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Abstract. The singular value decomposition (SVD) is a popular matrix factorization that has
been used widely in applications ever since an efficient algorithm for its computation was de-
veloped in the 1970s. In recent years, the SVD has become even more prominent due to a surge
in applications and increased computational memory and speed. To illustrate the vitality of the
SVD in data analysis, we highlight three of its lesser-known yet fascinating applications. The
SVD can be used to characterize political positions of congressmen, measure the growth rate
of crystals in igneous rock, and examine entanglement in quantum computation. We also dis-
cuss higher-dimensional generalizations of the SVD, which have become increasingly crucial
with the newfound wealth of multidimensional data, and have launched new research initia-
tives in both theoretical and applied mathematics. With its bountiful theory and applications,
the SVD is truly extraordinary.

1. IN THE BEGINNING, THERE IS THE SVD. Let’s start with one of our fa-
vorite theorems from linear algebra and what is perhaps the most important theorem
in this paper.

Theorem 1. Any matrix A ∈ Rm×n can be factored into a singular value decomposi-
tion (SVD),

A = USVT , (1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices (i.e., UUT
= VVT

= I ) and
S ∈ Rm×n is diagonal with r = rank(A) leading positive diagonal entries. The p di-
agonal entries of S are usually denoted by σi for i = 1, . . . , p, where p = min{m, n},
and σi are called the singular values of A. The singular values are the square roots of
the nonzero eigenvalues of both AAT and ATA, and they satisfy the property σ1 ≥ σ2 ≥

· · · ≥ σp.

See [66] for a proof.
Equation (1) can also be written as a sum of rank-1 matrices,

A =
r∑

i=1

σi uiv
T
i , (2)

where σi is the i th singular value, and ui and vi are the i th columns of U and V .
Equation (2) is useful when we want to estimate A using a matrix of lower rank

[24].

Theorem 2 (Eckart-Young). Let the SVD of A be given by (1). If k < r = rank(A)
and Ak =

∑k
i=1 σi uiv

T
i , then

min
rank(B)=k

||A − B||2 = ||A − Ak ||2 = σk+1. (3)

See [28] for a proof.
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The SVD was discovered over 100 years ago independently by Eugenio Beltrami
(1835–1899) and Camille Jordan (1838–1921) [65]. James Joseph Sylvester (1814–
1897), Erhard Schmidt (1876–1959), and Hermann Weyl (1885–1955) also discov-
ered the SVD using different methods [65]. The development in the 1960s of practical
methods for computing the SVD transformed the field of numerical linear algebra.
One method of particular note is the Golub and Reinsch algorithm from 1970 [27].
See [14] for an overview of properties of the SVD and methods for its computation.
See the documentation for the Linear Algebra Package (LAPACK) [5] for details on
current algorithms to calculate the SVD for dense, structured, or sparse matrices.

Since the 1970s, the SVD has been used in an overwhelming number of appli-
cations. The SVD is now a standard topic in many first-year applied mathematics
graduate courses and occasionally appears in the undergraduate curriculum. Theo-
rem 2 is one of the most important features of the SVD, as it is extremely useful
in least-squares approximations and principal component analysis (PCA). During the
last decade, the theory, computation, and application of higher-dimensional versions
of the SVD (which are based on Theorem 2) have also become extremely popular
among applications with multidimensional data. We include a brief description of a
higher-dimensional SVD in this article, and invite you to peruse [37] and references
therein for additional details.

We will not attempt in this article to summarize the hundreds of applications that
use the SVD, and our discussions and reference list should not be viewed as even
remotely comprehensive. Our goal is to summarize a few examples of recent lesser-
known applications of the SVD that we enjoy in order to give a flavor of the diversity
and power of the SVD, but there are a myriad of others. We mention some of these
in passing in the next section, and we then focus on examples from congressional
politics, crystallization in igneous rocks, and quantum information theory. We also
discuss generalizations of the SVD before ending with a brief summary.

