
Signal Processing 19 (1990) 2~9-299 259
Elsevier

INVITED PAPER

FAST FOURIER TRANSFORMS: A TUTORIAL REVIEW AND
A STATE OF THE ART

P. D U H A M E L
CNET/PAB/RPE 38-40, Rue du General Leclerc, 92131 lssy les Moulineaux, France

M. VETTERLI
Dept of EE and CTR, S. W. Mudd Building, Columbia University, 500 W 120th Street, New York, NY10027, U.S.A.

Received 22 December 1988
Revised 30 October 1989

Abstract. The publication of the Cooley-Tukey fast Fourier transform (FIT) algorithm in 1965 has opened a new area in
digital signal processing by reducing the order of complexity of some crucial computational tasks like Fourier transform and
convolution from N 2 to N log2 N, where N is the problem size. The development of the major algorithms (Cooley-Tukey
and split-radix FFT, prime factor algorithm and Winograd fast Fourier transform) is reviewed. Then, an attempt is made to
indicate the state of the art on the subject, showing the standing of research, open problems and implementations.

Zusammenfassung. Die Publikation von Cooley-Tukey's schnellem Fourier Transformations Algorithmus in 1965 brachte
eine neue Area in der digitalen Signalverarbeitung weil die Ordnung der Komplexit/it von gewissen zentralen Berechnungen,
wie die Fourier Transformation und die digitale Faltung, von N 2 zu N log2 N reduziert wurden (wo N die Problemgr6sse
darstellt). Die Entwicklung der wichtigsten Algorithmen (Cooley-Tukey und Split-Radix FIT, Prime Factor Algorithmus
und Winograd's schneller Fourier Transformation) ist nachvollzogen. Dann wird versucht, den Stand des Feldes zu beschreiben,
um zu zeigen wo die Forschung steht, was flir Probleme noch offenstehen, wie zum Beispiel in Implementierungen.

Rrsum4. La publication de l'algorithme de Cooley-Tukey pour la transformation de Fourier rapide a ouvert une nouvelle
~re dans le traitement num6rique des signaux, en r4duisant l'ordre de complexit6 de probl~mes cruciaux, comme la
transformation de Fourier ou la convolution, de N 2 ~ N log2 N (oh N est la taille du probl~me). Le drvelopment des
algorithmes principaux (Cooley-Tukey, split-radix FFT, algorithmes des facteurs premiers, et transform6e rapide de Winograd)
est drcrit. Ensuite, l'&at de l'art est donn4, et on parle des probl~mes ouverts et des implantations.

Keywords. Fourier transforms, fast algorithms, computational complexity.

1. Introduction

Linear filtering and Fourier transforms are
among the most fundamental operations in digital
signal processing. However, their wide use makes
their computational requirements a heavy burden
in most applications. Direct computation of both

c o n v o l u t i o n a n d d i s c r e t e F o u r i e r t r a n s f o r m (D F T)
r e q u i r e s o n t h e o r d e r o f N 2 o p e r a t i o n s w h e r e N
is t h e f i l te r l e n g t h o r t h e t r a n s f o r m size. T h e b r e a k -
t h r o u g h o f t h e C o o l e y - T u k e y F F T c o m e s f r o m t h e
f ac t t h a t i t b r i n g s t h e c o m p l e x i t y d o w n to a n o r d e r
o f N log2 N o p e r a t i o n s . B e c a u s e o f t h e c o n v o l -
u t i o n p r o p e r t y o f t h e D F T , t h i s r e s u l t a p p l i e s to

0165-1684/90/$3.50 © 1990, Elsevier Science Publishers B.V.

260 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

the convolution as well. Therefore, fast Fourier
transform algorithms have played a key role in the
widespread use of digital signal processing in a
variety of applications like telecommunications,
medical electronics, seismic processing, radar or
radio astronomy to name but a few.

Among the numerous further developments that
followed Cooley and Tukey's original contribu-
tion, the fast Fourier transform introduced in 1976
by Winograd [54] stands out for achieving a new
theoretical reduction in the order of the multipli-
cative complexity. Interestingly, the Winograd
algorithm uses convolutions to compute DFTs, an
approach which is just the converse of the con-
ventional method of computing convolutions by
means of DFTs. What might look as a paradox at
first sight actually shows the deep interrelation-
ship that exists between convolutions and Fourier
transforms.

Recently, the Cooley-Tukey type algorithms
have emerged again, not only because implementa-
tions of the Winograd algorithm have been disap-
pointing, but also due to some recent developments
leading to the so-called split-radix algorithm [27].
Attractive features of this algorithm are both its
low arithmetic complexity and its relatively simple
structure.

Both the introduction of digital signal processors
and the availability of large scale integration has
influenced algorithm design. While in the sixties
and early seventies, multiplication counts alone
were taken into account, it is now understood that
the number of addition and memory accesses in
software, and the communication costs in hard-
ware are at least as important.

The purpose of this paper is first to look back
at twenty years of developments since the Cooley-
Tukey paper. Among the abundance of literature
(a bibliography of more than 2500 titles has been
published [33]), we will try to highlight only the
key ideas. Then, we will attempt to describe the
state of the art on the subject. It seems to be an
appropriate time to do so, since on the one hand,
the algorithms have now reached a certain matur-
ity, and on the other hand, theoretical results on
Signal Processing

complexity allow us to evaluate how far we are
from optimum solutions. Furthermore, on some
issues, open questions will be indicated.

Let us point out that in this paper we shall
concentrate strictly on the computation of the dis-
crete Fourier transform, and not discuss applica-
tions. However, the tools that will be developed
may be useful in other cases. For example, the
polynomial products explained in Section 5.1 can
immediately be applied to the derivation of fast
running FIR algorithms [73, 81].

The paper is organized as follows.
Section 2 presents the history of the ideas on

fast Fourier transforms, from Gauss to the split-
radix algorithm.

Section 3 shows the basic technique that under-
lies all algorithms, namely the divide and conquer
approach, showing that it always improves the
performance of a Fourier transform algorithm.

Section 4 considers Fourier transforms with
twiddle factors, that is, the classic Cooley-Tukey
type schemes and the split-radix algorithm. These
twiddle factors are unavoidable when the trans-
form length is composite with non-coprime factors.
When the factors are coprime, the divide and con-
quer scheme can be made such that twiddle factors
do not appear.

This is the basis of Section 5, which then presents
Rader's algorithm for Fourier transforms of prime
lengths, and Winograd's method for computing
convolutions. With these results established, Sec-
tion 5 proceeds to describe both the prime factor
algorithm (PFA) and the Winograd Fourier trans-
form (WFTA).

Section 6 presents a comprehensive and critical
survey of the body of algorithms introduced so
far, then shows the theoretical limits of the com-
plexity of Fourier transforms, thus indicating the
gaps that are left between theory and practical
algorithms.

Structural issues of various FFT algorithms are
discussed in Section 7.

Section 8 treats some other cases of interest, like
transforms on special sequences (real or sym-
metric) and related transforms, while Section 9 is

P. Duhamel, M. Vetterli / A

specifically devoted to the treatment of multi-
dimensional transforms.

Finally, Section 10 outlines some of the impor-
tant issues of implementations. Considerations on
software for general purpose computers, digital
signal processors and vector processors are made.
Then, hardware implementations are addressed.
Some of the open questions when implementing
FFT algorithms are indicated.

The presentation we have chosen here is con-
structive, with the aim of motivating the 'tricks'
that are used. Sometimes, a shorter but 'plug-in'-
like presentation could have been chosen, but we
avoided it, because we desired to insist on the
mechanisms underlying all these algorithms. We
have also chosen to avoid the use of some mathe-
matical tools, such as tensor products (that are
very useful when deriving some of the FFT
algorithms) in order to be more widely readable.

Note that concerning arithmetic complexities,
all sections will refer to synthetic tables giving
the computational complexities of the various
algorithms for which software is available. In a
few cases, slightly better figures can be obtained,
and this will be indicated.

For more convenience, the references are separ-
ated between books and papers, the latter being
further classified corresponding to subject mat-
ters (1-D FFT algorithms, related ones, multi-
dimensional transforms and implementations).

2. A historical perspective

The development of the fast Fourier transform
will be surveyed below, because, on the one hand,
its history abounds in interesting events, and on
the other hand, the important steps correspond to
parts of algorithms that will be detailed later.

A first subsection describes the pre-Cooley-
Tukey area, recalling that algorithms can get lost
by lack of use, or, more precisely, when they
come too early to be of immediate practical use.
The developments following the Cooley-Tukey
algorithm are then described up to the most recent

tutorial on fast Fourier transforms 261

solutions. Another subsection is concerned with
the steps that lead to the Winograd and to the
prime factor algorithm, and finally, an attempt is
made to briefly describe the current state of the art.

2.1. From Gauss to the Cooley-Tukey F F T

While the publication of a fast algorithm for the
DFT by Cooley and Tukey in 1965 [25] is certainly
a turning point in the literature on the subject, the
divide and conquer approach itself dates back to
Gauss as noted in a well documented analysis by
Heideman et al. [34]. Nevertheless, Gauss's work
on FFTs in the early 19th century (around 1805)
remained largely unnoticed because it was only
published in Latin and this after his death.

Gauss used the divide and conquer approach in
the same way as Cooley and Tukey have published
it later in order to evaluate trigonometric series,
but his work pre-dates even Fourier's work on
harmonic analysis (1807)! Note that his algorithm
is quite general, since it is explained for transforms
on sequences with lengths equal to any composite
integer.

During the 19th century, efficient methods for
evaluating Fourier series appeared independently
at least three times [33], but were restricted on
lengths and number of resulting points. In 1903,
Runge derived an algorithm for lengths equal to
powers of 2 which was generalized to powers of 3
as well and used in the forties. Runge's work was
thus quite well-known, but nevertheless disap-
peared after the war.

Another important result useful in the most
recent FFT algorithms is another type of divide
and conquer approach, where the initial problem
of length N1" N2 is divided into subproblems
of lengths N1 and N2 without any additional
operations, N~ and N2 being coprime.

This result dates back to the work of Good [32]
who obtained this result by simple index mappings.
Nevertheless, the full implication of this result will
only appear later, when efficient methods will be
derived for the evaluation of small, prime length
DFTs. This mapping itself can be seen as an

VoL 19, No. 4, April 1990

262 P. Duhamel, M. Vetterli / A

application of the Chinese remainder theorem
(CRT), which dates back to 100 years A.D.!
[10.18].

Then, in 1965, appears a brief article by Cooley
and Tukey, entitled 'An algorithm for the machine
calculation of complex Fourier series' [25], which
reduces the order of the number of operations from
N 2 to N log2 (N) for a length N -- 2 n DFT.

This will turn out to be a milestone in the
literature on fast transforms, and will even be
credited [14, 15] of the tremendous increase of
interest in DSP beginning in the seventies. The
algorithm is suited for DFTs on any composite
length, and is thus of the type that Gauss had
derived almost 150 years before. Note that all
algorithms published in-between were more
restrictive on the transform length [34].

Looking back at this brief history, one may won-
der why all previous algorithms had disappeared
or remained unnoticed, whereas the Cooley-Tukey
algorithm had such a tremendous success. A poss-
ible explanation is that the growing interest in the
theoretical aspects of digital signal processing was
motivated by technical improvements in the semi-
conductor technology. And, of course, this was not
a one-way street

The availability of reasonable computing power
produced a situation where such an algorithm
would suddenly allow numerous new applications.
Considering this history, one may wonder how
many other algorithms or ideas are just sleeping
in some notebook or obscure publication

The two types of divide and conquer approaches
cited above produced two main classes of algo-
rithms. For the sake of clarity, we will now skip
the chronological order and consider the evolution
of each class separately.

2.2. Development of the twiddle factor FFT

When the initial DFT is divided into sublengths
which are not coprime, the divide and conquer
approach as proposed by Cooley and Tukey leads
to auxiliary complex multiplications, initially
named twiddle factors, which cannot be avoided
in this case.
Signal Processing

tutorial on fast Fourier transforms

While Cooley-Tukey's algorithm is suited for
any composite length, and explained in [25] in a
general form, the authors gave an example with
N = 2", thus deriving what is now called a radix-2
decimation in time (DIT) algorithm (the input
sequence is divided into decimated subsequences
having different phases). Later, it was often falsely
assumed that the initial Cooley-Tukey FFT was a
DIT radix-2 algorithm only.

A number of subsequent papers presented
refinements of the original algorithm, with the aim
of increasing its usefulness.

The following refinements were concerned:
- -wi th the structure of the algorithm: it was
emphasized that a dual approach leads to 'decima-
tion in frequency' (DIF) algorithms,
- - o r with the efficiency of the algorithm, meas-
ured in terms of arithmetic operations: Bergland
showed that higher radices, for example radix-8,
could be more efficient [21],
- - o r with the extension of the applicability of the
algorithm: Bergland, again, showed that the FFT
could be specialized to real input data [60], and
Singleton gave a mixed radix FFT suitable for
arbitrary composite lengths.

While these contributions all improved the
initial algorithm in some sense (fewer operations
and /o r easier implementations), actually no new
idea was suggested.

Interestingly, in these very early papers, all the
concerns guiding the recent work were already
here: arithmetic complexity, but also different
structures and even real-data algorithms.

In 1968, Yavne presents a little known paper
[58] that sets a record: his algorithm requires the
least known number of multiplications, as well as
additions for length-2 n FFTs, and this both for
real and complex input data. Note that this record
still holds, at least for practical algorithms. The
same number of operations was obtained later on
by other (simpler) algorithms, but due to Yavne's
cryptic style, few researchers were able to use his
ideas at the time of publication.

Since twiddle factors lead to most computations
in classical FFTs, Rader and Brenner, perhaps

P. Duhamel, M. Vetterli / A

motivated by the appearance of the Winograd
Fourier transform which possesses the same
characteristic, proposed an algorithm that replaces
all complex multiplications by either real or
imaginary ones, thus substantially reducing the
number of multiplications required by the
algorithm [44]. This reduction in the number of
multiplications was obtained at the cost of an
increase in the number of additions, and a greater
sensitivity to roundoff noise. Hence, further
developments of these 'real factor' FFTs appeared
in [24, 42], reducing these problems. Bruun also
proposed an original scheme [22] particularly
suited for real data. Note that these various
schemes only work for radix-2 approaches.

It took more than fifteen years to see again
algorithms for length-2 n FFTs that take as few
operations as Yavne's algorithm. In 1984, four
papers appeared or were submitted almost simul-
taneously [27, 40, 46, 51] and presented so-called
'split-radix' algorithms. The basic idea is simply
to use a different radix for the even part of the
transform (radix-2) and for the odd part (radix-4).
The resulting algorithms have a relatively simple
structure and are well adapted to real and sym-
metric data while achieving the minimum known
number of operations for FFTs on power of 2
lengths.

2.3. FFTs without twiddle factors

While the divide and conquer approach used in
the Cooley-Tukey algorithm can be understood as
a 'false' mono- to multi-dimensional mapping (this
will be detailed later), Good 's mapping, which can
be used when the factors of the transform lengths
are coprime, is a true mono- to multi-dimensional
mapping, thus having the advantage of not produc-
ing any twiddle factor.

Its drawback, at first sight, is that it requires
efficiently computable DFTs on lengths which are
coprime: For example, a DFT of length 240 will
be decomposed as 240 = 16 • 3 • 5, and a DFT of
length 1008 will be decomposed in a number of
DFTs of lengths 16, 9 and 7. This method thus

tutorial on fast Fourier transforms 263

requires a set of (relatively) small-length DFTs
that seemed at first difficult to compute in less than
N~ operations. In 1968, however, Rader showed
how to map a DFT of length N, N prime, into
a circular convolution of length N - 1 [43].
However, the whole material to establish the
new algorithms was not ready yet, and it took
Winograd's work on complexity theory, in par-
ticular on the number of multiplications required
for computing polynomial products or convol-
utions [55] in order to use Good's and Rader's
results efficiently.

All these results were considered as curiosities
when they were first published, but their combina-
tion, first done by Winograd and then by Kolba
and Parks [39] raised a lot of interest in that class
of algorithms. Their overall organization is as
follows:

After mapping the DFT into a true multi-
dimensional DFT by Good 's method and using
the fast convolution schemes in order to evaluate
the prime length DFTs, a first algorithm makes use
of the intimate structure of these convolution
schemes to obtain a nesting of the various multipli-
cations. This algorithm is known as the Winograd
Fourier transform algorithm (WFTA) [54], an
algorithm requiring the least known number of
multiplications among practical algorithms for
moderate lengths DFTs. If the nesting is not used,
and the multi-dimensional DFT is performed by
the row-column method, the resulting algorithm
is known as the prime factor algorithm (PFA) [39]
which, while using more multiplications, has less
additions and a better structure than the WFTA.

From the above explanations, one can see that
these two algorithms, introduced in 1976 and 1977
respectively, require more mathematics to be
understood [19]. This is why it took some effort
to translate the theoretical results, especially con-
cerning the WFTA, into actual computer code.

It is even our opinion that what will remain
mostly of the WFTA are the theoretical results,
since although a beautiful result in complexity
theory, the WFTA did not meet its expectations
once implemented, thus leading to a more critical

Vol. 19, No. 4, April 1990

2 6 4 P. Duhamel, M. Vetterli / A

evaluation of what 'complexity' meant in the con-
text of real life computers [41,108, 109].

