be able to accurately describe the exact location of
an aircraft’s crash in the ocean, there are too many moving variables.
However, we have outlined a few ways in which our model could be im-
proved and how technology could be improved for a better application
of our model.

7.1 Recursive Tracking

Often, an aircraft crashes into the sea and, for one reason or another,
cannot be located for a long period of time. Perhaps the most famous
cases would be of Malaysian Airlines Flight MH370 and Air France
Flight 447. While Flight MH370 is still missing, Flight 447 was found
two years after the crash by a team who developed and employed a
recursive tracking method [2]. In short, the movement of bodies and
debris were traced backwards in time. This was done through the use

16
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of a three-dimensional Lagrangian tracking program

Pn(x̄t−∆t, t−∆t) = −
∫ t−∆t

t

(v̄ + αw̄)dt+ Pn(x̄t, t) (31)

where Pn(x̄t−∆t, t−∆t) and Pn(x̄t, t) are the locations of the nth object
at time t − ∆t and t, v̄ is the velocity vector, w̄ is the wind velocity
vector and α is the wind drag factor.

The application of this technique to our model would help with
creating even more accurate representations of probabilities of crash
sites, leading to the even faster location of the aircraft. This method
would also allow our model to be used in cases it was not designed for,
such as in a plane hijacking or intentional crash.

7.2 Application of Global Tracking Systems

It will come as no surprise that the accuracy of our model is dependent
upon accurate tracking systems. Radar, while common, is no longer
the best method for tracking aircraft, especially over the ocean. In-
stead, we recommend the application of improved tracking systems. A
promising system, the NextGen satellite system, tracks aircraft using
Automatic Dependent Surveillance-Broadcast (ADS-B). The NextGen
system has already been employed by several aviation administrations,
with the Federal Aviation Administration (FAA) deploying it nation-
wide in 2013 [3]. The NextGen system was combined with other track-
ing systems by Liu et al. in an attempt to improve aircraft tracking
through data fusion. [7]. The multiple data sources and algorithms run
created a highly accurate system with a low sensor fault. Applications
of either of these two tracking systems, or another promising tracking
system, would not only increase the accuracy of our model but reduce
the probability of crash in the first place.

8 Conclusion

Locating an ocean downed aircraft to a precise point is unrealistic.
Therefore, the task becomes one of maximizing search efficiency. We
propose a model based on the assumption that pilots make contact
within specified time intervals. Our model then calculates a maximum
search area given data retrieved from the plane at point of last con-
tact: velocity, trajectory, and weather conditions. We then use scenario
analysis to model the distributions of the possible crash sites finding
that different scenarios would suggest different probability distribu-
tions. Our model uses Bayesian search methods to maximize search
efficiency after having established the hypotheses and assigning a dis-
tribution function to the search area. Lack of sufficient data has made
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testing the model challenging and final results are inconclusive. How-
ever, we would like to stress our confidence in the approach that the
model employs and emphasize our belief that further testing will reveal
positive results.
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9 Executive Summary

As is understood, the priority in any downed aircraft scenario is sal-
vaging human life. Due to the nature of aircraft crashes, often this
is not a possibility and the next priority becomes locating the bod-
ies of the passengers. With this in mind, after an aircraft is presumed
downed in the ocean, the most critical success factor is time. In view of
recent cases of ocean downed aircraft, it is understood in our industry
that there is a dire need for more precise and efficient search methods.
Our team has developed a method that maximizes the efficiency of
search and rescue efforts.

Our method is based on universal principles of motion which have
been tested and proven over centuries. Our research and development
team has developed a model based on search efficiency that will
greatly narrow ocean search areas. We have outlined an implemen-
tation strategy that can be followed and used by anyone in charge of
search and rescue. In this report we outline the methods we will under-
take to maximize search efficiency in locating ocean downed aircraft.
We outline this method as follows:

� Identifying a maximum crash site area: International flight
protocol mandates that pilots make periodic contact. Utilizing
universal laws of motion, our model forecasts a crash site lo-
cated within a bounded region. This increased precision increases
search productivity by eliminating areas that have no probability
of containing the aircraft.

� Prevailing ocean patterns: The most difficult task in forecast-
ing the location of ocean downed aircraft is the dynamic nature of
ocean currents. After the aircraft makes contact with the ocean,
we have to consider the effects of the currents to determine where
the craft is likely to be located. Although we know that this can't
be achieved with perfect precision, our model determines a max-
imum drift distance from the crash site. This allows us to apply
statistical search methods and increasing productivity of search
and rescue teams.

� Implementation of the Model: As with any new method or
process, successful implementation is critical to the success of the
endeavor. As many new great ideas never succeed, implementa-
tion can be viewed as one of the most challenging components
of any new idea, much more so with complicated mathemati-
cal models. To this end, our model is designed with simplicity
and adaptability in mind. We make no attempts to reinvent the
wheel. Instead, we use proven methods that have been slightly
modified to fit the scenario of an ocean downed aircraft. Our
model works with known variables that can be input by anyone
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trained in search and rescue. The model will be implemented in
search and rescue training procedures and will be used in simu-
lations effective immediately.

As recent events highlight the need for improvement in open ocean
search efficiency, we have developed this model and methods for our
clients. We are confident that with the application of the techniques
heretofore outlined, we will dramatically increase search efficiency for
ocean downed aircraft. Moreover, the overall task of salvaging human
life in such events is the ultimate goal; we are also looking at ways
of harnessing the wonders of technology to assist in our efforts. The
recursive techniques used in the case of Air France Flight 447 and con-
tinuous satellite tracking are innovations that we will also utilize in
our search and rescue efforts. Thank you for your trust, patience, and
support in our efforts to not only increase search efficiency and pro-
ductivity for ocean downed aircraft, but more importantly, in salvaging
human life.
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