2. IT’S RAINING SVDs (HALLELUJAH)! The SVD constitutes one of science’s
superheroes in the fight against monstrous data, and it arises in seemingly every scien-
tific discipline.

We find the SVD in statistics in the guise of “principal component analysis” (PCA),
which entails computing the SVD of a data set after centering the data for each at-
tribute around the mean. Many other methods of multivariate analysis, such as fac-
tor and cluster analysis, have also proven to be invaluable [42]. The SVD per se has
been used in chemical physics to obtain approximate solutions to the coupled-cluster
equations, which provide one of the most popular tools used for electronic structure
calculations [35]. Additionally, we apply an SVD when diagonalizing the one-particle
reduced density matrix to obtain the natural orbitals (i.e., the singular vectors) and
their occupation numbers (i.e., the singular values). The SVD has also been used in
numerous image-processing applications, such as in the calculation of Eigenfaces to
provide an efficient representation of facial images in face recognition [50, 68, 69]. It is
also important for theoretical endeavors, such as path-following methods for comput-
ing curves of equilibria in dynamical systems [23]. The SVD has also been applied in
genomics [2, 32], textual database searching [11], robotics [8], financial mathematics
[26], compressed sensing [74], and more.

Computing the SVD is expensive for large matrices, but there are now algorithms
that offer significant speed-up (see, for example, [10, 40]) as well as randomized
algorithms to compute the SVD [41]. The SVD is also the basic structure for higher-
dimensional factorizations that are SVD-like in nature [37]; this has transformed com-
putational multilinear algebra over the last decade.
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3. CONGRESSMEN ON A PLANE. In this section, we use the SVD to discuss
voting similarities among politicians. In this discussion, we summarize work from
[57, 58], which utilize the SVD but focus predominantly on other items.

Mark Twain wrote in Pudd’nhead Wilson’s New Calendar that “It could probably
be shown by facts and figures that there is no distinctly American criminal class except
Congress” [70]. Aspects of this snarky comment are actually pretty accurate, as much
of the detailed work in making United States law is performed by Congressional com-
mittees and subcommittees. (This differs markedly from parliamentary democracies
such as Great Britain and Canada.)

There are many ways to characterize the political positions of congressmen. An ob-
jective approach is to apply data-mining techniques such as the SVD (or other “mul-
tidimensional scaling” methods) on matrices determined by the Congressional Roll
Call. Such ideas have been used successfully for decades by political scientists such
as Keith Poole and Howard Rosenthal [55, 56]. One question to ask, though, is what
observations can be made using just the SVD.

In [57, 58], the SVD was employed to investigate the ideologies of members of
Congress. Consider each two-year Congress as a separate data set and also treat the
Senate and House of Representatives separately. Define an m × n voting matrix A with
one row for each of the m legislators and one column for each of the n bills on which
legislators voted. The element Ai j has the value+1 if legislator i voted “yea” on bill j
and −1 if he or she voted “nay.” The sign of a matrix element has no bearing a priori
on conservativism versus liberalism, as the vote in question depends on the specific bill
under consideration. If a legislator did not vote because of absence or abstention, the
corresponding element is 0. Additionally, a small number of false zero entries result
from resignations and midterm replacements.

Taking the SVD of A allows us to identify congressmen who voted the same way
on many bills. Suppose the SVD of A is given by (2). The grouping that has the largest
mean-square overlap with the actual groups voting for or against each bill is given by
the first left singular vector u1 of the matrix, the next largest by the second left singular
vector u2, and so on. Truncating A by keeping only the first k ≤ r nonzero singular
values gives the approximate voting matrix

Ak =

k∑
i=1

σi uiv
T
i ≈ A. (4)

This is a “k-mode truncation” (or “k-mode projection”) of the matrix A. By Theorem
2, (4) is a good approximation as long as the singular values decay sufficiently rapidly
with increasing i .