The result of this new look at complexity was
an evaluation of the number of additions and data
transfers as well (and no longer only of multiplica-
tions). Furthermore, it turned out recently that
the theoretical knowledge brought by these
approaches could give a new understanding of
FFTs with twiddle factors as well.

2.4. Multi-dimensional DFTs

Due to the large amount of computations they
require, the multi-dimensional DFTs as such (with
common factors in the different dimensions, which
was not the case in the multi-dimensional transla-
tion of a mono-dimensional problem by PFA) were
also carefully considered.

The two most interesting approaches are cer-
tainly the vector radix FFT (a direct approach to
the multi-dimensional problem in a Cooley-Tukey
mood) proposed in 1975 by Rivard [91] and the
polynomial transform solution of Nussbaumer and
Quandalle in 1978 [87, 88].

Both algorithms substantially reduce the com-
plexity over traditional row-column computa-
tional schemes.

2.5. State o f the art

From a theoretical point of view, the complexity
issue of the discrete Fourier transform has reached
a certain maturity. Note that Gauss, in his time,
did not even count the number of operations
necessary in his algorithm. In particular,
Winograd's work on DFTs whose lengths have
coprime factors both sets lower bounds (on the
number of multiplications) and gives algorithms
to achieve these [35, 55], although they are not
always practical ones. Similar work was done for
length-2" DFTs, showing the linear multiplicative
complexity of the algorithm [28, 35, 105] but also
the lack of practical algorithms achieving this
minimum (due to the tremendous increase in the
number of additions [35]).
Signal Processing

tutorial on fast Fourier transforms

Considering implementations, the situation is of
course more involved since many more parameters
have to be taken into account than just the number
of operations.

Nevertheless, it seems that both the radix-4
and the split-radix algorithm are quite popular
for lengths which are powers of 2, while the
PFA, thanks to its better structure and easier
implementation, wins over the WFTA for lengths
having coprime factors.

Recently, however, new questions have come up
because in software on the one hand, new pro-
cessors may require different solutions (vector pro-
cessors, signal processors), and on the other hand,
the advent of VLSI for hardware implementations
sets new constraints (desire for simple structures,
high cost of multiplications versus additions).

3. Motivation (or: why dividing is also conquering)

This section is devoted to the method that under-
lies all fast algorithms for DFT, that is the 'divide
and conquer' approach.

The discrete Fourier transform is basically a
matrix-vector product. Calling (x0, x ~ , . . . , XN_0 x
the vector of the input samples,

(X0, X1 , XN_1) r

the vector of transform values and W N the primi-
tive Nth root of unity (WN =e-J2~/N), the DFT
can be written as

T olr, , , ' ' ' 1 .x , / / 1 wN w~, w~ ... w~-' /
[x~,-d I.i w~ -' w~ ;~-" w ~ - '~N-'] LI°1 x1

× x 2 : •

x 3

- 1

(1)

P. Duhamel, M. Vetterli / A tutorial on fas t Fourier transforms 2 6 5

The direct evaluation of the matrix-vector prod-
uct in (1) requires of the order of N 2 complex
multiplications and additions (we assume here that
all signals are complex for simplicity).

The idea of the 'divide and conquer' approach
is to map the original problem into several sub-
problems in such a way that the following
inequality is satisfied:

cost(subproblems) + cost(mapping)

<cost(original problem). (2)

But the real power of the method is that, often,
the division can be applied recursively to the sub-
problems as well, thus leading to a reduction of
the order of complexity.

Specifically, let us have a careful look at the
DFT transform in (3) and its relationship with the
z-transform of the squence {xn} as given in (4).

N - - 1

Xk = ~. x ,W~, k = 0 , . . . , N - 1 , (3)
i = 0

N - - I

X (z) E -' = x,z . (4)
i = 0

{Xk} and {x~} form a transform pair, and it is
easily seen that Xk is the evaluation of X (z) at
point z = wTvk:

x k = X (z) z = w~ k. (5)
Furthermore, due to the sampled nature of {x,},

{Xk} is periodic, and vice versa: since {Xk} is
sampled, {x,} must also be periodic.

From a physical point of view, this means that
both sequences {x,} and {Xk} are repeated in-
definitely with period N.

This has a number of consequences as far as
fast algorithms are concerned.

All fast algorithms are based on a divide and
conquer strategy, we have seen this in Section 2.
But how shall we divide the problem (with the
purpose of conquering it)?

The most natural way is, of course, to consider
subsets of the initial sequence, take the DFT of
these subseqnences, and reconstruct the DFT of
the initial sequence from these intermediate results.

Let It, / = 0 , . . . , r - 1 be the partition of
{0, 1 , . . . , N - 1 } defining the r different subsets
of the input sequence. Equation (4) can now be
rewritten as

N - I r - I
X (z) = Z x, z - i = ~, Z xi z-i, (6)

i = 0 1--0 iEl i

and, normalizing the powers of z with respect to
some x0t in each subset It:

r - -1
X (z) = Z z-'o, Z x,z -'÷'°'- (7)

I = 0 ielt

From the considerations above, we want the
replacement of z by W ~ k in the innermost sum of
(7) to define an element of the DFT of {xi[i ~ It}.
Of course, this will be possible only if the subset
{xil i ~ It}, possibly permuted, has been chosen in
such a way that it has the same kind of periodicity
as the initial sequence. In what follows, we show
that the three main classes of FFT algorithms can
all be casted into the form given by (7).
- - I n some cases, the second sum will also involve
elements having the same periodicity, and hence
will define DFTs as well. This corresponds to the
case of Good 's mapping: all the subsets Ij have
the same number of elements m = N / r and
(rn, r) = 1.
- - I f this is not the case, (7) will define one step
of an FFT with twiddle factors: when the subsets
/l all have the same number of elements, (7) defines
one step of a radix-r FFT.
- - I f r = 3, one of the subsets having N / 2 elements,
and the other ones having N / 4 elements, (7) is
the basis of a split-radix algorithm.

Furthermore, it is already possible to show from
(7) that the divide and conquer approach will
always improve the efficiency of the computation.

To make this evaluation easier, let us suppose
that all subsets It have the same number of ele-
ments, say N1. If N = N1 • N2, r = N2, each of the
innermost sums of (7) can be computed with N 2
multiplications, which gives a total of N 2 N 2, when
taking into account the requirement that the sum
over i ~ It defines a DFT. The outer sum will need
r - -N 2 multiplications per output point, that is
N2 • N for the whole sum.

Vol. 19, No. 4. April 1990

266

Hence, the total number of multiplications
needed to compute (7) is

N2" N + N2" N~

= N 1 • N2(NI + N2) < N 2" N~

if N1, N 2 > 2 , (8)

which shows clearly that the divide and conquer
approach, as given in (7), has reduced the number
of multiplications needed to compute the DFT.

Of course, when taking into account that, even
if the outermost sum of (7) is not already in the
form of a DFT, it can be rearranged into a DFT
plus some so-called twiddle-factors, this mapping
is always even more favorable than is shown by
(8), especially for small N~, /V2 (for example, the
length-2 DFT is simply a sum and difference).

Obviously, if N is highly composite, the division
can be applied again to the subproblems, which
results in a number of operations generally several
orders of magnitude better than the direct matrix-
vector product.

The important point in (2) is that two costs
appear explicitly in the divide and conquer
scheme: the cost of the mapping (which can be
zero when looking at the number of operations
only) and the cost of the subproblems. Thus,
different types of divide and conquer methods
attempt to find various balancing schemes between
the mapping and the subproblem costs. In the
radix-2 algorithm, for example, the subproblems
end up being quite trivial (only sum and differen-
ces), while the mapping requires twiddle factors
that lead to a large number of multiplications. On
the contrary, in the prime factor algorithm, the
mapping requires no arithmetic operation (only
permutations), while the small DFTs that appear
as subproblems will lead to substantial costs since
their lengths are coprime.

4. FFTs with twiddle factors

The divide and conquer approach reintroduced
by Cooley and Tukey [25] can be used for any
Signal Processing

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

composite length N but has the specificity of
always introducing twiddle factors. It turns out
that when the factors of N are not coprime (for
example if N = 2"), these twiddle factors cannot
be avoided at all. This section will be devoted to
the different algorithms in that class.

The difference between the various algorithms
will consist in the fact that more or fewer of these
twiddle factors will turn out to be trivial multiplica-
tions, such as 1, -1 , j, - j .

4.1. The Cooley- Tukey mapping

Let us assume that the length of the transform
is composite: N = N~ • N2.

As we have seen in Section 3, we want to parti-
tion { x i l i = O , . . . , N - l } into different subsets
{x i l i s I~} in such a way that the periodicities of
the involved subsequences are compatible with the
periodicity of the input sequence, on the one hand,
and allow to define DFTs of reduced lengths on
the other hand.

Hence, it is natural to consider decimated ver-
sions of the initial sequence:

I,, = {n2N, + n,},

nl = 0 , . . . , N 1 - 1 , n2=0 , N 2 - 1,

which, introduced in (6) gives

N I - I N2--1
X(z)= Z Y x.2,,,,+.,z -~"~'+"°,

nl=O n2~O

(9)

(lO)

(11)

Using the fact that

W ~ rt -~" e-J2"rrNli/N = e- -J2~i /N2 = WN2,i (12)

N1-1 742-1
X(z)= Z z-", Z x.~N,+.,z-"#'.

h i = 0 n2=0

x~ = X(z)J=:w~
NI--1 N2--1

w n t k wn2N1 k
= ~ " ' N ~" X n 2 N , + n , - - N "

n t =0 n2=0

and, after normalizing with respect to the first
element of each subset,

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 267

(11) can be rewritten as

N I - - 1 N2--1
W ~k W ~k (13) x~= Y ..N E x.~,,,,+,,..N2.

n 1 = 0 n2=O

Equation (13) is now nearly in its final form,
since the right-hand sum corresponds to N1 DFTs
of length N2, which allows the reduction of arith-
metic complexity to be achieved by reiterating the
process. Nevertheless, the structure of the Cooley-
Tukey FFT is not fully given yet.

Call Yn,,k the kth output of the nlth such DFT:
N2-1

. . . . ~k (14) Ynb k = ~., Xn2Nl+n I ~/N2 •
n 2 ~ 0

Note that in Y,,,k, k can be taken modulo N2,
because

W ~ = WN~N~+k' = WN.N~ W ~ = W ~ . (15)

With this notation, X k becomes
N I - - I

Y,, W n'k (16)
h i = 0

At this point, we can notice that all the X k for
ks being congruent modulo N2 are obtained from
the same group of N~ outputs of Y.,.k. ThUS, we
express k as

k = k i N 2 + k2

kl = 0 , . . . , N l - 1 , k2 = 0 N 2 - 1.
(17)

Obviously, Yn,,k is equal to Y,,,k2 since k can be
taken modulo N2 in this case (see (12) and (15)).
Thus, we rewrite (16) as

N I - - 1

X k , N2+k2 = ~ Ynl,k2 W ~ (klNE+k2), (1 8)
n 1 =0

which can be reduced, using (12), to

N t - - 1

X k , N~+k~ = Y. Yn,.k~ W"lk~W"Lk' (19) "" N "" N 1 "
n l = 0

Calling Yrnl,k2 the result of the first multiplication
(by the twiddle factors) in (19) we get

y , - V ll/-nl k2 ,,,k~- • ,.,k~ ,, N • (20)

We see that the values of XklN2+k 2 a r e obtained
from N2 DFTs of length N~ applied on Ytnl,k2:

N1--1
XklN2+k2 ~. V ' Ulnlkl (21) ~t n l , k 2 rv N I •

n l = O

We recapitulate the important steps that lead to
(21). First, we evaluated N~ DFTs of length N2 in
(14). Then, N multiplications by the twiddle fac-
tors were performed in (20). Finally, N2 DFTs of
length N1 lead to the final result (21).

A way of looking at the change of variables
performed in (9) and (17) is to say that the one-
dimensional vector xi has been mapped into a
two-dimensional vector xn,,,: having N1 lines and
?42 columns. The computation of the DFT is then
divided into N~ DFTs on the lines of the vector
x a point by point multiplication with the
twiddle factors and finally N2 DFTs on the
columns of the preceding result.

Until recently, this was the usual presentation
of FFT algorithms, by the so-called 'index map-
pings' [4, 23]. In fact, (9) and (17), taken together,
are often referred to as the 'Cooley-Tukey map-
ping' or 'common factor mapping'. However, the
problem with the two-dimensional interpretation
is that it does not include all algorithms (like the
split-radix algorithm that will be seen later). Thus,
while this interpretation helps the understanding
of some of the algorithms, it hinders the compre-
hension of others. In our presentation, we tried to
enhance the role of the periodicities of the prob-
lem, which result from the initial choice of the
subsets.

Nevertheless, we illustrate pictorially a length-15
DFT using the two-dimensional view with N1 = 3,
N2 = 5 (see Fig. 1), together with the Cooley-Tukey
mapping in Fig. 2, to allow a precise comparison
with Good's mapping that leads to the other class
of FFTs: the FFTs without twiddle factors. Note
that for the case where N~ and ?42 are coprime,
the Good's mapping will be more efficient as shown
in the next section, and thus this example is for
illustration and comparison purpose only. Because
of the twiddle factors in (20), one cannot inter-
change the order of DFTs once the input mapping

Vol. 19, No, 4, April 1990

268 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

x 6
/ x3
x(x 7
/ x4
x 1 x 8

lx0x3x6xgX12 Xx9
Xl/,

x 4

- - Xl 0

Fig. 1. 2-D view of the length-15 Cooley-Tukey FFT.

o) N1 =3,N2=S
I Xo Xl X13 X1/., [

Xo X3 X6 X9 X12
X 1 X/., X 7 X10X13
X 2 X 5 X 8 Xll Xl/.,

b) Nl=5,N2 =3

X 0 X 5 Xl 0
X 1 X 6 Xll
X 2 X7 X12
X 3 X 8 iX13
X/., X 9 'X14

Fig. 2. Cooley-Tukey mapping. (a) N t = 3, N 2 = 5; (b) N 1 = 5,
N2=3.

has been chosen. Thus, in Fig. 2(a), one has to
begin with the DFTs on the rows of the matrix.
Choosing N1 = 5, N2 = 3 would lead to the matrix
of Fig. 2(b), which is obviously different from just
transposing the matrix of Fig. 2(a). This shows
again that the mapping does not lead to a true
two-dimensional transform (in that case, the
order of row and column would not have any
importance).
Signal Processing

4.2. Radix-2 and radix-4 algorithms

The algorithms suited for lengths equal to
powers of 2 (or 4) are quite popular since sequen-
ces of such lengths are frequent in signal processing
(they make full use of the addressing capabilities
of computers or DSP systems).

We assume first that N = 2". Choosing N~ = 2
and N2 = 2 " -1= N / 2 in (9) and (10) divides the
imput sequence into the sequence of even and odd
numbered samples, which is the reason why this
approach is called 'decimation in time' (DIT). Both
sequences are decimated versions, with different
phases, of the original sequence. Following (17),
the output consists of N / 2 blocks of 2 values.
Actually, in this simple case, it is easy to rewrite
(14), (21) exhaustively:

N/2-1
w"2k2 Xk2= ~, X2n2 ,, N/2

n2=0

N/2--1
k2 wn2k2 (22a) Jr W N ~ X2n2+1 "" N/2'

.2=0

N/2--1
wn2k2 XN/2+k2 = ~ X2n2 - - N / 2

n2=0

N/2--1
k~ W "~k~ (22b) -- W N Y~ X2"2+I "" N/2"

n2=O

Thus, X,, and XN/E+m are obtained by 2-point
DTFs on the outputs of the l eng th -N/2 DFTs of
the even and odd-numbered sequences, one of
which is weighted by twiddle factors. The structure

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 269

×0"

N=4
Xl ~ - -

x 2

x 3

x~)~l DFT
N=4

X
x 6 •

x 7

W 8

• X 0 xo •

.X/. x I .-~

• X 1 x 2

• X5 x 3

• X 2 x / ,

• X6 x 5 J

.X 3 x6 J

• X 7 x 7 •

__ X 0
DFT

N=4 - - X 2

- - 1(6

DFT - - x l

N=4 __ X 3

- - X 7

division DFT multiplication DFT
info even of by of
and odd N/2 twiddle 2
numbered factors
sequences

DFT Multiplication DFT
of by of
2 lwiddle NI 2

factors

Fig. 4. D e c i m a t i o n in f r equency radix-2 FFT.

Fig. 3. D e c i m a t i o n in t ime radix-2 FFT.

made by a sum and difference followed (or pre-
ceded) by a twiddle factor is generally called a
'butterfly'. The DIT radix-2 algorithm is schemati-
cally shown in Fig. 3.

Its implementation can now be done in several
different ways. The most natural one is to reorder
the input data such that the samples of which the
DFT has to be taken lie in subsequent locations.
This results in the bit-reversed input, in-order out-
put decimation in time algorithm. Another possi-
bility is to selectively compute the DFTs over the
input sequence (taking only the even and odd
numbered samples), and perform an in-place com-
putation. The output will now be in bit-reversed
order. Other implementation schemes can lead to
constant permutations between the stages (con-
stant geometry algorithm [15]).

If we reverse the role of N1 and N2, we get the
decimation in frequency (DIF) version of the
algorithm. Inserting N1 = N/2 and N2 = 2 into (9),
(10) leads to (again from (14) and (21))

N/2-1
X 2 k , = ~. W~y~(X.n,"]-XN/2+nl), (2 3 a)

n l = 0

N/2-1
I I rl'll k I i i t?'ll / ~.

X 2 k l + 1 = ~ W N / 2 WNt , Xni -- XN/2+nl).
n l = O

(23b)

This first step of a DIF algorithm is represented
in Fig. 5(a), while a schematic representation of
the full DIF algorithm is given in Fig. 4. The duality
between division in time and division in frequency
is obvious, since one can be obtained from the
other by interchanging the role of {xi} and {Xk}.

Let us now consider the computational com-
plexity of the radix-2 algorithm (which is the same
for the DIF and DIT version because of the duality
indicated above). From (22) or (23), one sees that
a DFT of length N has been replaced by two DFTs
of length N/2, and this at the cost of N/2 complex
multiplications as well as N complex additions.
Iterating the scheme log2 N - 1 times in order to
obtain trivial transforms (of length 2) leads to the
following order of magnitude of the number of
operations:

OM[DFTradix.2] ~ N/2(log2 N - 1)

complex multiplications,
(24a)

Vol. 19, No. 4, April 1990

270

a)

b)

c)

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

DF1

 iiii'
x15"

DFT
B

DFT
8

X 0

X14
Xl

• X15

ii X12
x 4 Xl

X13
X2
Xl/.

2 X3

x15 X15

×o DFT ' ~ DFT x°
x~ - 21/+ I~ 8

Xlz.
x8 ~ ~ DFT I : xl

x 1 2 ~ EE Z ~ X2
| ~ /+ I • X15

Fig. 5. Comparison of various DIF algorithms for the length-16
DFT. (a) Radix-2; (b) radix-4; (c) split-radix.

OA[DFWradix_2] ~ N(log2 N - 1)

complex additions. (24b)

A closer look at the twiddle factors will enable
us to still reduce these numbers. For comparison
purposes, we will count the number of real
operations that are required, provided that the
multiplication of a complex number x by W~ is
done using 3 real multiplications and 3 real addi-
tions [12]. Furthermore, if i is a multiple of N/4,
no arithmetic operation is required, and only 2
real multiplications and additions are required if
i is an odd multiple of N/8. Taking into account
Signal Processing

these simplifications results in the following total
number of operations [12]:

M[DFTradix.2] = 3 N/2 log2 N - 5 N + 8,
(25a)

A[DFTradix_2] = 7N/2 log2 N - 5N + 8.
(25b)

Nevertheless, it should be noticed that these
numbers are obtained by the implementation of 4
different butterflies (1 general plus 3 special cases),
which reduces the regularity of the programs. An
evaluation of the number of real operations for
other number of special butterflies, is given in [4],
together with the number of operations obtained
with the usual 4-mult, 2-adds complex multiplica-
tion algorithm.

Another case of interest appears when N is a
power of 4. Taking N1 = 4 and N2= N/4, (13)
reduces the length-N DFT into 4 DFTs of length
N/4, about 3N/4 multiplications by twiddle fac-
tors, and N/4 DFTs of length 4. The interest of
this case lies in the fact that the length-4 DFTs do
not cost any multiplication (only 16 real additions).
Since there are log4 N - 1 stages and the first set
of twiddle factors (corresponding to nl = 0 in (20))
is trivial, the number of complex multiplications
is about

OM[OFTradix_4] ~ 3N/4(log4 N - 1). (26)

Comparing (26) to (24a) shows that the number
of multiplications can be reduced with this radix-4
approach by about a factor of 3/4. Actually, a
detailed operation count using the simplifications
indicated above gives the following result [12]:

M[DFTradix.4]

= 9N/8 log2 N - 4 3 N / 1 2 + 16/3, (27a)

A[DFTraeix.4]

= 25N/8 log2 N - 43N/12 + 16/3. (27b)

Nevertheless, these operation counts are
obtained at the cost of using six different butterflies
in the programming of the FFT. Slight additional
gains can be obtained when going to even higher
radices (like 8 or 16) and using the best possible

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

algorithms for the small DFTs. Since programs
with a regular structure are generally more com-
pact, one often uses recursively the same decompo-
sition at each stage, thus leading to full radix-2 or
radix-4 programs, but when the length is not a
power of the radix (for example 128 for a radix-4
algorithm), one can use smaller radices towards
the end of the decomposition. A length-256 DFT
could use 2 stages of radix-8 decomposition, and
finish with one stage of radix-4. This approach is
called 'mixed-radix' approach [45] and achieves
low arithmetic complexity while allowing flexible
transform length (not restricted to powers of 2,
for example), at the cost of a more involved
implementation.

4.3. Split-radix algorithm
As already noted in Section 2, the lowest known

number of both multiplications and additions
for length-2" algorithms was obtained as early as
1968 and was again achieved recently by new
algorithms. Their power was to show explicitly
that the improvement over fixed- or mixed-radix
algorithms can be obtained by using a radix-2 and
a radix-4 simultaneously on different parts of the
transform. This allowed the emergence of new
compact and computationally efficient programs
to compute the length-2" DFT.

Below, we will try to motivate (a posteriori!) the
split-radix approach and give the derivation of the
algorithm as well as its computational complexity.

When looking at the DIF radix-2 algorithm given
in (23), one notices immediately that the even
indexed outputs X2k, are obtained without any
further multiplicative cost from the DFT of a
length-N/2 sequence, which is not so well-done
in the radix-4 algorithm for example, since relative
to that length-N/2 sequence, the radix-4 behaves
like a radix-2 algorithm. This lacks logical sense,
because it is well-known that the radix-4 is better
than the radix-2 approach.

From that observation, one can derive a first
rule: the even samples of a DIF decomposition
X2k should be computed separately from the other

271

ones, with the same algorithm (recursively) as the
DFT of the original sequence (see [53] for more
details).

However, as far as the odd indexed outputs X2k+~
are concerned, no general simple rule can be estab-
lished, except that a radix-4 will be more efficient
than a radix-2, since it allows to compute the
samples through two N/4 DFTs instead of a single
N/2 DFT for a radix-2, and this at the same
multiplicative cost, which will allow the cost of
the recursions to grow more slowly. Tests showed
that computing the odd indexed output through
radices higher than 4 was inefficient.

The first recursion of the corresponding 'split-
radix' algorithm (the radix is split in two parts) is
obtained by modifying (23) accordingly:

N/2-1
wT rntk I / X2k~= Y~ WN/ztX,,+ XN/2+,~), (28a)

n 1 =0

N/4 1
wn~k~ W n t

X 4 k l + l ~--- ~ - - N / 4 - - N
n 1 =0

× [(x. , - xN/2+. ,)

+j(xn ,+N/4 -- Xn,+3N/4)], (2 8 b)

N/4--1
i l l n l kl I~/'3 n 1

X 4 k t + 3 = ~ vv N / 4 "" N
n 1 =0

x [(x.~ + xN/2+.~)
- j (x ,~+u /4 - x,,+3N/4)]. (28c)

The above approach is a DIF SRFFT, and is
compared in Fig. 5 with the radix-2 and radix-4
algorithms. The corresponding DIT version, being
dual, considers separately the subsets {x2i}, {x4i+~}
and {x4~+3} of the initial sequence.

Taking Io={2i}, I~={4i+1}, I2={4i+3} and
normalizing with respect to the first element of the
set in (7) leads to

X k =~Z.~ "~'2i~ |][zk(2i) " l - r " N " w k ~'~ X 4 i + l |'l[/rk(4i+l)-kvvN
1o I t

lll)'k(4i+ 3)-3k (29) + W ~ ~ x4,+3 ,, N
lz

which can be explicitly decomposed in order to
make the redundancy between the computation of

Vol. 19, No. 4, April 1990

272 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

Xk, Xk+N/4, Xk+N/2 a n d XR+3N/4 m o r e apparent:
N/2--1 N/4-1

x~ Z '~ w ~ E '~ = X2i WN/2 "~- X4i+1 WN/4
i=0 i : 0

N/4-1
+ w ~ E '~ X4i+ 3 WN/4, (30a)

i=0

N/2-1 y~ ik X2i WN/2
i=0

N/4-- 1
+J w k X ,k X4i+l WN/4

i=0

N/4-1
- j W ~ Y, ,k X4i+3 WN/4,

i=0
(30b)

Xk+N/4

N/2--1
x2i WN/2

i=0
N/4--1 ik - W k ~ X4i+l WN/4

i=0

N/4-1
W ik - W ~ 2 X4i+3 N/4,

i=0
(30c)

Xk+N/2 ~--

N/2-1 ~ ik x2iWN/2
i=0

N/4--1 ik - j W k ~ X4i+1WN/4
i=0

N/4--1
+ j W ~ ~ ik X4i+3 WN/4. (30d)

i=0

Xk+3N/4

The resulting algorithms have the minimum
known number of operations (multiplications plus
additions) as well as the minimum number of
multiplications among practical algorithms for
lengths which are powers of 2. The number of
operations can be checked as being equal to

M[DFZsp l i t . r ad ix] --- N log2 N - 3 N + 4,
(31a)

A [DFTsplit_radix] = 3 N log: N - 3 N + 4.
(31b)

These numbers of operations can be obtained
with only 4 different building blocks (with a com-
plexity slightly lower than the one of a radix-4
butterfly), and are compared with the other
algorithms in Tables 1 and 2.

Of course, due to the asymmetry in the decompo-
sition, the structure of the algorithm is slightly
more involved than for fixed-radix algorithms.
Nevertheless, the resulting programs remain fairly
simple [113] and can be highly optimized. Further-
more, this approach is well suited for applying
FFTs on real data. It allows an in-place, butterfly
style implementation to be performed [65, 77].

The power of this algorithm comes from the fact
that it provides the lowest known number of
operations for computing length-2" FFTs, while

Table 1
Number of non trivial real multiplications for various FFTs on complex data

N Radix 2 Radix 4 SRFFT PFA Winograd

16 24 20 20
30 100 68

32 88 68
60 200 136

64 264 208 196
120 460 276

128 712 516
240 1100 632

256 1800 1392 1284
504 2524 1572

512 4360 3076
1008 5804 3548

1024 10248 7856 7172
2048 23560 16388

2520 17660 9492

Signal Processing

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

Table 2
Number of real additions for various FFTs on complex data

N Radix 2 Radix 4 SRFFT PFA Winograd

16 152 148 148
30 384 384

32 408 388
60 888 888

64 1032 976 964
120 2076 2076

128 2504 2308
240 4812 5016

256 5896 5488 5380
504 13388 14540

512 13566 12292
1008 29548 34668

1024 30728 28336 27652
2048 68616 61444

2520 84076 99628

273

being implemented wi th compact programs. We
shall see later that there are some arguments tend-
ing to show that it is actually the best possible
compromise.

Note that the number of multiplications in (31 a)
is equal to the one obtained with the so-called
' real-factor ' algorithms [44, 24]. In that approach,
a linear combination of the data, using additions
only, is made such that all twiddle factors are either
pure real or pure imaginary. Thus, a multiplication
of a complex number by a twiddle factor requires
only 2 real multiplications. However, the real fac-
tor algorithms are quite costly in terms of addi-
tions, and are numerically ill-conditioned (division
by small constants).

4.4. R e m a r k s on FFTs with twiddle factors

The Cooley-Tukey mapping in (9) and (17) is
generally applicable, and actually the only possible
mapping when the factors on N are not coprime.
While we have paid particular attention to the case
N = 2", similar algorithms exist for N =pm (p an
arbitrary prime). However, one of the elegances of
the length-2 n algorithms comes from the fact that
the small DFTs (lengths 2 and 4) are multiplica-
tion-free, a fact that does not hold for other radices

like 3 or 5, for instance. Note, however, that it is
possible, for radix-3, either to completely remove
the multiplication inside the butterfly by a change
of base [26], at the cost of a few multiplications
and additions, or to merge it with the twiddle factor
[49] in the case where the implementat ion is based
on the 4-mult 2-add complex multiplication
scheme. It was also recently shown that, as soon
as a radix p2 algorithm was more efficient than a
radix-2 algorithm, a split-radix p /p2 was more
efficient than both of them [53]. However, unlike
the 2 n case, efficient implementations for these p"
split-radix algorithms have not yet been reported.
More efficient mixed radix algorithms also remain
to be found (initial results are given in [40]).

5. FFTs based on eostless mono- to multi-
dimensional mapping

The divide and conquer strategy, as explained
in Section 3, has few requirements for feasibility:
N needs only to be composite, and the whole DFT
is computed from DFTs on a number of points
which is a factor of N (this is required for the
redundancy in the computat ion of (11) to be

Vol. 19, No. 4, April 1990

274 P. Duhamel, M. Vetterli / A

apparent). This requirement allows the expression
of the innermost sum of (11) as a DFT, provided
that the subsets It have been chosen in such a way
that xi, i ~ / t is periodic. But, when N factors
into relatively prime factors, say N = N 1 - N 2 ,
(NI, N2) = 1, a very simple property will allow a
stronger requirement to be fulfilled:

Starting from any point of the sequence xi, you
can take as a first subset with compatible periodic-
ity either {x~+N1. nz[n2 ----- 1 , . . . , N 2 - 1} or, equiva-
lently { X i + N 2 . , , l] n l = 1 , . . . , N~- I} , and both
subsets only have one common point x~ (by com-
patible, it is meant that the periodicity of the sub-
sets divides the periodicity of the set). This allows
a rearrangement of the input (periodic) vector into
a matrix with a periodicity in both dimensions
(rows and columns), both periodicities being com-
patible with the initial one (see Fig. 6).

5.1. Basic tools

FFTs without twiddle factors are all based on
the same mapping, which is explained in Section
5.1.1. This mapping turns the original transform
into sets of small DFTs, the lengths of which are

I01112131, 1 1617181911011111211311 J
LL

i
0.)Good's mopping 0 3 6 9 12

I 5 8 11 14 2

10 13 1 4 7

b)CRT mopping 0 6 12 3 g

10 1 7 13 /.

5 11 2 8 14

Fig. 6. The prime factor mappings for N = 15.

Signal Processing

tutorial on fast Fourier transforms

coprime. It is therefore necessary to find efficient
ways of computing these short-length DFTs. Sec-
tion 5.1.2 explains how to turn them into cyclic
convolutions for which efficient algorithms are
described in Section 5.1.3.

5.1.1. The mapping o f Good [32]
Performing the selection of subsets described in

the introduction of Section 5 for any index i is
equivalent to writing i as

i = (n 1 • N 2 q - n 2 • N 1) N ,

nx---- 1 , . . . , N I - 1 , n 2 = 1 , . . . , N 2 - 1 ,

N = N~ N2, (32)

and, since N1 and N2 are coprime, this mapping
is easily seen to be one to one. (It is obvious from
the right-hand side of (32) that all congruences
modulo N~ are obtained for a given congruence
modulo N2, and vice versa.)

This mapping is another arrangement of the
'Chinese Remainder Theorem' mapping, which
can be explained as follows on index k.

The Chinese Remainder Theorem (CRT) states
that if we know the residue of some number k
modulo two relatively prime numbers N~ and N2,
it is possible to reconstruct (k)NIN: as follows:

Let (k)N, = k~ and (k) ~ = k2. Then the value of
k mod N (N = N~ • N2) can be found by

k = (N~ t I k2 + N2t2k,)N, (33)

tl being the multiplicative inverse of N1 mod N2,
that is (tl, N~)N~=I, and t2 the multiplicative
inverse of N2 rood N1 (these inverses always exist,
since N1 and N2 are coprime: (N1, N2) = 1).

Taking into account these two mappings in the
definition of the DFT (3) leads to

NI--1 N 2 - 1

XNitlk2+N2t2kl = ~ ~ XnlN2+n2NI
n l~O r12=O

W(~v, N2 + N'":)~ N d' kz + N2'2k O, (35)

but
N 2 W N = WN, (36)

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

and

wN~,~ W<~ ~'#~, = WN,, (37)

which implies
NI--1 N2--1

XNlt lk2+N2t2k 1 -~- ~ ~, XnIN2+n2N 1
nl=O n2=O

w"'k~ w "~k~ (38)
X , , N1 . . N 2 ,

which, with

X/rll,tl2 ~ XrlIN2+rl2N 1

and

Xtkl,k2 = X Nittk2+ N2t2k I ,

leads to a formulation of the initial DFT into a
true bidimensional transform:

Nt--1 N2-1
Xtklk2 = ~-~ E ?,el w n l k l w n2k2 (39) ~-rllrl 2 ' ' N1 "" N2 •

rll=O n2=0

An illustration of the prime factor mapping is
given in Fig. 6(a) for the length N = 15 - 3-5, and
Fig. 6(b) provides the CRT mapping. Note that
these mappings, which were provided for a fac-
torization of N into two coprime numbers easily
generalizes to more factors, and that reversing the
roles of N~ and N2 results in a transposition of
the matrices of Fig. 6.

5.1.2. D F T computation as a convolution
With the aid of Good's mapping, the DFT

computation is now reduced to that of a multi-
dimensional DFT, with the characteristic that
the lengths along each dimension are coprime.
Furthermore, supposing that these lengths are
small is quite reasonable, since Good's mapping
can provide a full multi-dimensional factorization
when N is highly composite.