A congressman’s voting record can be characterized by just two coordinates [57,
58], so the two-mode truncation A2 is an excellent approximation to A. One of the two
directions (the “partisan” coordinate) correlates well with party affiliation for members
of the two major parties. The other direction (the “bipartisan” coordinate) correlates
well with how often a congressman votes with the majority.1 We show the coordinates
along these first two singular vectors for the 107th Senate (2001–2002) in Figure 1(a).
As expected, Democrats (on the left) are grouped together and are almost completely
separated from Republicans (on the right).2 The few instances of party misidentifica-

1For most Congresses, it suffices to use a two-mode truncation. For a few, it is desirable to keep a third
singular vector, which can be used to try to encapsulate a North-South divide [55, 57].

2Strictly speaking, the partisanship singular vector is determined up to a sign, which is then chosen to yield
the usual Left/Right convention.
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Figure 1. Singular value decomposition (SVD) of the Senate voting record from the 107th U.S. Congress
(2001–2002). (a) Two-mode truncation A2 of the voting matrix A. Each point represents a projection of a
single representative’s votes onto the leading two eigenvectors (labeled “partisan” and “bipartisan,” as ex-
plained in the text). Democrats (light dots) appear on the left and Republicans (medium dots) are on the right.
The two Independents are shown using dark dots. (b) “Predictability” of votes cast by senators in the 107th
Congress based on a two-mode truncation of the SVD. Individual senators range from 74% predictable to 97%
predictable. These figures are modified versions of figures that appeared in Ref. [57].

tion are unsurprising; conservative Democrats such as Zell Miller [D-GA] appear far-
ther to the right than some moderate Republicans [12]. Senator James Jeffords [I-VT],
who left the Republican party to become an Independent early in the 107th Congress,
appears closer to the Democratic group than the Republican one and to the left of
several of the more conservative Democrats.3

Equation (4) can also be used to construct an approximation to the votes in the full
roll call. Again using A2, we assign “yea” or “nay” votes to congressmen based on the

3Jeffords appears twice in Figure 1(a)—once each for votes cast under his two different affiliations.
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signs of the matrix elements. Figure 1(b) shows the fraction of actual votes correctly
reconstructed using this approximation. Looking at whose votes are easier to recon-
struct gives a measure of the “predictability” of the senators in the 107th Congress. Un-
surprisingly, moderate senators are less predictable than hard-liners for both parties.
Indeed, the two-mode truncation correctly reconstructs the votes of some hard-line
senators for as many as 97% of the votes that they cast.

To measure the reproducibility of individual votes and outcomes, the SVD can be
used to calculate the positions of the votes along the partisanship and bipartisanship
coordinates (see Figure 2). We obtain a score for each vote by reconstituting the voting
matrix as before, using the two-mode truncation A2 and summing the elements of
the approximate voting matrix over all legislators. Making a simple assignment of
“pass” to those votes that have a positive score and “fail” to all others successfully
reconstructs the outcome of 984 of the 990 total votes (about 99.4%) in the 107th
House of Representatives. A total of 735 bills passed, so simply guessing that every
vote passed would be considerably less effective. This way of counting the success in
reconstructing the outcomes of votes is the most optimistic one. Ignoring the values
from known absences and abstentions, 975 of the 990 outcomes are still identified
correctly. Even the most conservative measure of the reconstruction success rate—in
which we ignore values associated with abstentions and absences, assigns individual
yeas or nays according to the signs of the elements of A2, and then observes which
outcome has a majority in the resulting roll call—identifies 939 (about 94.8%) of the
outcomes correctly. The success rates for other recent Houses are similar [57].
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Figure 2. SVD of the roll call of the 107th House of Representatives projected onto the voting coordinates.
There is a clear separation between bills that passed (dark dots) and those that did not (light dots). The four
corners of the plot are interpreted as follows: bills with broad bipartisan support (north) all passed; those
supported mostly by the Right (east) passed because the Republicans were the majority party; bills supported
by the Left (west) failed because of the Democratic minority; and the (obviously) very few bills supported by
almost nobody (south) also failed. This figure is a modified version of a figure that appeared in [57].