The question is now to find the best way of
computing this M-D DFT and these small-length
DFTs. A first step in that direction was obtained
by Rader [43] who showed that a DFT of prime
length could be obtained as the result of a cyclic

275

convolution: Let us rewrite (1) for a prime length
N = 5 :

XI 1 W 1 W 5 2 W 3 W 4] Xl

x 2 - - 1 wq (40)
X3 1 W 3 W51 W 4 W2 / x3
X, 1 W~ W 3 W 2 W~J x4

Obviously, removing the first column and first
row of the matrix will not change the problem,
since they do not involve any multiplication.
Furthermore, careful examination of the remaining
part of the matrix shows that each column and
each row involves every possible power of Ws,
which is the first condition to be met for this part
of the DFT to become a cyclic convolution. Let
us now permute the last two rows and last two
columns of the reduced matrix:

ix1 rw w w4 w l[Xl]
xq=/w w: / x2 (41) / / W4 wq
x u

Equation (41) is then a cyclic correlation (or a
convolution with the reversed sequence).

It turns out that this a general result.
It is well-known in number theory that the set

of numbers lower than a prime p admits some
primitive elements g such that the successive
powers of g modulo p generate all the elements
of the set. In the example above, p = 5, g = 2, and
we observe that

gO = 1, g l = 2, g 2 = 4, 43 = 8 = 3 (mod 5).

The above result (41) is only the writing of the
g. DFT in terms of the successive powers of w e.

p--1
X'k= ~ xiW~ k, k - - l , . . . , p - 1 , (42)

i=1

(ik)p = ((i)p. (k)p)p - - ((gU,)p(gOk)p)p,
p--2

Xgo,= Y~ Xg-," (Wg) "'+v', v i=0 , p - E ,
u i ~ 0

(43)
VoL 19, No. 4, April 1990

276 P. Duhamel, M. Vetterli / A tutorial on fas t Fourier transforms

and the length-p DFT turns out to be a length
(p - 1) cyclic correlation:

{X~} = {Xg} * { W~}. (44)

5.1.3. C o m p u t a t i o n o f the cyclic convolut ion
Of course (43) has changed the problem, but it

is not solved yet. And in fact, Rader 's result was
considered as a curiosity up to the moment when
Winograd [55] obtained some new results on the
computat ion of cyclic convolution.

And, again, this was obtained by application of
the CRT. In fact, the CRT, as explained in (33),
(34) can be rewritten in the polynomial domain:
if we know the residues of some polynomial K (z)
modulo two mutually prime polynomials

(K(z)) v . (z) = KI(Z),
(P , (z) , P2(z)) = 1,

(K(z))v2(~) = K2(z) ,
(45)

we shall be able to obtain

K (z) mod PI(Z) • P2(z) = P (z)

by a procedure similar to that of (33).
This fact will be used twice in order to obtain

Winograd's method of computing cyclic con-
volutions:

A first application of the CRT is the breaking
of the cyclic convolution into a set of polynomial
products. For more convenience, let us first state
(44) in polynomial notation:

X ' (z) = x ' (z) , w(z) mod (z p-' - 1). (46)

Now, since p - 1 is not prime (it is at least even),
z p - ' - 1 can be factorized at least as

z v - ' - 1 = (z (P- ') /2+ 1) (z (p - ') / 2 - 1), (47)

and possibly further, depending on the value of p.
These polynomial factors are known and named
cyclotomic polynomials ¢q(Z) . They provide the
full factorization of any z N - 1:

z N - 1 = rI q~q(Z). (48)
q[N

A useful property of these cyclotomic poly-
nomials is that the roots of (pq(z) are all the qth
Signal Processing

primitive roots of unity, hence degree {~0q(Z)}=
(p (q), which is by definition the number of integers
lower than q and coprime with it. Namely, if
Wq = e -j2=/q, the roots of q~q(Z) are { W~, [(r, q) = 1}.

As an example, for p = 5, z p- ' - 1 = z 4 - 1,

z 4 - 1 = qh(z) • ~o2(z) • ~04(z)

= (z - 1) (z+ 1)(z2+ 1).

The first use of the CRT to compute the cyclic
convolution (46) is then as follows:

(1) compute x'q(z) = x ' (z) mod q~q(z),
q l p - 1 ,

Wq(Z) = w (z) mod ~Oq(Z),

(2) then obtain

X'q(Z) : X'q(Z) . w'q(z) mod q~q(z)

(3) and reconstruct X ' (z) mod z p - ' - 1 from the
polynomials X'q (z) using the CRT.

Let us apply this procedure to our simple
example:

Xt (Z) = X 1 -[- X2Z "P X4 Z2 "~ X3 Z3,

w(z) : wl+ w ~ + W~z~+ W~z 3.

Step 1.

W4(Z) = W(Z) mod ~4(Z)

= (w ~ - w~') + (w ~ - w~)z ,

w2(z)

wl(z)

x;(z)
x~(z)
x~(z)

Step 2.

= w (z) mod ~p2(z)

= (w~ + w~" - w~ - w~) ,

= w (z) rood qh(z)

= (w ~ + w 4 + w ~ + w~)

= (Xl - x4) + (x2- x3)z,

= (X l ' ~ - X 4 - - X 2 - - X 3) ,

-7- (XI"~- X4"~- X2"~- X3).

[= - 1] ,

X ' 4 (z) = x ' 4 (z) " w4(z) mod ~04(z),
X ~ (z) = x ~ (z) " w2(z) mod ~p2(z),
X ~ (z) : x ~ (z) ° Wl(Z) mod qh(z).

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 277

Step 3.

X ' (z) = [X;(z)(1 + z) / 2 + X~(z)(1 - z) /2]

x (1 + z2)/2+ X~(z)(1 - z2)/2.

Note that all the coefficients of Wq(Z) are either
real or purely imaginary. This is a general property
due to the symmetries of the successive powers
of Wp.

The only missing tool needed to complete the
procedure now is the algorithm to compute the
polynomial products modulo the cyclotomic fac-
tors. Of course, a straightforward polynomial prod-
uct followed by a reduction modulo q~q(z) would
be applicable, but a much more efficient algorithm
can be obtained by a second application of the
CRT in the field of polynomials.

It is already well-known that knowing the values
of an Nth degree polynomial at N + 1 different
points can provide the value of the same poly-
nomial anywhere else by Lagrange interpolation.
The CRT provides an analogous way of obtaining
its coefficients.

Let us first recall the equation to be solved:

X'q(z) = x'q(z). Wq(Z) mod ~Oq(Z), (49)

with

deg ~pq(Z) = q~(q).

Since ~q(Z) is irreducible, the CRT cannot be
used directly. Instead, we choose to evaluate the
product X q(z) = X'q(Z) . wq(z) modulo an auxiliary
polynomial A(z) of degree greater than the degree
of the product. This auxiliary polynomial will be
chosen to be fully factorizable. The CRT hence
applies, providing

X ~ (z) = x'~(z) . w q (2) ,

since the mod A(z) is totally artificial, and the
reduction modulo ~q(z) will be performed after-
wards.

The procedure is then as follows.
Let us evaluate both X'q(Z) and Wq(Z) modulo a

number of different monomials of the form

(z - a ,) , i = l , . . . , 2 q ~ (q) - l .

Then compute

X q(ai) = Xiq(ai)wq(ai), i= 1 , . . . ,2~p(q)- 1.
(50)

The CRT then provides a way of obtaining

X~(z) mod A(z), (51)

with
2q~(q)--I

A (z) = I] (z - a i) ,
/=1

which is equal to X~(z) itself, since

deg Xq(z) = 2tp(q) - 2. (52)

Reduction of X'~(z) mod ~pz(z) will then provide
the desired result.

In practical cases, the points {a~} will be chosen
in such a way that the evaluation of Wq(a~) involves
only additions {i.e.: a~ =0 , +1).

This limits the degree of the polynomials whose
products can be computed by this method. Other
suboptimal methods exist [12], but are nevertheless
based on the same kind of approach (the 'dot
products' (50) become polynomial products of
lower degree, but the overall structure remains
identical).

All this seems fairly complicated, but results
in extremely efficient algorithms that have a low
number of operations. The full derivation of
our example (p = 5) then provides the following
algorithm:

5 point DFT:

u = 2"rr/5,

(reduction modulo z 2 - 1 :)

t l=XlWX4 , t 2 = x 2 + x 3 ,

(reduction modulo z 2 + 1 :)

t3=Xl--X4, / 4 = X 3 - - X 2 ,

t5 = t~ + t 2 (reduction modulo z - 1),

t 6 = t I - - t 2 (reduction modulo z + 1),

(X~(z) = x~(z) . Wl(Z) mod ~ol(z):)

ml = [(cos u + c o s 2u)/2]ts ,

(X~(z) = x'2(z) . w2(z) rood ~2(z):)
Vol. 19, No. 4, April 1990

2 7 8

m 2= [(COS U--COS 2U)/2]t6,

polynomial product modulo z 2 + 1,

X'4(z) = x'4(zj) . w,(z) mod ~0,(z):)

m 3 = - j (s in u)(t3 + t4),

m 4 = - j (s in u +sin 2u)t4,

ms =j(sin u - s i n 2u)t3,

,5'1 =

S 2 =

P Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

D = diag[1, ((cos u + cos 2u) /2 - 1),

(cos u - c o s 2u)/2, - j sin u,

- j (s in u + sin 2u),

j(sin u - sin 2u)],

"$'3 :

S 4 ~---

S5 = S3 - - m 2 ,

Xo = xo + ts,

X 1 = $ 4 + s 1 ,

X 2 - ~ S5-F S2,

X 3 = s 5 - $ 2 ,

X 4 = S 4 - - S 1 o

??13 - - m 4 ,

m3+ ms,

(reconstruction following Step 3, the
1/2 terms have been included into the
polynomial products:)

xo+ ml,

S3 + m 2 ,

When applied to complex data, this algorithm
requires 10 real multiplications and 34 real addi-
tions, vs. 48 real multiplications and 88 real addi-
tions for a straightforward algorithm (matrix-
vector product).

In matrix form, and slightly changed, this
algorithm may be written as follows:

(X L X ~ , . . . , X ~) ~

= C. D . B. (Xo, Xl , x4) T, (53) [i o0o0] 1 1 1 - 1
1 - 1 1 0 ,
1 - 1 - 1 0 -
1 1 - 1 1

with

C =

B =

Signal Processing

1 1 1 1 1
0 1 1 1 1
0 1 -1 -1 1
0 1 -1 1 -1
0 0 -1 1 0
0 1 0 0 1

By construction, D is a diagonal matrix, where
all multiplications are grouped, while C and B
only involve additions (they correspond to the
reductions and reconstructions in the applications
of the CRT).

It is easily seen that this structure is a general
property of the short-length DFTs based on CRT:
all multiplications are 'nested' at the center of the
algorithms. By construction, also, D has dimen-
sion Mp, which is the number of multiplications
required for computing the DFT, some of them
being trivial (at least one, needed for the computa-
tion of Xo). In fact, using such a formulation, we
have Mp/> p. This notation looks awkward, at first
glance (why include trivial multiplications in the
total number?), but Section 5.3 will show that it is
necessary in order to evaluate the number of multi-
plications in the Winograd FFT.

It can also be proven that the methods explained
in this section are essentially the only ways of
obtaining FFTs with the minimum number of
multiplications. In fact, this gives the optimum
structure, mathematically speaking. These meth-
ods always provide a number of multiplications
lower than twice the length of the DFT:

MNL<2N1.

This shows the linear complexity of the DFT in
this case.

5.2. Prime factor algorithms [95]

Let us now come back to the initial problem of
this section: the computation of the bidimensional

P. Duhamel, M. Vetterli / A

transform given in (39). Rearranging the data in
matrix form, of size NtN2, and F~ (resp. F2) denot-
ing the Fourier matrix of size N~ (resp. N2), results
in the following notation, often used in the context
of image processing:

X = F2xF T. (54)

Performing the FFT algorithm separately along
each dimension results in the so-called prime factor
algorithm (PFA).

To summarize, PFA makes use of Good's
mapping (Section 5.1.1) to convert the length
N] • N2 1-D DFT into a size N1 x N2 2-D DFT,
and then computes this 2-D DFT in a row-column
fashion, using the most efficient algorithms along
each dimension.

Of course, this applies recursively to more than
two factors, the constraints being that they must
be mutually coprime. Nevertheless, this constraint
implies the availability of a whole set of efficient
small DFTs (Ni = 2, 3, 4, 5, 7, 8, 16 is already suf-
ficient to provide a dense set of feasible lengths).

A graphical display of PFA for length N = 15
is given in Fig. 7. Since there are N2 applications
of length N~ FFT and N 1 applications of length
N2 FFTs, the computational costs are as follows:

M N I N 2 = N1M2+ NeM1,
(55)

ANON2 = N~A2+ N2A~,

or, equivalently, the number of operations to be
performed per output point is the sum of the

tutorial on fast Fourier transforms 279

individual number of operations in each short
algorithm: let mN and aN be these reduced
numbers

mN, N2N3N4 = m N l + mN2+ mN3+ mN 4,
(56)

aN, N2N3N, = aN,+aN2+aN3+aN,.
An evaluation of these figures is provided in

Tables 1 and 2.

5.3. Winograd' s Fourier transform algorithm
(WFFA) [56]

Winograd's FFT makes full use of all the tools
explained in Section 5.1.

Good's mapping is used to convert the length
N1 " N2 1-D DFT into a length N1 x N 2 2-D DFT,
and the intimate structure of the small-length
algorithms is used to nest all the multiplications
at the center of the overall algorithm as follows.

Reporting (53) into (54) results in

X = CID,B,xBT:D2C T. (57)

Since C and B do not involve any multiplication,
the matrix (B]xB T) is obtained by only adding
properly chosen input elements. The resulting
matrix now has to be multiplied on the left and
on the right by diagonal matrices D~ and DE, of
respective dimensions M~ and M2. Let M~ and
M~ be the numbers of trivial multiplications
involved.

Premultiplying by the diagonal matrix D,
multiplies each row by some constant, while

x12,
x%

x3, x 6 ~ - ~

xoa

• DFT

x s . 3
I

Xloe

, X4

• • , X14

• , X 2

• X11

• X 5

Fig. 7. Schematic view of PFA for N = 15.
Vol. 19, No. 4, April 1990

280 P. Duhamel, M. Vetterli / A tutorial on fas t Fourier transforms

xlO " 7 / "1

input add itions
N=3

- j
input additions

N=5

I X11

Xl 4

X 4

t
ioint wise output additions output additions
multiplication N = 5 N = 3

Fig. 8. Schematic view of WFTA for N = 15.

postmultiplying does it for each column. Merging
both multiplications leads to a total number of

MNIN2 = MN, " MN2 (58)

out of which M ' N," M N2 are trivial.
Pre- and postmultiplying by C1 and C2 T will then

complete the algorithm.
A graphical display of WFTA for length N = 15

is given in Fig. 8, which clearly shows that this
algorithm cannot be performed in place.

The number of additions is more intricate to
obtain.

Let us consider the pictorial representation of
(57) as given in Fig. 8.

Let C~ involve A~ additions (output additions)
and B1 involve A~ additions (input additions).
(Which means that there exists an algorithm for
multiplying C~ by some vector involving A] addi-
tions. This is different from the number of a: l ' s in
the matrix--see the p = 5 example.)

Under these conditions, obtaining xB2 will cost
A22. N~ additions, B~(xB T) will cost AI 2. M2 addi-
tions, CI(DIBIXB T) will cost A] • M2 additions and
(C~DIBlXB T) C2 will cost A2 ~- N1 additions, which
gives a total of

AN~N: = N~A2 + M 2 A ' . (59)
This formula is not symmetric in N~ and N2.

Hence, it is possible to interchange N~ and N2,
which does not change the number of multiplica-
Signal Processing

tions. This is used to minimize the number of
additions.

Since M2/> N2, it is clear that WFTA will always
require at least as many additions as PFA, while
it will always need fewer multiplications, as long
as optimum short length DFTs are used. The
demonstration is as follows.

Let

Ml=Nl+e l , M2=N2+e2,

MpFA = NIM2 + N2M1

= 2N1N2 + Nle2+ N2e~,

MWFTA = M1 " M2

= NIN2+ ele2+ Nle2+ N2el.

Since el and e2 are strictly smaller than N~ and
N2 in optimum short-length DFTs, we have, as a
result

MWFTA < M p F A .

Note that this result is not true if suboptimal
short-length FFTs are used. The numbers of
operations to be performed per output point (to
be compared with (56)) are as follows in the
WFTA:

mNIN2= mN, • MN2 , a~,N2= aN2+ rnN2aN1.
(60)

These numbers are given in Tables 1 and 2.

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

Note that the number of additions in the WFTA
was reduced later by Nussbaumer with a scheme
called 'split nesting' [12], leading to the algorithm
with the least known number of operations (multi-
plications + additions).

5.4. Other members of this class [38]

PFA and WFTA are seen to be both described
by the following equation:

X = CIDIB1xBT2D2CT2. (61)

Each of them is obtained by different ordering
of the matrix products.
- - T h e PFA multiplies (C1DIB1)x first, and then
the result is postmultiplied by (B~D2C'~).
- - T h e WFTA starts with xB~, then (D1 × D2), then
C~ and finally C~.

Nevertheless, these are not the only ways of
obtaining X: C and B can be factorized as two
matrices each, to fully describe the way the
algorithms are implemented. Taking this fact into
account allows a great number of different
algorithms to be obtained. Johnson and Burrus
[38] systematically investigated this whole class of
algorithms, obtaining interesting results, such as
- - some WFTA-type algorithms, with reduced
number of additions.
--algori thms with lower number of multiplications
than both PFA and WFTA in the case where the
short-length algorithms are not optimum.

5.5. Remarks on FFTs without twiddle factors

It is easily seen that members of this class of
algorithms differ fundamentally from FFTs with
twiddle factors.

Both classes of algorithms are based on a divide
and conquer strategy, but the mapping used to
eliminate the twiddle factors introduced strong
constraints on the type of lengths that were possible
with Good's mapping.

Due to those constraints, the elaboration of
efficient FFTs based on Good 's mapping required
considerable work on the structure of the short
FFTs. This resulted in a better understanding of

281

the mathematical structure of the problem, and a
better idea of what was feasible and what was not.

This new understanding has been applied to the
study of FFTs with twiddle factors. In this study,
issues, such as optimality, distance (in cost) of the
practical algorithms from the best possible ones
and the structural properties of the algorithms,
have been prominent in the recent evolution of the
field of algorithms.

6. State of the art

FFT algorithms have now reached a great matur-
ity, at least in the 1-D case, and it is now possible
to make strong statements about what eventual
improvements are feasible and what are not.

In fact, lower bounds on the number of multipli-
cations necessary to compute a DFT of given
length can be obtained by using the techniques
described in Section 5.1.

6.1. Multiplicative complexity

Let us first consider the FFTs with lengths that
are powers of two.

Winograd [57] was first able to obtain a lower
bound on the number of complex multiplications
necessary to compute length 2" DFTs. This work
was then refined in [28], which provided realizable
lower bounds, with the following multiplicative
complexity:

/~¢[DFT 2"] = 2 "+1 - 2n 2 + 4n - 8. (62)

This means that there will never exist any
algorithm computing a length 2" DFT with a lower
number of non-trivial complex multiplications
than the one in (62).

Furthermore, since the demonstration is con-
structive [28], this optimum algorithm is known.
Unfortunately, it is of no practical use for lengths
greater than 64 (it involves much too many
additions).

The lower part of Fig. 9 shows the variation
of this lower bound and of the number of com-
plex multiplications required by some practical

Vol. 19, NO. 4, April 1990

282 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

M/N
10.0 -

9,0-

8.0-

7.0-

6.0-

5.0-

Z..0-

3.0-

2.0-

1.0-

0.0

Mr

n =log 2 N

r3

O

A

4.

radix 2
radix 4
sp l i t . rad ix
lower bound

Fig. 9. Number of non-trivial real or complex multiplications per output point.

algorithms (radix 2, radix 4, SRFT). It is clearly
seen that SRFFT follows this lower bound up to
N = 64, and is fairly close for N = 128. Divergence
is quite fast afterwards.

It is also possible to obtain a realizable lower
bound on the number of real multiplications
[35, 36].

/Zr[DF'F 2 n] = 2 n÷2 - 2n 2 - 2n +4. (63)

The variation of this bound, together with that
of the number of real multiplications required by
some practical algorithms is provided on the upper
part of Fig. 9. Once again, this realizable lower
bound is of no practical use above a certain limit.
But, this time, the limit is much lower: SRFFT,
together with radix 4, meets the lower bound on
the number of real multiplications up to N = 16,
which is also the last point where one can use an
optimal polynomial product algorithm (modulo
U2-F1) which is still practical. (N = 3 2 would
require an optimal product modulo u4+1 that
requires a large number of additions).
Signal Processing

It was also shown [31, 76] that all of the three
following algorithms: optimum algorithm mini-
mizing complex multiplications, optimum algo-
rithm minimizing real multiplications and SRFFT,
had exactly the same structure. They performed
the decomposition into polynomial products
exactly in the same manner, and they differ only
in the way the polynomial products are computed.

Another interesting remark is as follows: the
same number of multiplications as in SRFFT could
also be obtained by so-called 'real factor radix-2
FFTs' [24, 42, 44] (which were, on another respect,
somewhat numerically ill-conditioned and needed
about 20% more additions). They were obtained
by making use of some computational trick to
replace the complex twiddle factors by purely real
or purely imaginary ones. Now, the question is: is
it possible to do the same kind of thing with radix
4, or even SRFFT? Such a result would provide
algorithms with still fewer operations. The knowl-
edge of the lower bound tells us that it is impossible
since, for some points (N = 16, for example) this

P. Duhamel, M. Vetterli / A

would produce an algorithm with better perform-
ance than the lower bound. The challenge of event-
ually improving SRFFT is now as follows:

Comparison of SRFFT with/x¢[DFT 2"] tells us
that no algorithm using complex multiplications
will be able to improve significantly SRFFT for
lengths < 512. Furthermore, the trick allowing real
factor algorithms to be obtained cannot be applied
to radices greater than 2 (or at least not in the
same manner).

The above discussion thus shows that there
remain very few approaches (yet unknown) that
could eventually improve the best known length
2 n FFT.

And what is the situation for FFTs based on
Good's mapping?

Realizable lower bounds are not so easily
obtained. For a given length N = [I Ni, they
involve a fairly complicated number theoretic
function [8], and simple analytical expressions
cannot be obtained. Nevertheless, programs can
be written to compute /zr{DFTN}, and are given
in [36]. Table 3 provides numerical values for a
number of lengths of interest.

Careful examination of Table 3 provides a num-
ber of interesting conclusions.

tutorial on fast Fourier transforms 283

First, one can see that, for comparable lengths
(since SRFFT and WFTA cannot exist for the
same lengths), a classification depending on the
efficiency is as follows: WFTA always requires
the lowest number of multiplications, followed by
PFA, and followed by SRFFT, all fixed or mixed-
radix FFTs being next. Nevertheless, none of these
algorithms attains the lower bound, except for very
small lengths.

Another remark is that the number of multiplica-
tions required by WFTA is always smaller than
the lower bound for the corresponding length that
is a power of 2. This means on the one hand that
transform lengths for which Good's mapping can
be applied are well suited for a reduction in the
number of multiplications, and on the other hand,
that they are very efficiently computed by WFTA,
from this point of view.

And this states the problem of the relative
efficiencies of these algorithms: How close are they
to their respective lower bound?

The last column of Table 3 shows that the relative
efficiency of SRFFT decreases almost linearly with
the length (it requires about twice the minimum
number of multiplications for N = 2048), while
the relative efficiency of WFTA remains almost

Table 3

Practical algorithms vs. lower bounds (number of non-trivial real multiplications for FFTs on real data)

Lower bound SRFFT WFTA
N SRFFT WFTA (L.B.) L.B. L.B.

16 20 20 1
30 68 56 1.21

32 68 64 1.06
60 136 112 1.21

64 196 168 1.16
120 276 240 1.15

128 516 396 1.3
240 632 548 1.15

256 1284 876 1.47
504 1572 1320 1.19

512 3076 1864 1.64
1008 3548 2844 1.25

1024 7172 3872 1.85
2048 16388 7876 2.08

2520 9492 7440 1.27

Vol. 19, NO. 4, April 1990

P. Duhamel, M. Vetterli / A tutorial on fas t Fourier transforms

constant for all the lengths of interest (it would
not be the same result for much greater N) . Lower
bounds for Winograd-type lengths are also seen to
be smaller than for the corresponding power of 2
lengths.

All these considerations result in the following
conclusion: lengths for which Good's mapping is
applicable allow a greater reduction of the number
of multiplications (which is due directly to the
mathematical structure of the problem). And,
furthermore, they allow a greater relative effi-
ciency of the actual algorithms vs. the lower bounds
(and this is due indirectly to the mathematical
structure).

6.2. Additive complexity

Nevertheless, the situation is not the same as
regards the number of additions.

Most of the work on optimality was concerned
with the number of multiplications. Concerning
the number of additions, one can distinguish
between additions due to the complex multiplica-
tions and the ones due to the butterflies. For
the case N = 2 " , it was shown in [106, 110], that
the latter number which is achieved in actual
algorithms is also the optimum. Differences
between the various algorithms is thus only due to
varying numbers of complex multiplications. As a
conclusion, one can see that the only way to
decrease the number of additions is to decrease
the number of true complex multiplications (which
is close to the lower bound).

Figure 10 gives the variation of the total number
of operations (multiplications plus additions) for
these algorithms, showing that SRFFT has the
lowest operation count. Furthermore, its more
regular structure results in faster implementations.

Note that all the numbers given here concern
the initial versions of SRFFT, PFA and WFTA,
for which FORTRAN programs are available. It
is nevertheless possible to improve the number of
additions in WFTA by using the so-called split-
nesting technique [12] (which is used in Fig. 10),
and the number of multiplications of PFA by using
Signal Processing

(add +mul)/N PFA
3

. ~ , / - . , - - - - Split -

FTA

40-'

35-

30-

25-

20-

15-

10

:t

284

, , : Log N

radix

Fig. 10. Total number of operations per output point for
different algorithms.

small-length FFTs with scaled output [12], result-
ing in an overall scaled DFT.

As a conclusion, one can realize that we now
have practical algorithms (mainly WFTA and
SRFFT) that follow the mathematical structure of
the problem of computing the DFT with the
minimum number of multiplications, as well as a
knowledge of their degree of suboptimality.

7. Structural considerations

This section is devoted to some points that are
important in the comparison of different FFT
algorithms, namely easy obtention of inverse FFT,
in-place computation, regularity of the algorithm,
quantization noise and parallelization, all of which
are related to the structure of the algorithms.

7.1. Inverse F F T

FFTs are often used regardless of their
'frequency' interpretation for computing FIR
filtering in blocks, which achieves a reduction in
arithmetic complexity compared to the direct

P. Duhamel, M. Vetterli / A

algorithm. In that case, the forward FFT has to be
followed, after pointwise multiplication of the
result, by an inverse FFT. It is of course possible
to rewrite a program along the same lines as the
forward one, or to reorder the outputs of a forward
FFT. A simpler way of computing an inverse FFT
by using a forward FFT program is given (or
reminded) in [99], where it is shown that, if CALL
FFT (XR, XI, N) computes a forward FFT of the
sequence {XR(i) + jXI(i) I i = 0 , . . . , N - 1}, CALL
FFT(XI, XR, N) will compute an inverse FFT of
the same sequence, whatever the algorithm is.
Thus, all FFT algorithms on complex data are
equivalent in that sense.

7.2. In-place computation

Another point in the comparison of algorithms
is the memory requirement: most algorithms
(Cooley-Tukey, SRFFT, PFA) allow in-place
computation (no auxiliary storage of size depend-
ing on N is necessary), while WFTA does not.
And this may be a drawback for WFTA when
applied to rather large sequences.

Cooley-Tukey and split-radix FFTs also allow
rather compact programs [4, 113], the size of which
is independent of the length of the FFT to be
computed.

On the contrary, PFA and WFTA will require
longer and longer programs when the upper limit
on the possible lengths is increased: an 8-module
program (n = 2, 4, 8, 16, 3, 5, 7, 9) allows to obtain
a rather dense set of lengths up to N = 5040 only.
Longer transforms can only be obtained either by
the use of rather 'exotic' modules that can be found
in [37], or by some kind of mixture between
Cooley-Tukey FFT (or SRFFT) and PFA.

7.3. Regularity, parallelism

Regularity has been discussed for nearly all
algorithms when they were described. Let us recall
here that Cooley-Tukey FFT (CTFFT) is very
regular (based on repetitive use of a few modules).
SRFFT follows (repetitive use of very few modules
in a slightly more involved manner). Then, PFA

tutorial on fast Fourier transforms 2 8 5

requires repetitive use (more intricate than
CTFFT) of more modules, and finally WFTA
requires some combining of parts of these modules,
which means that, even if it has some regularity,
this regularity is more hidden

Let us point out also that the regularity of an
algorithm cannot really be seen from its flowgraph.
The equations describing the algorithm, as given in
(13) or (39) do not fully define the implementa-
tions, which is partially done in the flowgraph. The
reordering of the nodes of a flowgraph may provide
a more regular one (the classical radix 2 and 4
CTFFT can be reordered into a constant geometry
algorithm. See also [30] for SRFFT).

Parallelization of CTFFT and SRFFT is fairly
easy, since the small modules are applied on sets
of data that are separable and contiguous, while
it is slightly more difficult with PFA, where the
data required by each module are not in contiguous
locations.

Finally, let us point out that mathematical tools
such as tensor products can be used to work on
the structure of the FFT algorithms [50, 101], since
the structure of the algorithm reflects the mathe-
matical structure of the underlying problem.

7.4. Quantization noise

Roundoff noise generated by finite precision
operations inside the FFT algorithm is also of
importance. Of course, fixed point implementa-
tions of CTFFT for lengths 2 n were studied first,
and it was shown that the error-to-signal ratio of
the FFT process increases as ~ (which means
1/2 bit per stage) [117]. SRFFT and radix-4
algorithms were also reported to generate less
roundoff than radix-2 [102].

Although the WFTA requires fewer multiplica-
tions than the CTFFT (hence has less noise sour-
ces), it was soon recognized that proper scaling
was difficult to include in the algorithm, and that
the resulting noise-to-signal ratio was higher. It is
usually thought that two more bits are necessary
for representing data in the WFTA to give an error
of the same order as CTFFT (at least for practical

Vol. 19, No. 4, April 1990

286

lengths). A floating point analysis of PFA is
provided in [104].

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

8. Particular cases and related transforms

The previous sections have been devoted exclus-
ively to the computation of the matrix-vector prod-
uct involving the Fourier matrix. In particular, no
assumption has been made on the input or output
vector. In the following subsections, restrictions
will be put on these vectors, showing how the
previously described algorithms can be applied
when the input is e.g. real valued, or when only a
part of the output is desired. Then, transforms
closely related to the DFT will be discussed as well.

8.1. DFT algorithms for real data

Very often in applications, the vector to be trans-
formed is made up of real data. The transformed
vector then has an hermitian symmetry, that is,

X N - k = X~k, (64)

as can be seen from the definition of the DFT.
Thus, Xo is real, and when N is even, XN/2 is real
as well. That is, the N input values map to 2 real
and N / 2 - 1 complex conjugate values when N is
even, or 1 real and (N - 1) / 2 complex conjugate
values when N is odd (which leaves the number
of free variables unchanged).

This redundancy in both input and output vec-
tors can be exploited in the FFT algorithms in
order to reduce the complexity and storage by a
factor of 2. That the complexity should be half can
be shown by the following argument. If one takes
a real DFT of the real and imaginary parts of a
complex vector separately, then 2N additions are
sufficient in order to obtain the result of the com-
plex DFT [3]. Therefore, the goal is to obtain a
real DFT that uses half as many multiplications
and less than half as many additions. If one could
do better, then it would improve the complex FFT
as well by the above construction.

For example, take the DIF SRFFT algorithm
(28). First, X 2 k requires a half length DFT on real
Signal Processing

data, and thus the algorithm can be reiterated.
Then, because of the hermitian symmetry property
(64):

X4k+l = X4(N /4_k_ l)+3 , (65)

and therefore (28c) is redundant and only one DFT
of size N/4 on complex data needs to be evaluated
for (28b). Counting operations, this algorithm
requires exactly half as many multiplications and
slightly less than half as many additions as its
complex counterpart, or [30]

M(R-DFT(2m)) = 2 n - ~ (n - 3) + 2 , (66)

A(R-DFT(2m)) = 2"-~(3n - 5) + 4 . (67)

Thus, the goal for the real DFT stated earlier
has been achieved. Similar algorithms have been
developed for radix-2 and radix-4 FFTs as well.
Note that even if DIF algorithms are more easily
explained, it turns out that DIT ones have a better
structure when applied to real data [29, 65, 77].

In the PFA case, one has to evaluate a multi-
dimensional DFT on real input. Because the PFA
is a row-column algorithm, data become hermitian
after the first 1-D FFTs, hence an accounting has
to be made of the real and conjugate parts so as
to divide the complexity by 2 [77]. Finally, in the
WFTA case, the input addition matrix and the
diagonal matrix are real, and the output addition
matrix has complex conjugate rows, showing again
the saving of 50% when the input is real. Note,
however, that these algorithms generally have a
more involved structure than their complex
counterparts (especially in the PFA and WFTA
case). Some algorithms have been developed which
are inherently 'real', like the real factor FFTs
[44, 22] or the FFCT algorithm [51], and do not
require substantial changes for real input.

A closely related question is how to transform
(or actually back transform) data that possess
hermitian symmetry. An actual algorithm is best
derived by using the transposition principle: since
the Fourier transform is unitary, its inverse is equal
to its hermitian transpose, and the required
algorithm can be obtained simply by transposing

P. Duhamel, M. Venerli / A

the flow graph of the forward transform (or by
transposing the matrix factorization of the
algorithm). Simple graph theoretic arguments
show that both the multiplicative and additive
complexity are exactly conserved.