To conclude this section, we remark that it seems to be underappreciated that many
political scientists are extremely sophisticated in their use of mathematical and sta-
tistical tools. Although the calculations that we discussed above are heuristic ones,
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several mathematicians and statisticians have put a lot of effort into using mathemat-
ically rigorous methods to study problems in political science. For example, Donald
Saari has done a tremendous amount of work on voting methods [20], and (closer to
the theme of this article) rigorous arguments from multidimensional scaling have been
used recently to study roll-call voting in the House of Representatives [22].

4. THE SVD IS MARVELOUS FOR CRYSTALS. Igneous rock is formed by the
cooling and crystallization of magma. One interesting aspect of the formation of ig-
neous rock is that the microstructure of the rock is composed of interlocking crystals
of irregular shapes. The microstructure contains a plethora of quantitative information
about the crystallization of deep crust—including the nucleation and growth rate of
crystals. In particular, the three-dimensional (3D) crystal size distribution (CSD) pro-
vides a key piece of information in the study of crystallization rates. CSD can be used,
for example, to determine the ratio of nucleation rate to growth rate. Both rates are
slow in the deep crust, but the growth rate dominates the nucleation rate. This results
in a microstructure composed of large crystals. See [60] for more detail on measuring
growth rates of crystals and [31, 43] for more detail on this application of the SVD.

As the crystals in a microstructure become larger, they compete for growth space
and their grain shapes become irregular. This makes it difficult to measure grain sizes
accurately. CSD analysis of rocks is currently done in two stages. First, take hand
measurements of grain sizes in 2D slices and then compute statistical and stereological
corrections to the measurements in order to estimate the actual 3D CSD. However, a
novel recent approach allows use of the SVD to automatically and directly measure 3D
grain sizes that are derived from three specific crystal shapes (prism, plate, and cuboid;
see Figure 3) [4]. Ongoing research involves extending such analysis to more complex
and irregular shapes. Application to real rock microstructures awaits progress in high
energy X-ray tomography, as this will allow improved resolution of grain shapes.

(a) Tetragonal prism (1:1:5) (b) Tetragonal plate (1:5:5) (c) Orthorhombic cuboid (1:3:5)

Figure 3. Crystalline structures used to measure grain sizes. We give the relative sizes of their dimensions in
parentheses.

The grain sizes are determined by generating databases of microstructures with
irregular grain shapes in order to compare the estimated CSD of the actual grains to
the computed or ideal CSD predicted by the governing equations. Because the CSDs
in many igneous rocks are close to linear [3, 31], the problem can be simplified by
using governing equations that generate linear CSDs with the following two rate laws.

1. Nucleation Rate Law: N (t) = eαt , where N is the number of new nuclei formed
at each time step t and α is the nucleation constant.
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2. Crystal Growth Rate Law: G = 1L/1t , where 1L/1t is the rate of change of
a grain diameter per time step. Grain sizes can be represented by short, interme-
diate, or long diameters. Such diameter classification depends on the relationship
between the rate of grain nucleation and the rate of grain growth.

We use an ellipsoid to approximate the size and shape of each grain. There are mul-
tiple subjective choices for such ellipsoids that depend on the amount (i.e., the number
of points) of the grain to be enclosed by the ellipsoid. To circumvent this subjectivity,
it is desirable to compare the results of three types of ellipsoids: the ellipsoid that en-
closes the entire grain, the ellipsoid that is inscribed within the grain, and the mean of
the enclosed and inscribed ellipsoids. See Figure 4 for an illustration of an enclosing
and an inscribed ellipsoid.
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(a) Enclosing ellipsoid (b) Inscribed ellipsoid

Figure 4. Two possible ellipsoids used to approximate grain sizes. Because grain shapes are irregular, all
ellipsoids are triaxial with three unequal diameters.

The SVD is used in the determination of each of the three types of ellipsoids. Com-
paring the CSDs obtained, using each of the three types of ellipsoids with those pre-
dicted by the governing equations, reveals that the inscribed ellipsoids give the best
results. In particular, we can use an algorithm developed by Nima Moshtagh [48]
that employs the Khachiyan Algorithm [6] along with the SVD to obtain an ellip-
soid that encloses an arbitrary number of points (which is defined by the user). Leonid
Khachiyan introduced the ellipsoid method in 1979, and this was the first ever worst-
case polynomial-time algorithm for linear programming. Given a matrix of data points
P containing a discretized set of 3D points representing the crystal, we solve

min
A,c

log{det(A)} subject to (Pi − c)T A(Pi − c) ≤ 1, (5)

where Pi is the i th column of P , the matrix A contains information about the shape of
the ellipsoid, and c is the center of the ellipsoid.

Note that P in this case is dense, it has size n × 3, and n ≈ 5000. Once A and c
have been determined, we calculate the i th radius of the D-dimensional ellipse from
the SVD of A using

ri = 1/
√
σi , (6)

where σi (i = 1, . . . , D) is the i th singular value of A. If the SVD of A is given by
equation (1), then the orientation of the ellipsoid is given by the rotation matrix V .
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The major difficulty in such studies of igneous rock is that grain shapes and sizes are
irregular due to competition for growth space among crystals. In particular, they are not
of the ideal sizes and shapes that are assumed by crystallization theory. For example,
crystals might start to grow with definite diameter ratios (yielding, for example, the
prism, plate, or cuboid in Figure 3) but eventually develop irregular outlines. Current
studies [4] suggest that one of the diameters or radii of the inscribed ellipsoid (as
determined from the SVD) can be used as a measure of grain size for the investigation
of crystal size distributions, but the problem remains open.

5. QUANTUM INFORMATION SOCIETY. From a physical perspective, infor-
mation is encoded in the state of a physical system, and a computation is carried out
on a physically realizable device [59]. Quantum information refers to information that
is held in the state of a quantum system. Research in quantum computation and quan-
tum information theory has helped lead to a revival of interest in linear algebra by
physicists. In these studies, the SVD (especially in the form of the Schmidt decompo-
sition) have been crucial for gaining a better understanding of fundamental quantum-
mechanical notions such as entanglement and measurement.

Entanglement is a quantum form of correlation that is much stronger than classical
correlation, and quantum information scientists use entanglement as a basic resource
in the design of quantum algorithms [59]. The potential power of quantum computa-
tion relies predominantly on the inseparability of multipartite quantum states, and the
extent of such interlocking can be measured using entanglement.

We include only a brief discussion in the present article, but one can go much farther
[54, 59, 62]. Whenever there are two distinguishable particles, we can fully character-
ize inseparable quantum correlations using what is known as a “single-particle reduced
density matrix” (see the definition below), and the SVD is crucial for demonstrating
that this is the case. See [54, 59, 62] for lots of details and all of the quantum mechanics
notation that you’ll ever desire.

Suppose that we have two distinguishable particles A and B. We can then write a
joint pure-state wave function |9〉, which is expressed as an expansion in its states
weighted by the probability that they occur. Note that we have written the wave func-
tion using Dirac (bra-ket) notation. It is a column vector, and its Hermitian conjugate
is the row vector 〈9|. The prefactor for each term in the expansion of |9〉 consists of
the complex-valued components Ci j of an m × n probability matrix C , which satis-
fies tr(CC†) = tr(C†C) = 1. (Recall that X † refers to the Hermitian conjugate of the
matrix X .)