Assume next that the input is real and that only
the real (or imaginary) part of the output is desired.
This corresponds to what has been called a cosine
(or sine) DFT, and obviously, a cosine and a sine
DFT on a real vector can be taken altogether at
the cost of a single real DFT. When only a cosine
DFT has to be computed, it turns out that
algorithms can be derived so that only half the
complexity of a real DFT (that is, the quarter of
a complex DFT) is required [30, 52], and the same
holds for the sine DFT as well [52]. Note that the
above two cases correspond to DFTs on real and
symmetric (or antisymmetric) vectors.

8.2. DFT pruning

In practice, it may happen that only a small
number of the DFT outputs are necessary, or that
only a few inputs are different from zero. Typical
cases appear in spectral analysis, interpolation and
fast convolution applications. Then, computing a
full FFT algorithm can be wasteful, and advantage
should be taken of the inputs and outputs that can
be discarded.

We will not discuss 'approximate' methods
which are based on filtering and sampling rate
changes [2, pp. 317-319] but only consider 'exact'
methods. One such algorithm is due to Goertzel
[68] which is based on the complex resonator idea.
It is very efficient if only a few outputs of the FFT
are required. A direct approach to the problem
consists in pruning the flowgraph of the complete
FFT so as to disregard redundant paths (corre-
sponding to zero inputs or unwanted outputs).
As an inspection of a flow graph quickly shows,
the achievable gains are not spectacular, mainly
because of the fact that data communication is not
local (since all arithmetic improvements in the FFT
over the DFT are achieved through data shuffling).

tutorial on fast Fourier transforms 287

More complex methods are therefore necessary
in order to achieve the gains one would expect.
Such methods lead to an order of N I0g2K
operations, where N is the transform size and K
the number of active inputs or outputs [48]. Refer-
ence [78] also provides a method combining Goert-
zel's method with shorter FFT algorithms. Note
that the problems of input and output pruning are
dual, and that algorithms for one problem can be
applied to the other by transposition.

8.3. Related transforms

Two transforms which are intimately related to
the DFT are the discrete Hartley transform (DHT)
[61, 62] and the discrete cosine transform (DCT)
[1,59]. The former has been proposed as an
alternative for the real DFT and the latter is widely
used in image processing.

The D H T is defined by
N--1

Xk = ~ xn(cos(2~rnk/ N)+sin(2~rnk/ N))
n = 0

(68)

and is self-inverse, provided that X0 is further
weighted by l/v/2. Initial claims for the DHT were
- - improved arithmetic efficiency. This was soon
recognized to be false, when compared to the real
DFT. The structures of both programs are very
similar and their arithmetic complexities are
equivalent (DHTs actually require slightly more
additions than real-valued FFTs).
--self-inverse property. It has been explained
above that the inverse real DFT on hermitian data
has exactly the same complexity as the real DFT
(by transposition). If the transposed algorithm is
not available, it can be found in [65] how to
compute the inverse of a real DFT with a real DFT
with only a minor increase in additive complexity.

Therefore, there is no computational gain in
using a DHT, and only a minor structural gain if
an inverse real DFT cannot be used.

The DCT, on the other hand, has found
numerous applications in image and video process-
ing. This has led to the proposal of several fast

Vol. 19, No. 4, April 1990

288 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

algorithms for its computation [51, 64, 70, 72]. The
DCT is defined by

N--1
Xk = ~ x, cos(2,rr(2k+l)n/4N). (69)

n - - O

A scale factor of l /x/2 for Xo has been left out
in (69), mainly because the above transform
appears as a subproblem in a length-4N real DFT
[51]. From this, the multiplicative complexity of
the DCT can be related to that of the real DFT
as [69]

/~(DCT(N))

= (/z (real-DFT(4N))

- / z (r ea l -DFT(2N))) /2 . (70)

Practical algorithms for the DCT depend as
expected, on the transform length.
- - N odd: the DCT can be mapped through permu-
tations and sign changes only into a same length
real DFT [69].
- - N even: the DCT can be mapped into a same
length real DFT plus N / 2 rotations [51]. This is
not the optimal algorithm [69, 100] but, however,
a very practical one.

Other sinusoidal transforms [71], like the dis-
crete sine transform (DST), can be mapped into
DCTs as well, with permutations and sign changes
only. The main point of this paragraph is that
DHTs, DCTs and other related sinusoidal trans-
forms can be mapped into DFTs, and therefore
one can resort to the vast and mature body of
knowledge that exists for DFTs. It is worth noting
that so far, for all sinusoidal transforms that have
been considered, a mapping into a DFT has always
produced an algorithm that is at least as efficient
as any direct factorization. And if an improvement
is ever achieved with a direct factorization, then
it could be used to improve the DFT as well. This
is the main reason why establishing equivalences
between computational problems is fruitful, since
it allows to improve the whole class when any
member can be improved.

Figure 11 shows the various ways the different
transforms are related: starting from any transform
Signal Processing

with the best known number of operations, you
may obtain by following the appropriate arrows
the corresponding transform for which the
minimum number of operations will be obtained
as well.

9. Multi-dimensional transforms

We have already seen in Sections 4 and 5 that
both types of divide and conquer strategies resulted
in a multi-dimensional transform with some par-
ticularities: in the case of the Cooley-Tukey map-
ping, some 'twiddle factors' operations had to
be performed between the treatment of both
dimensions, while in the Good's mapping, the
resulting array had dimensions which were
coprime.

Here, we shall concentrate on true 2-D FFTs
with the same size along each dimension (general-
ization to more dimensions is usually straight-
forward).

Another characteristic of the 2-D case, is the
large memory size required to store the data. It is
therefore important to work in-place. As a con-
sequence, in-place programs performing FFTs on
real data are also more important in the 2-D case,
due to this memory size problem. Furthermore, the
required memory is often so large that the data
are stored in mass memory and brought into core
memory when required, by rows or columns.
Hence, an important parameter when evaluating

EDFT

ODFT

PT 12DI

RSDFT
A

RDFT @%'- DCT
" b J;?

DHT

Fig. l l(a). Consistency of the split-radix based algorithms.
Path showing the connections between the various transforms.

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 289

1) a Complex DFT 2 n

b Real DFT 2 n

2) a Rea IDFT2 n

b DCT 2 n

3) a Complex DbT 2 ~

b O d d D F T 2 n l

4) a RealDF1 ~2 n

b DHT 2 n

5) Complex DFT 2nx2 n

6) a Real Db-T2 n

b Real symm DFT 2 n

2 real DFT's 2 n
+ 2 n÷l - 4 additions
1 real DFT 2 nd + 1 complex DFF 2 n2
+ (3.2 n-2 - 4) multiplications + (2 n +3.2n-2-n) additions
1 real DFT 2 n'l + 2 DCT's 2 n'2
+ 3.2n'1-2 additions
1 real DFF 2 n
+ (3.2n'1-2) multiplications + (3.2n'1-3) additions
1 odd Db"F 2n-l+ 1 complex DFF 2 nd
+ 2 n+l additions
2 complex DFT's 2 n-2
+ 2(3.2n2-4) multiplications + (2n+3.2n'l-8) additions
1 DHT 2 n
- 2 additions
I real DFT 2 n
+ 2 additions
3.2 n'l odd DFF 2 n'l + 1 complex DFT 2n-lx2 n'l
+ n.2 n additions
1 real symmetric DFT 2 n + 1 real antisymmetric DFT 2 n
+ (6n+10).4 n l additions
1 real symmetric DFT 2 n-1 + 1 inverse real DFT
+ 3(2n'3-1)+1 multiplications + (3n-4).2n-3+l additions

Fig. 11(b). Consistency of the split-radix based algorithms. Weighting of each connection in terms of real operations.

2-D FFT algorithms is the amount of memory calls
required for performing the algorithm.

The 2-D DFT to be computed is defined as
follows:

N--1 N--1
Xk.r E E ..,,k+jr ~-- X i , j I ~ N ,

i = 0 j ~ 0

k , r = O N - 1 . (71)

The methods for computing this transform are
distributed in four classes: row-column algorithms,
vector-radix algorithms, nested algorithms and
polynomial transform algorithms. Among them,
only the vector-radix and the polynomial trans-
form were specifically designed for the 2-D case.
We shall only give the basic principles underlying
these algorithms and refer to the literature for more
details.

9.1. Row-column algorithms

Since the DFT is separable in each dimension,
the 2-D transform given in (71) can be performed
in two steps, as was explained for the PFA.
- -Fi rs t compute N FFTs on the columns of the
data.
- - T h e n compute N FFTs on the rows of the inter-
mediate result.

Nevertheless, when considering 2-D transforms,
one should not forget that the size of the data
becomes huge quickly: a length 1024 x 1024 DFT
r e q u i r e s 10 6 words of storage, and the matrix is
therefore stored in mass memory. But, in that case,
accessing a single data is not more costly than
reading the whole block in which it is stored. An
important parameter is then the number of memory
accesses required for computing the 2-D FFT.

This is why the row-column FFT is often perfor-
med as shown in Fig. 12, by performing a matrix
transposition between the FFTs on the columns
and the FFTs on the rows, in order to allow
an access to the data by blocks. Row-column
algorithms are very easily implemented and only
require efficient 1-D FFTs, as described before,
together with a matrix transposition algorithm (for
which an efficient algorithm [84] was proposed).
Note, however, that the access problem tends to
be reduced with the availability of huge core
memories.

I. Dim I. Dim Tronsp. I
I--Pioperator i - ~ DFT DFT] !leventual~

I L J
Fig. 12. Row-column implementation of the 2-D FFT.

Vol. 19, No. 4, April 1990

290 P. Duhamel, M. Vetterli / A tutorial on fas t Fourier transforms

9.2. Vector-radix algorithms

A computationally more efficient way of per-
forming the 2-D FFT is a direct approach to the
multi-dimensional problem: the vector-radix (VR)
algorithm [91, 92, 85].

They can easily be understood through an
example: the radix-2 DIT VRFFT.

This algorithm is
decomposition:

N/2--1 N / 2 - 1
x~,,= E E

i=o j=o

based on the following

X
ul. ik+jr

2i,2j ww N / 2

N / 2 - 1 N / 2 - 1
. . .ik +jr

"l- WkN E E X 2 i + I , 2 j W N / 2
i = 0 j = 0

N/2--1 N / 2 - 1
r | Iz ik+jr

"~- W N ~, ~. X2i ,2 j+ 1 rv N / 2
i = 0 j = 0

N / 2 - 1 N/2--1
l]~[k + r "~ ~ v IXf ik +jr +
" " N .~, ~ "~'2i+1,2j+1 " " N/2 ,

i = 0 j = 0

(72t

and the redundancy in the computation of X k , r,

Xk+N/2,r, X k , r+N/2 and X k + N / 2 , r + N / 2 leads to sim-
plifications which allow to reduce the arithmetic
complexity.

This is the same approach as was used in the
Cooley-Tukey FFTs, the decomposition being
applied to both indices altogether.

Of course, higher radix decompositions or split
radix decompositions are also feasible [86], the
main difference being that the vector-radix SRFFT,
as derived in [86], although being more efficient
than the one in [90] is not the algorithm with the
lowest arithmetic complexity in that class: For the
2-D case, the best algorithm is not only a mixture
of radices 2 and 4.

(o)V-R- 2 (b)V-R- /, (c)V-S- R

Fig. 13. Decomposition performed in various vector radix
algorithms.

Figure 13 shows what kind of decompositions
are performed in the various algorithms. Due to
the fact that the VR algorithms are true generaliz-
ations of the Cooley-Tukey approach, it is easy to
realize that they will be obtained by repetitive use
of small blocks of the same type (the 'butterflies',
by extension). Figure 14 provides the basic but-
terfly for a vector radix-2 FFT, as derived by (72).
It should be clear, also, from Fig. 13 that the
complexity of these butterflies increases very
quickly with the radix: a radix-2 butterfly involves
4 inputs (it is a 2 x 2 DFT followed by some
'twiddle factors'), while VR4 and VSR butterflies
involve 16 inputs.

Note also that the only VR algorithms that have
seriously been considered all apply to lengths that
are powers of 2, although other radices are of
course feasible.

The number of read/write cycles of the whole
set of data needed to perform the various FFTs of
this class, compared to the row-column algorithm,
can be found in [86].

9.3. Nes ted algorithms

They are based on the remark that the nest-
ing property used in Winograd's algorithm, as

Signal Processing

X(k,r)÷ jx(N/2-k.N/z-r) ~ t . ~ ~ , , X lk , r)÷ j x (N-k .N- r)

X(N/2.k.r)÷ jx(N-k,N/2-r) W - ~ - ~ X[N/2+k.r)+jx(N/2-k.N-r)

X(k.N/2+rl+jxlN/2_k.N_r) W r ~. * X(N-k.N/2-rl+jxlk. N/2,r)

Wk~ ' / '~ " ~ ~ X (N/2-k, N/2-r) + j x(N/2*k. N2+r) X (N/2+ k'N/2*r)+J x(N-k' N-r) "4 :1

Fig. 14. General vector-radix 2 butterfly.

P. Duhamel, M. Vetterli / A

explained in Section 5.3 is not bound to the fact
that the lengths are coprime (this requirement was
only needed for Good ' s mapping). Hence, if the
length of the DFT allows the corresponding 1-D
DFT to be of a nested type (product of mutually
prime factors), it is possible to nest further the
multiplications, so that the overall 2-D algorithm
is also nested.

The number of multiplications thus obtained are
very low (see Table 4), but the main problem deals
with memory requirements: WFTA is not perfor-
med in-place, and since all multiplications are
nested, it requires the availability of a number of
memory locations equal to the number of multipli-
cations involved in the algorithms. For a length
1008x 1008 FFT, this amounts to about 6 . 10 6

locations. This restricts the practical usefulness of
these algorithms to small or medium length DFTs.

9.4. Polynomial transform

Polynomial transforms were first proposed by
Nussbaumer [74] for the computat ion of 2-D cyclic
convolutions. They can be seen as a generalization
of Fourier transforms in the field of polynomials.
Working in the field of polynomials resulted in a
simplification of the multiplications by the root of
unity, which was changed from a complex multi-
plication to a vector reordering. This powerful

tutorial on fast Fourier transforms 291

approach was applied in [87, 88] to the computa-
tion of 2-D DFTs as follows.

Let us consider the case where N -- 2 n, which is
the most common case.

The 2-D DFT of (71) can be represented by the
following three polynomial equations:

N--I
Xi(z) = ~ xi, j" z ~, (73a)

j = o

N - I
Xk(Z) = ~ X,(z) W ~ mod(z N - 1), (73b)

i=o

Xk, r = -~k(Z) mod(z - W~). (73c)

This set of equations can be interpreted as fol-
lows: (73a) writes each row of the data as a poly-
nomial, (73b) computes explicitly the DFTs
on the columns, while (73c) computes the DFTs
on the rows as a polynomial reduction (it is
merely the equivalent of (5). Note that the modulo
operation in (73b) is not necessary (no polynomial
involved has a degree greater than N) , but it will
allow a divide and conquer strategy on (73c).

In fact, since (z N - 1) = (z N/2- 1) (z N / 2 - 1 - 1), the
set of two equations (73b), (73c) can be separated
into two cases, depending on the parity of r:

N - 1
X I (z) = ~ Xi(z) W ~ mod(z N/2-1) ,

i--0

(74a)

Table 4
Number of non-trivial real multiplications per output point for various 2-D FFTs on real data

N x N N x N
(WFTA) (Others) R.C. VR2 VR4 VSR WFTA P.T.

3 0 x 3 0

120 x 120
240 x 240
504 x 504

1008 x 1008

2 x 2 0 0 0 0
4×4 0 0 0 0 0
8 x 8 0.5 0.375 0.375 0.375

16 × 16 1.25 1.25 0.844 0.844 0.844
32 x 32 2.125 2.062 1.43 1.435 1.336
64 x 64 3.0625 3.094 2.109 2.02 1.834

128 × 128 4.031 4.172 2.655 1.4375 2.333
256 x 256 5.015 5.273 3.48 3.28 1.82 2.833
512 x 512 6.008 6.386 3.92 2.47 3.33

1024 x 1024 7.004 7.506 4.878 4.56 3.12 3.83

Vol. 19, No. 4, April 1990

292 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms

Xk, zr = g~(Z) mod(z - 2r WN), (74b)

N - 1
g ~ (z) = Y. Xgz)W~mod(zN/:+l), (75a)

i=0

Xk~2r+~ = 3¢2(Z) mod(z - W~"~). (75b)

Equation (74) is still of the same type as the
initial one, hence the same procedure as the one
being derived will apply. Let us now concentrate
on (75) which is now recognized to be the key
aspect of the problem.

Since (2 r+ 1, N) = 1, the permutation (2 r+ 1) •
k(mod N) maps all values of k, and replacing k
with (2 r + 1) . k in (74a) will merely result in a
reordering of the outputs:

N--1
--2 X~<~r+I)(Z) = E X,(~) w ~ ~+')~

i=0

mod(z N/2 + 1), (76a)
--2 Xk(Zr+l),2r+l = Xk(Zr+l)(Z) rood(z- W~+~),

(76b)

u/2r+~ in (76b), we can replace and, since z = ,, N
W2r+l by z in (76a): N

N - I
X2¢2r+,)(Z) = Z X,(z) zik mod(zu/:+ 1),

i=0
(77)

which is exactly a polynomial transform, as defined
in [74]. This polynomial transform can be com-

puted using an FFT-type algorithm, without multi-
plications, and with only N2/2 log2 N additions.

Xk,2,+l will now be obtained by application of
(76b). XE(z) being computed mod(zN/2+ 1) is of
degree N/2-1. For each k, (76b) will then corre-
spond to the reduction of one polynomial modulo
the odd powers of WN. From (5), this is seen to
be the computation of the odd outputs of a length-
N DFT, which is sometimes called an odd DFT.

The terms Xk, Er+l a r e seen to be obtained by one
reduction mod(zN/2+l) (75), one polynomial
transform of N terms modzN/2+l (77) and N
odd DFTs. This procedure is then iterated on the
t e r m s X2k+l,2r, by using exactly the same algorithm,
the role of k and r being interchanged. X2k,2 r is
exactly a length N/2x N/2 DFT, on which the
same algorithm is recursively applied.

In the first version of the polynomial transform
computation of the 2-D FFT, the odd DFT was
computed by a real-factor algorithm, resulting in
an excess in the number of additions required.

As seen in Tables 4 and 5, where the number of
multiplications and additions for the various 2-D
FFT algorithms are given, the polynomial trans-
form approach results in the algorithm requiring
the lowest arithmetic complexity, when counting
multiplications and additions altogether. The addi-
tion counts given in Table 5 are updates of the
previous ones, assuming that the odd DFTs are
computed by a split-radix algorithm.

T a b l e 5

N u m b e r o f rea l a d d i t i o n s p e r o u t p u t p o i n t fo r v a r i o u s 2 - D F F T s o n real d a t a

N x N N x N
(W F T A) (Othe r s) R .C. VR2 V R 4 V S R W F T A P.T.

2 X 2 2 2 2 2
4 X 4 3.25 3.25 3.25 3.25 3.25
8 X 8 5.56 5.43 5.43 5.43

16 X 16 8.26 8.14 7.86 7.86 7.86
30 X 30 32 × 32 11.13 11.06 10.43 12.98 10.34

64 X 64 14.06 14.09 13.11 13.02 12.83
120 X 120 128 X 128 17.03 17.17 15.65 17.48 15.33
240 X 240 256 X 256 20.01 20.27 18.48 17.67 22.79 17.83
504 X 504 512 X 512 23 .00 23.38 20.92 34.42 20.33

1008 X 1008 1024 X 1024 26.00 26.5 23.88 23.56 45 .30 22.83

Signal Processing

P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 293

Note that the same kind of performance was
obtained by Auslander et al. [82, 83] with a similar
approach which, while more sophisticated, gave a
better insight on the mathematical structure of this
problem. Polynomial transform were also applied
to the computation of 2-D DCT [79, 52].

efficient implementations of polynomial transform
based FFTs is worth the trouble. The precise under-
standing of the link between VR algorithms and
polynomial transforms may be a useful guide for
this work.

9.5. Discuss ion

A number of conclusions can be stated by con-
sidering Tables 4 and 5, keeping the principles of
the various methods in mind.

VR2 is more complicated to implement than
row-column algorithms, and requires more
operations for lengths t>32. Therefore, it should
not be considered. Note that this result holds only
because efficient and compact 1-D FFTs, such as
SRFFT, have been developed.

The row-column algorithm is the one allowing
the easiest implementation, while having a reason-
able arithmetic complexity. Furthermore, it is
easily parallelized, and simplifications can be
found for the reorderings (bit reversal, and matrix
transposition [66]), allowing one of them to be
free in nearly any kind of implementation. WFTA
has a huge number of additions (twice the number
required for the other algorithms for N = 1024),
requires huge memory, has a difficult implementa-
tion, but requires the least multiplications. Never-
theless, we think that, in today's implementations,
this advantage will in general not outweigh its
drawbacks.

VSR is difficult to implement, and will certainly
seldom defeat VR4, except in very special cases
(huge memory available and N very large).

VR4 is a good compromise between structural
and arithmetic complexity. When row-column
algorithms are not fast enough, we think it is the
next choice to be considered.

Polynomial transforms have the greatest
possibilities: lowest arithmetic complexity, possi-
bility of in-place computation, but very little work
was done on the best way of implementing them.
It was even reported to be slower than VR2 [103].
Nevertheless, it is our belief that looking for

10. Implementation issues

It is by now well recognized that there is a
strong interaction between the algorithm and its
implementation. For example, regularity, as dis-
cussed before, will 0nly pay off if it is closely
matched by the target architecture. This is the
reason why we will discuss in the sequel different
types of implementations. Note that very often,
the difference in computational complexity be-
tween algorithms is not large enough so as to
differentiate between the efficiency of the algorithm
and the quality of the implementation

10.1. Genera l purpose computers

FFT algorithms are built by repetitive use of
basic building blocks. Hence, any improvement
(even small) in these building blocks will pay in
the overall performance. In the Cooley-Tukey or
the split-radix case, the building blocks are small
and thus easily optimizable, and the effect of
improvements will be relatively more important
than in the PFA/WFTA case where the blocks are
larger.

When monitoring the amount of time spent in
various elementary floating point operations, it is
interesting to note that more time is spent in
load/store operations than in actual arithmetic
computations [30, 107, 109] (this is due to the fact
that memory access times are comparable to ALU
cycle times on current machines). Therefore, the
locality of the algorithm is of paramount import-
ance. This is why the PFA and WFTA do not meet
the performance expected from their computa-
tional complexity only.

On another side, this drawback of PFA is com-
pensated by the fact that only a few coefficients

Vol. 19, No. 4, April 1990

294 P. Duhamel, M. Vetterli / A

have to be stored. On the contrary, classical FFTs
must store a large table of sine and cosine values,
calculate them as needed, or update them with
resulting roundoff errors.

Note that special automatic code generation
techniques have been developed in order to pro-
duce efficient code for often used programs like
the FFT. They are based on a 'de-looping' tech-
nique that produces loop free code from a given
piece of code [107]. While this can produce unrea-
sonably large code for large transforms, it can be
applied successfully to sub-transforms as well.

10.2. Digital signal processors

Digital signal processors (DSPs) strongly favor
multiply/accumulate based algorithms. Unfortu-
nately, this is not matched by any of the fast FFT
algorithms (where sums of products have been
changed to fewer but less regular computations).
Nevertheless, DSPs now take into account some
of the FFT requirements, like modulo counters
and bit-reversed addressing. If the modulo counter
is general, it will help the implementation of all
FFT algorithms, but it is often restricted to the
Cooley-Tukey/SRFFT case only (modulo a power
of 2) for which efficient timings are provided on
nearly all available machines by manufacturers, at
least for small to medium lengths.

10.3. Vector and multi processors

Implementations of Fourier transforms on vec-
torized computers must deal with two interconnec-
ted problems [93]. First, the vector (the size of
data that can be processed at the maximal rate)
has to be full as often as possible. Then, the loading
of the vector should be made from data available
inside the cache memory (like in general purpose
computers) in order to save time. The usual hard-
ware design parameters will in general favor
length-2 m FFT implementations. For example, a
radix-4 FFT was reported to be efficiently realized
on a commercial vector processor [93].

In the multi-processor case, the performance
will be dependent on the number and power of
Signal Processing

tutorial on fast Fourier transforms

the processing nodes but also strongly on the avail-
able interconnection network. Because the FFT
algorithms are deterministic, the resource alloca-
tion problem can be solved off-line. Typical
configurations include arithmetic units specialized
for butterfly operations [98], arrays with attached
shuffle networks and pipelines of arithmetic units
with intermediate storage and reordering [17].
Obviously, these schemes will often favor classical
Cooley-Tukey algorithms, because of their high
regularity. However, SRFFT or PFA implementa-
tions have not been reported yet, but could be
promising in high speed applications.

10.4. VLSI

The discussion of partially dedicated multi-
processors leads naturally to fully dedicated hard-
ware structures like the ones that can be realized
in very large scale integration (VLSI) [9, 11]. As
a measure of efficiency both chip area (A) and
time (T) between two successive DFT computa-
tions (set-up times are neglected since only
throughput is of interest) are of importance.
Asymptotic lower bounds for the product A- T 2
have been reported for the FFT [116] and lead to

~(2AT2(DFT(N)) = N 2 log2(N), (78)

that is, no circuit will achieve a better behavior
than (78) for large N. Interestingly, this lower
bound is achieved by several algorithms, notably
the algorithms based on shuffle-exchange networks
and the ones based on square grids [96, 114]. The
trouble with these optimal schemes is that they
outperform more traditional ones, like the cascade
connection with variable delay [98] (which is
asymptotically sub-optimal), only for extremely
large Ns and are therefore not relevant in
practice [96].

Dedicated chips for the FFT computation are
therefore often based on some traditional
algorithm which is then efficiently mapped into a
layout. Examples include chips for image process-
ing with small size DCTs [115] as well as wafer
scale integration for larger transforms. Note that

P. Duhamel, M. Vetterli / A

the cost is dominated both by the number of multi-
plications (which outweigh additions in VLSI) and
the cost of communication. While the former figure
is available from traditional complexity theory, the
latter one is not yet well studied and depends
strongly on the structure of the algorithm as dis-
cussed in Section 7. Also, dedicated arithmetic
units suited for the FFT problem have been
devised, like the butterfly unit [98] or the C O R D I C
unit [94, 97] and contribute substantially to the
quality of the overall design. But, similarly to the
software case, the realization of an efficient VLSI
implementat ion is still more an art than a mere
technique.

11. Conclusion

The purpose of this paper has been threefold:
a tutorial presentation of classic and recent results,
a review of the state of the art, and a statement of
open problems and directions.

After a brief history of the FFT development,
we have shown by simple arguments, that the
fundamental technique used in all fast Fourier
transforms algorithms, namely the divide and con-
quer approach, will always improve the computa-
tional efficiency.

Then, a tutorial presentation of all known FFT
algorithms has been made. A simple notation,
showing how various algorithms perform various
divisions of the input into periodic subsets, was
used as the basis for a unified presentation of
Cooley-Tukey, split-radix, prime factor, and
Winograd fast Fourier transforms algorithms.
From this presentation, it is clear that Cooley-
Tukey and split-radix algorithms are instances of
one family of FFT algorithms, namely FFTs with
twiddle factors.

The other family is based on a divide and con-
quer scheme (Good 's mapping) which is costless
(computationally speaking). The necessary tools
for computing the short-length FFTs which then
appear were derived constructively and lead to the
presentation of the PFA and of the WFTA.

tutorial on fast Fourier transforms 295

These practical algorithms were then compared
to the best possible ones, leading to an evaluation
of their suboptimality. Structural considerations
and special cases were addressed next. In par-
ticular, it was shown that recently proposed
alternative transforms like the Hartley transform
do not show any advantage when compared to real
valued FFTs.

Special attention was then paid to multi-
dimensional transforms, where several open prob-
lems remain. Finally, implementat ion issues were
outlined, indicating that most computat ional
structures implicitly favor classical algorithms.
Therefore, there is room for improvements if one
is able to develop architectures that match more
recent and powerful algorithms.

Acknowledgments

The authors would like to thank Prof. M. Kunt
for inviting them to write this paper, as well as for
his patience. Prof. C. S. Burrus, Dr. J. Cooley, Dr.
M. T. Heideman and Prof. H. J. Nussbaumer are
also thanked for fruitful interactions on the subject
of this paper. We are indebted to J. S. White,
J. C. Bic and P. Gole for their careful reading of
the manuscript.

References

Books

[1] N. Ahmed and K.R. Rao, Orthogonal Transforms for
Digital Signal Processing, Springer, Berlin, 1975.

[2] R.E. Blahut, Fast Algorithms for Digital Signal Processing,
Addison-Wesley, Reading, MA, 1986.

[3] E.O. Brigham, The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, N J, 1974.

[4] C.S. Burrus and T.W. Parks, DFT/FFTand Convolution
Algorithms, Wiley, New York, 1985.

[5] C.S. Burrus, "Efficient Fourier transform and convolution
algorithms", in: J.S. Lira and A.V. Oppenheim, ed~.,
Advanced Topics i¢t Digital Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, 1988.

[6] Digital Signal Processing Committee, ed., Selected Papers
in Digital Signal Processing, II, IEEE Press, New York,
1975.

Vol. 19, NO. 4, April 1990

296 P. Duhamel, M. Vetterli / A

[7] Digital Signal Processing Committee ed., Programs for
Digital Signal Processing, IEEE Press, New York, 1979.

[8] M.T. Heideman, Multiplicative Complexity, Convolution
and the DFT, Springer, Berlin, 1988.

[9] S.Y. Kung, H.J. Whitehouse and T. Kailath, eds., VLSI
and Modern Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[10] J.H. McClellan and C.M. Rader, Number Theory in Digital
Signal Processing, Prentice-Hall, Englewood Cliffs, N J,
1979.

[11] C. Mead and L. Conway, Introduction to VLSI, Addison-
Wesley, Reading, MA, 1980.

[12] H.J. Nussbaumer, Fast Fourier Transform and Convolution
Algorithms, Springer, Berlin, 1982.

[13] A.V. Oppenheim ed., Papers on Digital Signal Processing,
M1T Press, Cambridge, MA, 1969.

[14] A.V. Oppenheim and R.W. Schafer, DigitalSignal Process-
ing, Prentice-Hall, Englewood Cliffs, NJ, 1975.

[15] L.R. Rabiner and C.M. Rader ed., Digital Signal Process-
ing, IEEE Press, New York, 1972.

[16] L.R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing, Prentice-Hall, Englewood Cliffs,
NJ, 1975.

[17] E.E. Schwartzlander, VLSI Signal Processing Systems,
Kluwer Academic Publishers, Dordrecht, 1986.

[18] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien and F.J.
Taylor, eds., Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing, IEEE Press, New
York, 1986.

[19] S. Winograd, Arithmetic Complexity of Computations,
SIAM CBMS-NSF Series, No. 33, SIAM, Philadelphia,
1980.

1-D F F T algori thms

[20] R.C. Agarwal and C.S. Burrus, "Fast one-dimensional
digital convolution by multi-dimensional techniques",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-22,
No. 1, February 1974, pp. 1-10.

[21] G.D. Bergland, "A fast Fourier transform algorithm using
base 8 iterations", Math. Comp., Vol. 22, No. 2, April
1968, pp. 275-279 (reprinted in [13]).

[22] G. Bruun, "z-transform DFT filters and FFTs", IEEE
Trans. Acoust. Speech Signal Process., Vol. ASSP-26, No. 1,
February 1978, pp. 56-63.

[23] C.S. Burrus, "Index mappings for multidimensional for-
mulation of the D F r and convolution", IEEE Trans.
Acoust. Speech Signal Process., ASSP Vol. 25, No. 3, June
1977, pp. 239-242.

[24] K.M. Cho and G.C. Temes, "Real-factor FFT algorithms",
Proc. ICASSP 78, Tulsa, OK, April 1978, pp. 634-637.

[25] J.W. Cooley and J.W. Tukey, "An algorithm for the
machine calculation of complex Fourier series", Math.
Comp., Vol. 19, April 1965, pp. 297-301.

[26] P. Dubois and A.N. Venetsanopoulos, "A new algorithm
for the radix-3 FFT", IEEE Trans. Acoust. Speech Signal
Process., Vol. ASSP-26, June 1978, pp. 222-225.

Signal Processing

tutorial on fast Fourier transforms

[27] P. Duhamel and H. Hollmann, "Split-radix FFT
algorithm", Electronics Letters, Vol. 20, No. 1, 5 January
1984, pp. 14-16.

[28] P. Duhamel and H. Hollmann, "Existence of a 2 n FFT
algorithm with a number of multiplications lower than
20+1'', Electronics Letters, Vol. 20, No. 17, August 1984,
pp. 690-692.

[29] P. Duhamel, "Un algorithme de transformation de Fourier
rapide/t double base;', Annales des Telecommunications,
Vol. 40, Nos. 9-10, September 1985, pp. 481-494.

[30] P. Duhamel, "Implementation of "split-radix" FFT
algorithms for complex, real and real-symmetric data",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-34,
No. 2, April 1986, pp. 285-295.

[31] P. Duhamel, "Algorithmes de transformres discr~tes
rapides pour convolution cyclique et de convolution cyc-
lique pour transformres rapides", Th~se de doctorat
d'rtat, Universit6 Paris XI, September 1986.

[32] I3. Good, "The interaction algorithm and practical Four-
ier analysis", J. Roy. Statist. Soc. Ser. B, Vol. B-20, 1958,
pp. 361-372, Vol. B-22, 1960, pp. 372-375.

[33] M.T. Heideman and C.S. Burrus, "A bibliography of fast
transform and convolution algorithms II", Technical
Report No. 8402, Rice University, 24 February 1984.

[34] M.T. Heideman, D.H. Johnson and C.S. Burrus, "Gauss
and the history of the FFT", IEEE Acoust. Speech Signal
Process. Magazine, Vol. 1, No. 4, October 1984, pp. 14-21.

[35] M.T. Heideman and C.S. Burrus, "On the number of
multiplications necessary to compute a length-2" DFT",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-34,
No. 1, February 1986, pp. 91-95.

[36] M.T. Heideman, "Application of multiplicative com-
plexity theory to convolution and the discrete Fourier
transform" PhD Thesis, Dept. of Elec. and Comp. Eng.,
Rice Univ., April 1986.