Applying the SVD of C (i.e., letting C = USV†, where U and V are unitary matri-
ces4) and transforming to a single-particle basis allows us to diagonalize |9〉, which
is said to be entangled if more than one singular value is nonzero. We can even mea-
sure the entanglement using the two-particle density matrix ρ := |9〉〈9| that is given
by the outer product of the wave function with itself. We can then compute the von
Neumann entanglement entropy

σ = −

min(n,m)∑
k=1

|S2
k | ln |S

2
k |. (7)

Because |S2
k | ∈ [0, 1], the entropy is zero for unentangled states and has the value

ln[min(n,m)] for maximally entangled states.

4A unitary matrix U satisfies UU†
= 1 and is the complex-valued generalization of an orthogonal matrix.

December 2012] THE EXTRAORDINARY SVD 845



The SVD is also important in other aspects of quantum information. For example, it
can be used to help construct measurements that are optimized to distinguish between
a set of (possibly nonorthogonal) quantum states [25].

6. CAN YOU TAKE ME HIGHER? As we have discussed, the SVD permeates
numerous applications and is vital to data analysis. Moreover, with the availability
of cheap memory and advances in instrumentation and technology, it is now possible
to collect and store enormous quantities of data for science, medical, and engineering
applications. A byproduct of this wealth is an ever-increasing abundance of data that is
fundamentally three-dimensional or higher. The information is thus stored in multiway
arrays—i.e., as tensors—instead of as matrices. An order-p tensor A is a multiway
array with p indices:

A = (ai1i2...i p ) ∈ Rn1×n2×···×n p .

Thus, a first-order tensor is a vector, a second-order tensor is a matrix, a third-order
tensor is a “cube,” and so on. See Figure 5 for an illustration of a 2× 2× 2 tensor.

A = =
a111 a121

a211 a221

a112 a122

a212 a222

Figure 5. Illustration of a 2× 2× 2 tensor as a cube of data. This figure originally appeared in [34] and is
used with permission from Elsevier.

Applications involving operations with tensors are now widespread. They include
chemometrics [64], psychometrics [38], signal processing [15, 17, 63], computer vi-
sion [71, 72, 73], data mining [1, 61], networks [36, 49], neuroscience [7, 46, 47], and
many more. For example, the facial recognition algorithm Eigenfaces [50, 68, 69] has
been extended to TensorFaces [71]. To give another example, experiments have shown
that fluorescence (i.e., the emission of light from a substance) is modeled well using
tensors, as the data follow a trilinear model [64].

A common thread in these applications is the need to manipulate the data, usually by
compression, by taking advantage of its multidimensional structure (see, for example,
the recent article [52]). Collapsing multiway data to matrices and using standard linear
algebra to answer questions about the data often has undesirable consequences. It is
thus important to consider the multiway data directly.

Here we provide a brief overview of two types of higher-order extensions of the
matrix SVD. For more information, see the extensive article on tensor decompositions
[37] and references therein. Recall from (2) that the SVD is a rank-revealing decompo-
sition. The outer product uiv

T
i in equation (2) is often written using the notation ui ◦ vi .

Just as the outer product of two vectors is a rank-1 matrix, the outer product of three
vectors is a rank-1 third-order tensor. For example, if x ∈ Rn1 , y ∈ Rn2 , and z ∈ Rn3 ,
then the outer product x ◦ y ◦ z has dimension n1 × n2 × n3 and is a rank-1 third-order
tensor whose (i, j, k)th entry is given by xi y j zk . Likewise, an outer product of four
vectors gives a rank-1 fourth-order tensor, and so on. For the rest of this discussion,
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we will limit our exposition to third-order tensors, but the concepts generalize easily
to order-p tensors.

The tensor rank r of an order-p tensor A is the minimum number of rank-1 tensors
that are needed to express the tensor. For a third-order tensor A ∈ Rn1×n2×n3 , this
implies the representation

A =
r∑

i=1

σi (ui ◦ vi ◦ wi ), (8)

where σi is a scaling constant. The scaling constants are the nonzero elements of an
r × r × r diagonal tensor S = (σi jk). (As discussed in [37], a tensor is called diagonal
if the only nonzero entries occur in elements σi jk with i = j = k.) The vectors ui ,
vi , and wi are the i th columns from matrices U ∈ Rn1×r , V ∈ Rn2×r , and W ∈ Rn3×r ,
respectively.

We can think of equation (8) as an extension of the matrix SVD. Note, however, the
following differences.

1. The matrices U , V , and W in (8) are not constrained to be orthogonal. Further-
more, an orthogonal decomposition of the form (8) does not exist, except in very
special cases [21].

2. The maximum possible rank of a tensor is not given directly from the dimen-
sions, as is the case with matrices.5 However, loose upper bounds on rank do
exist for higher-order tensors. Specifically, the maximum possible rank of an
n1 × n2 × n3 tensor is bounded by min(n1n2, n1n3, n2n3) in general [39] and
b3n/2c in the case of n × n × 2 tensors [9, 33, 39, 44]. In practice, however, the
rank is typically much less than these upper bounds. For example, [16] conjec-
tures that the rank of a particular 9× 9× 9 tensor is 19 or 20.

3. Recall that the best rank-k approximation to a matrix is given by the kth partial
sum in the SVD expansion (Theorem 2). However, this result does not extend to
higher-order tensors. In fact, the best rank-k approximation to a tensor might not
even exist [19, 53].

4. There is no known closed-form solution to determine the rank r of a tensor a
priori; in fact, the problem is NP-hard [30]. Rank determination of a tensor is a
widely-studied problem [37].

In light of these major differences, there exists more than one higher-order ver-
sion of the matrix SVD. The different available decompositions are motivated by
the application areas. A decomposition of the form (8) is called a CANDECOMP-
PARAFAC (CP) decomposition (CANonical DECOMPosition or PARAllel FACtors
model) [13, 29], whether or not r is known to be minimal. However, since an orthogo-
nal decomposition of the form (8) does not always exist, a Tucker3 form is often used
to guarantee the existence of an orthogonal decomposition as well as to better model
certain data [51, 61, 71, 72, 73].

If A is an n1 × n2 × n3 tensor, then its Tucker3 decomposition has the form [67]

A =
m1∑
i=1

m2∑
j=1

m3∑
k=1

σi jk(ui ◦ v j ◦ wk), (9)

5The maximum possible rank of an n1 × n2 matrix is min(n1, n2).
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where ui , v j , and wk are the i th, j th, and kth columns of the matrices U ∈ Rn1×m1 ,
V ∈ Rn2×m2 , and W ∈ Rn3×m3 . Often, U , V , and W have orthonormal columns. The
tensor S = (σi jk) ∈ Rm1×m2×m3 is called the core tensor. In general, the core tensor
S is dense and the decomposition (9) does not reveal its rank. Equation (9) has also
been called the higher-order SVD (HOSVD) [18], though the term “HOSVD” actually
refers to a method for computation [37]. Reference [18] demonstrates that the HOSVD
is a convincing extension of the matrix SVD. The HOSVD is guaranteed to exist, and
it computes (9) directly by calculating the SVDs of the three matrices obtained by
“flattening” the tensor into matrices in each dimension and then using those results to
assemble the core tensor. Yet another extension of the matrix SVD factors a tensor as
a product of tensors rather than as an outer product of vectors [34, 45].

7. EVERYWHERE YOU GO, ALWAYS TAKE THE SVD WITH YOU. The
SVD is a fascinating, fundamental object of study that has provided a great deal of
insight into a diverse array of problems, which range from social network analysis
and quantum information theory to applications in geology. The matrix SVD has also
served as the foundation from which to conduct data analysis of multiway data by us-
ing its higher-dimensional tensor versions. The abundance of workshops, conference
talks, and journal papers in the past decade on multilinear algebra and tensors also
demonstrates the explosive growth of applications for tensors and tensor SVDs. The
SVD is an omnipresent factorization in a plethora of application areas. We recommend
it highly.
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