[37] H.W. Johnson and C.S. Burrus, "Large DFT modules: 11,
13, 17, 19, and 25", Tech. Report 8105, Dept of Elec. Eng.,
Rice Univ., Houston, TX, December 1981.

[38] H.W. Johnson and C.S. Burrus, "The design of optimal
DFT algorithms using dynamic programming", IEEE
Trans. Acoust. Speech Signal Process., Vol. ASSP-31, No. 2,
April 1983, pp. 378-387.

[39] D.P. Kolba and T.W. Parks, "A prime factor algorithm
using high-speed convolution", IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-25, August 1977,
pp. 281-294.

[40] J.B. Martens, "Recursive cyclotomic factorization--A new
algorithm for calculating the discrete Fourier transform",
IEEE Trans. Accoust. Speech Signal Process., Vol. ASSP-
32, No. 4, August 1984, pp. 750-761.

[41] H.J. Nussbaumer, "Efficient algorithms for signal process-
ing", Second European Signal Processing Conference,
EUSIPCO-83, Erlangen, September 1983.

[42] R.D. Preuss, "Very fast computation ofthe radix-2 discrete
Fourier transform", IEEE Trans. Acoust. Speech Signal
Process., Vol. ASSP-30, August 1982, pp. 595-607.

[43] C.M. Rader, "Discrete Fourier transforms when the num-
ber of data samples is prime", Proc. IEEE, Vol. 56, 1968,
pp. 1107-1008.

P. Duhamel, M. Vetterli / A

[44] C.M. Rader and N.M. Brenner, "A new principle for fast
Fourier transformation", IEEE Trans. Acoust. Speech Sig-
nal Process., Vol. ASSP-24, June 1976, pp. 264-265.

[45] R. Singleton, "'An algorithm for computing the mixed
radix fast Fourier transform", IEEE Trans. Audio Elec-
troacoust., Vol. AU-17, June 1969, pp. 93-103 (reprinted
in [13]).

[46] R. Stasinski, "Asymmetric fast Fourier transform for real
and complex data", IEEE Trans. Acoust. Speech Signal
Process., submitted.

[47] R. Stasinski, "Easy generation of small- N discrete Fourier
transform algorithms", lEE Proc., Vol. 133, Pt. G, No. 3,
June 1986, pp. 133-139.

[48] R. Stasinski, "FFT pruning. A new approach", proceedings
Eusipco 86, 1986, pp. 267-270.

[49] Y. Suzuki, T. Sone and K. Kido, "A new FFT algorithm
of radix 3, 6, and 12", IEEE Trans. Acoust. Speech Signal
Process., Vol. ASSP-34, No. 2, April 1986, pp. 380-383.

[50] C. Temperton, "Self-sorting mixed-radix fast Fourier
transforms", J. Comput. Phys., Vol. 52, No. 1, October
1983, pp. 1-23.

[51] M. Vetterli and H.J. Nussbaumer, "Simple FFT and DCT
algorithms with reduced number of operations", Signal
Process., Vol. 6, No. 4, August 1984, pp. 267-278.

[52] M. Vetterli and H.J. Nussbaumer, "Algorithmes de trans-
formre de Fourier et cosinus mono et bi-dimensionnels",
Annales des Tdl(communications, Tome 40, Nos. 9-10,
September-October 1985, pp. 466-476.

[53] M. Vetterli and P. Duhamel, "Split-radix algorithms for
length-p m DFTs", IEEE Trans. Acoust. Speech Signal Pro-
cess., Vol. ASSP-37, No. 1, January 1989, pp. 57-64.

[54] S. Winograd, "On computing the discrete Fourier trans-
form", Proc. Nat. Acad. Sci. USA, Vol. 73, April 1976,
pp. 1005-1006.

[55] S. Winograd, "Some bilinear forms whose multiplicative
complexity depends on the field of constants", Math.
Systems Theory, Vol. 10, No. 2, 1977, pp. 169-180 (reprin-
ted in [10]).

[56] S. Winograd, "On computing the DFT", Math. Comp.,
Vol. 32, No. 1, January 1978, pp. 175-199 (reprinted in
[10]).

[57] S. Winograd, "On the multiplicative complexity of the
discrete Fourier transform", Adv. in Math., Vol. 32, No. 2,
May 1979, pp. 83-117.

[58] R. Yavne, "An economical method for calculating the
discrete Fourier transform", AFIPS Proc., Vol. 33, Fall
Joint Computer Conf., Washington, 1968, pp. 115-125.

Related algorithms
[59] N. Ahmed, T. Natarajan and K.R. Rao, "Discrete cosine

transform", IEEE Trans. Comput., Vol. C-23, January
1974, pp. 88-93.

[60] G.D. Bergland, "A radix-eight fast Fourier transform sub-
routine for real-valued series", IEEE Trans. Audio Elec-
troacoust., Vol. 17, No. 1, June 1969, pp. 138-144.

[61] R.N. Bracewell, "Discrete Hartley transform", Z Opt. Soc.
Amer., Vol. 73, No. 12, December 1983, pp. 1832-1835.

tutorial on

[62]

[63]

fast Fourier transforms 297

R.N. Bracewell, "The fast Hartley transform", Proc. IEEE,
Vol. 22, No. 8, August 84, pp. 1010-1018.
C.S. Burrus, "Unscrambling for fast DFT algorithms",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-36,
No. 7, pp. 1086-1087.

[64] W.-H. Chen, C.H. Smith and S.C. Fralick, "A fast compu-
tational algorithm for the discrete cosine transform",
IEEE Trans. Comm., Vol. COM-25, September 1977,
pp. 1004-1009.

[65] P. Duhamel and M. Vetterli, "Improved Fourier and
Hartley transform algorithms. Application to Cyclic
Convolution of Real Data", IEEE Trans. Acoust. Speech
Signal Process., Vol. ASSP-35, No. 6, June 1987, pp. 818-
824.

[66] P. Duhamel and J. Prado, "A connection between bit-
reverse and matrix transpose. Hardware and software
consequences", Proc. IEEE Acoust. Speech Signal Process.,
pp. 1403-1406.

[67] D.M. Evans, "An improved digit reversal permutation
algorithm for the fast Fourier and Hartley transforms"
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-35,
No. 8, August 87, pp. 1120-1125.

[68] G. Goertzel, "An algorithm for the evaluation of finite
Fourier series", Amer. Math. Monthly, Vol. 65, No. 1,
January 1958, pp. 34-35.

[69] M.T. Heideman, "Computation of an odd-length DCT
from a real-valued DFT of the same length", IEEE Trans.
Acoust. Speech Signal Process., submitted.

[70] H.S. Hou, "A fast recursive algorithm for computing the
discrete Fourier transform", IEEE Trans. Acoust. Speech
Signal Process., Vol. ASSP-35, No. 10, October 1987,
pp. 1455-1461.

[71] A.K. Jain, "A sinusoidal family of unitary transforms",
IEEE Trans. PAMI, Vol. 1, No. 4, October 1979, pp. 356-
365.

[72] B.G. Lee, "A new algorithm to compute the discrete cosine
transform", IEEE Trans. Acoust. Speech Signal Process.,
Vol. ASSP-32, December 1984, pp. 1243-1245.

[73] Z.J. Mou and P. Duhamel, "Fast FIR filtering: algorithms
and implementations", Signal Process., Vol. 13, No. 4,
December 1987, pp. 377-384.

[74] H.J. Nussbaumer, "Digital filtering using polynomial
transforms", Electronics Letters, Vol. 13, No. 13, June 1977,
pp. 386-387.

[75] R.J. Polge, B.K. Bhaganan and J.M. Carswell, "Fast com-
putational algorithms for bit-reversal", IEEE Trans. Com-
put., Vol. 23, No. 1, January 1974, pp. 1-9.

[76] P. Duhamel, "Algorithms meeting the lower bounds on
the multiplicative complexity of length-2" DFTs and their
connection with practical algorithms", IEEE Trans.
Acoust. Speech Signal Process., September 1990.

[77] H.V. Sorensen, D.L. Jones, M.T. Heideman and C.S.
Burrus, "'Real-valued fast Fourier transform algorithms",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-35,
No. 6, June 1987, pp. 849-863.

[78] H.V. Sorensen, C.S. Burrus and D.L. Jones, "A new
efficient algorithm for computing a few DFT points", Proc.
of the 1988 IEEE Internat. Syrup. on CAS, 1988, pp. 1915-
1918.

Vol. 19, No. 4, April 1990

298 P. Duhamel, M. Vetterli / A

[79] M. Vetterli, "Fast 2-D discrete cosine transform", Proc.
1985 IEEE Internat. Conf. Acoust. Speech Signal Process.,
Tampa, March 1985, pp. 1538-1541.

[80] M. Vetterli, "Analysis, synthesis and computational com-
plexity of digital filter banks", PhD Thesis, Ecole Poly-
technique Federale de Lausanne, Switzerland, April 1986.

[81] M. Vetterli, "'Running FIR and IIR filtering using multi-
rate filter banks", IEEE Trans. Acoust. Speech Signal Pro-
cess., Vol. ASSP-36, No. 5, May 1988, pp. 730-738.

Mul t i -d imens iona l t rans forms

[82] L. Auslander, E. Feig and S. Winograd, "New algorithms
for the multidimensional Fourier transform", IEEE Trans.
Acoust. Speech Signal Process., Vol. ASSP-31, No. 2, April
1983, pp. 338-403.

[83] L. Auslander, E. Feig and S, Winograd, "Abelian semi-
simple algebras and algorithms for the discrete Fourier
transform", Adv. in Applied Math., Vol. 5, 1984, pp. 31-55.

[84] J.O. Eklundh, "A fast computer method for matrix trans-
posing", IEEE Trans. Comput., Vol. 21, No. 7, July 1972,
pp. 801-803 (reprinted in [6]).

[85] R.M. Mersereau and T.C. Speake, "A unified treatment
of Cooley-Tukey algorithms for the evaluation of the
multidimensional DFT", IEEE Trans. Acoust. Speech Sig-
nal Process., Vol. 22, No. 5, October 1981, pp. 320-325.

[86] Z.J. Mou and P. Duhamel, "In-place butterfly-style FFT
of 2-D real sequences", IEEE Trans. Acoust. Speech Signal
Process., Vol. ASSP-36, No. 10, October 1988, pp. 1642-
1650.

[87] H.J. Nussbaumer and P. Quandalle, "Computation of
convolutions and discrete Fourier transforms by poly-
nomial transforms", IBM J. Res. Develop., Vol. 22, 1978,
pp. 134-144.

[88] H.J. Nussbaumer and P. Quandalle, "Fast computation
of discrete Fourier transforms using polynomial trans-
forms", IEEE Trans. Acoust. Speech Signal Process., Vol.
ASSP-27, 1979, pp. 169-181.

[89] M.C. Pease, "An adaptation ofthe fast Fourier transform
for parallel processing", J. Assoc. Comput. Mach., Vol. 15,
No. 2, April 1968, pp. 252-264.

[90] S.C. Pei and J.L. Wu, "Split-vector radix 2-D fast Fourier
transform", IEEE Trans. Circuits Systems, Vol. 34, No. 1,
August 1987, pp. 978-980.

[91] G.E. Rivard, "Algorithm for direct fast Fourier transform
of bivariant functions", 1975 Annual Meeting of the Optical
Society of America, Boston, MA, October 1975.

[92] G.E. Rivard, "Direct fast Fourier transform of bivariant
functions", IEEE Trans. Acoust. Speech Signal Process.,
Vol. 25, No. 3, June 1977, pp. 250-252.

Imp lemen ta t ions

[93] R.C. Agarwal and J.W. Cooley, "Fourier transform and
convolution subroutines for the IBM 3090 Vector Facil-
ity", IBM J. Res. Develop., Vol. 30, No. 2, March 1986,
pp. 145-162.

Signal Processing

tutorial on fast Fourier transforms

[94] H. Ahmed, J.M. Delosme and M. Morf, "Highly concur-
rent computing structures for matrix arithmetic and sig-
nal processing", IEEE Trans. Comput., Vol. 15, No. 1,
January 1982, pp. 65-82.

[95] C.S. Burrus and P.W. Eschenbacher, "An in-place, in
order prime factor FFT algorithm", IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-29, No. 4, August 1981,
pp. 806-817.

[96] H.C. Card, "VLSI computations: from physics to
algorithms", Integration, Vol. 5, 1987, pp. 247-273.

[97] A.M. Despain, "Fourier transform computers using
CORD1C iterations", IEEE Trans. Comput., Vol. 23, No.
10, October 1974, pp. 993-1001.

[98] A.M. Despain, "Very fast Fourier transform algorithms
hardware for implementation", IEEE Trans. Comput.,
Vol. 28, No. 5, May 1979, pp. 333-341.

[99] P. Duhamel, B. Piron and J.M. Etcheto, "On computing
the inverse DFT", IEEE Trans. Acoust. Speech Signal
Process., Vol. ASSP-36, No. 2, February 1988, pp. 285-
286.

[100] P. Duhamel and H. H'mida, "New 2" DCT algorithms
suitable for VLSI implementation" Proc. IEEE Internat.
Conf. Acoust. Speech Signal Process., 1987, pp. 1805-
1809.

[101] J. Johnson, R. Johnson, D. Rodriguez and R. Tolimieri,
"A methodology for designing, modifying, and
implementing Fourier transform algorithms on various
architectures" Preliminary draft, September 1988 (to be
submitted).

[102] A. Elterich and W. Stammler, "Error analysis and result-
ing structural improvements for fixed point FFT's", Proc.
IEEE Internat. Conf. Acoust. Speech Signal Process., April
1988, pp. 1419-1422.

[103] B. Lhomme, J. Morgenstern and P. Quandalle,
"Implantation de transformres de Fourier de dimension
2", Techniques et Science Informatiques, Vol. 4, No. 2,
1985, pp. 324-328,

[104] D.C. Manson and B. Liu, "Floating point roundott error
in the prime factor FFT", IEEE Trans. Acoust. Speech
Signal Process., Vol. 29, No. 4, August 1981, pp. 877-882.

[105] B. Mescheder, "On the number of active *-operations
needed to compute the DFT", Acta Inform., Vol. 13, May
1980, pp. 383-408.

[106] J. Morgenstern, "'The linear complexity of computation",
Assoc. Comput. Much., Vol. 22, No. 2, April 1975,
pp. 184-194.

[107] L.R. Morris, "Automatic generation of time efficient
digital signal processing software", IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-25, February 1977,
pp. 74-78.

[108] L.R. Morris, "A comparative study of time efficient FFT
and WFTA programs for general purpose computers",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-
26, April 1978, pp. 141-150.

[109] H. Nawab and J.H. McClellan, "Bounds on the minimum
number of data transfers in WFTA and FFT programs",
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-
27, August 1979, pp. 394-398.

P. Duhamel, M. Vetterli / A

[110] V.Y. Pan, "The additive and logical complexities of linear
and bilinear arithmetic algorithms", Z Algorithms, Vol.
4, No. 1, March 1983, pp. 1-34.

[111] J.H. Rothweiler, "Implementation of the in-order prime
factor transform for variable sizes" IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-30, No. 1, February
1982, pp. 105-107

[112] H.F. Silverman, "An introduction to programming the
Winograd Fourier transform algorithm", IEEE Trans.
Acoust. Speech Signal Process., Vol. ASSP-25, No. 2, April
1977, pp. 152-165, with corrections in: IEEE Trans.
Acoust. Speech Signal Process., Vol. ASSP-26, No. 3, June
1978, p. 268, and in Vol. ASSP-26, No. 5, October 1978,
p. 482.

[113] H.V. Sorensen, M.T. Heideman and C.S. Burrus, "On
computing the split-radix FFT", IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-34, No. 1, February
1986, pp. 152-156.

[114] C.D. Thompson, "Fourier transforms in VLSI", IEEE
Trans. Comput., Vol. 32, No. 11, November 1983,
pp. 1047-1057.

[115] M. Vettedi and A. Ligtenberg, "A discrete Fourier-cosine
transform chip", IEEE J. Selected Areas in Communica-
tions, Special Issue on VLSI in Telecommunications. Vol.
SAC-4, No. 1, January 1986, pp. 49-61.

tutorial on fast Fourier transforms 299

[116] J. Vuillemin, "A combinatorial limit to the computing
power of VLSI circuits", Proc. 21st Syrup. Foundations
of Comput. Sci., IEEE Comp. Soc., October 1980,
pp. 294-300.

[117] P.D. Welch, "A fixed-point fast Fourier transform error
analysis", IEEE Trans. Audio Electro., Vol. 15, No. 2,
June 1969, pp. 70-73 (reprinted in [13] and [15]).

S o f t w a r e

FORTRAN (or DSP) code can be found in the following
references.

[7] contains a set of classical FFT algorithms.
[111] contains a prime factor FFT program.

[4] contains a set of classical programs and considerations
on program optimization, as well as TMS 32010 code.

[113] contains a compact split-radix Fortran program.
[29] contains a speed-optimized split-radix FFT.
[77] contains a set of real-valued FFTs with twiddle factors.
[65] contains a split-radix real valued FFT, as well as a

Hartley transform program.
[112], as well as [7] contains a Winograd Fourier transform
Fortran program.
[66], [67] and [75] contain improved bit-reversal algorithms.

Vol. 19, No. 4, April 1990

