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Abstract. The publication of the Cooley-Tukey fast Fourier transform (FIT) algorithm in 1965 has opened a new area in 
digital signal processing by reducing the order of complexity of some crucial computational tasks like Fourier transform and 
convolution from N 2 to N log2 N, where N is the problem size. The development of the major algorithms (Cooley-Tukey 
and split-radix FFT, prime factor algorithm and Winograd fast Fourier transform) is reviewed. Then, an attempt is made to 
indicate the state of the art on the subject, showing the standing of research, open problems and implementations. 

Zusammenfassung. Die Publikation von Cooley-Tukey's schnellem Fourier Transformations Algorithmus in 1965 brachte 
eine neue Area in der digitalen Signalverarbeitung weil die Ordnung der Komplexit/it von gewissen zentralen Berechnungen, 
wie die Fourier Transformation und die digitale Faltung, von N 2 zu N log2 N reduziert wurden (wo N die Problemgr6sse 
darstellt). Die Entwicklung der wichtigsten Algorithmen (Cooley-Tukey und Split-Radix FIT, Prime Factor Algorithmus 
und Winograd's schneller Fourier Transformation) ist nachvollzogen. Dann wird versucht, den Stand des Feldes zu beschreiben, 
um zu zeigen wo die Forschung steht, was flir Probleme noch offenstehen, wie zum Beispiel in Implementierungen. 

Rrsum4. La publication de l'algorithme de Cooley-Tukey pour la transformation de Fourier rapide a ouvert une nouvelle 
~re dans le traitement num6rique des signaux, en r4duisant l'ordre de complexit6 de probl~mes cruciaux, comme la 
transformation de Fourier ou la convolution, de N 2 ~ N log2 N (oh N est la taille du probl~me). Le drvelopment des 
algorithmes principaux (Cooley-Tukey, split-radix FFT, algorithmes des facteurs premiers, et transform6e rapide de Winograd) 
est drcrit. Ensuite, l'&at de l'art est donn4, et on parle des probl~mes ouverts et des implantations. 

Keywords. Fourier transforms, fast algorithms, computational complexity. 

1. Introduction 

Linear filtering and Fourier transforms are 
among the most fundamental operations in digital 
signal processing. However, their wide use makes 
their computational requirements a heavy burden 
in most applications. Direct computation of both 

c o n v o l u t i o n  a n d  d i s c r e t e  F o u r i e r  t r a n s f o r m  ( D F T )  
r e q u i r e s  o n  t h e  o r d e r  o f  N 2 o p e r a t i o n s  w h e r e  N 
is t h e  f i l te r  l e n g t h  o r  t h e  t r a n s f o r m  size.  T h e  b r e a k -  
t h r o u g h  o f  t h e  C o o l e y - T u k e y  F F T  c o m e s  f r o m  t h e  
f ac t  t h a t  i t  b r i n g s  t h e  c o m p l e x i t y  d o w n  to  a n  o r d e r  
o f  N log2 N o p e r a t i o n s .  B e c a u s e  o f  t h e  c o n v o l -  
u t i o n  p r o p e r t y  o f  t h e  D F T ,  t h i s  r e s u l t  a p p l i e s  to  
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the convolution as well. Therefore, fast Fourier 
transform algorithms have played a key role in the 
widespread use of  digital signal processing in a 
variety of  applications like telecommunications, 
medical electronics, seismic processing, radar or 
radio astronomy to name but a few. 

Among the numerous further developments that 
followed Cooley and Tukey's original contribu- 
tion, the fast Fourier transform introduced in 1976 
by Winograd [54] stands out for achieving a new 
theoretical reduction in the order of the multipli- 
cative complexity. Interestingly, the Winograd 
algorithm uses convolutions to compute DFTs, an 
approach which is just the converse of the con- 
ventional method of  computing convolutions by 
means of  DFTs. What might look as a paradox at 
first sight actually shows the deep interrelation- 
ship that exists between convolutions and Fourier 
transforms. 

Recently, the Cooley-Tukey type algorithms 
have emerged again, not only because implementa- 
tions of  the Winograd algorithm have been disap- 
pointing, but also due to some recent developments 
leading to the so-called split-radix algorithm [27]. 
Attractive features of  this algorithm are both its 
low arithmetic complexity and its relatively simple 
structure. 

Both the introduction of  digital signal processors 
and the availability of  large scale integration has 
influenced algorithm design. While in the sixties 
and early seventies, multiplication counts alone 
were taken into account, it is now understood that 
the number of addition and memory accesses in 
software, and the communication costs in hard- 
ware are at least as important. 

The purpose of  this paper is first to look back 
at twenty years of  developments since the Cooley-  
Tukey paper. Among the abundance of  literature 
(a bibliography of  more than 2500 titles has been 
published [33]), we will try to highlight only the 
key ideas. Then, we will attempt to describe the 
state of the art on the subject. It seems to be an 
appropriate time to do so, since on the one hand, 
the algorithms have now reached a certain matur- 
ity, and on the other hand, theoretical results on 
Signal Processing 

complexity allow us to evaluate how far we are 
from optimum solutions. Furthermore, on some 
issues, open questions will be indicated. 

Let us point out that in this paper we shall 
concentrate strictly on the computation of  the dis- 
crete Fourier transform, and not discuss applica- 
tions. However, the tools that will be developed 
may be useful in other cases. For example, the 
polynomial products explained in Section 5.1 can 
immediately be applied to the derivation of  fast 
running FIR algorithms [73, 81]. 

The paper is organized as follows. 
Section 2 presents the history of  the ideas on 

fast Fourier transforms, from Gauss to the split- 
radix algorithm. 

Section 3 shows the basic technique that under- 
lies all algorithms, namely the divide and conquer 
approach, showing that it always improves the 
performance of  a Fourier transform algorithm. 

Section 4 considers Fourier transforms with 
twiddle factors, that is, the classic Cooley-Tukey 
type schemes and the split-radix algorithm. These 
twiddle factors are unavoidable when the trans- 
form length is composite with non-coprime factors. 
When the factors are coprime, the divide and con- 
quer scheme can be made such that twiddle factors 
do not appear. 

This is the basis of  Section 5, which then presents 
Rader's algorithm for Fourier transforms of  prime 
lengths, and Winograd's method for computing 
convolutions. With these results established, Sec- 
tion 5 proceeds to describe both the prime factor 
algorithm (PFA) and the Winograd Fourier trans- 
form (WFTA). 

Section 6 presents a comprehensive and critical 
survey of  the body of  algorithms introduced so 
far, then shows the theoretical limits of the com- 
plexity of  Fourier transforms, thus indicating the 
gaps that are left between theory and practical 
algorithms. 

Structural issues of various FFT algorithms are 
discussed in Section 7. 

Section 8 treats some other cases of interest, like 
transforms on special sequences (real or sym- 
metric) and related transforms, while Section 9 is 
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specifically devoted to the treatment of multi- 
dimensional transforms. 

Finally, Section 10 outlines some of the impor- 
tant issues of  implementations. Considerations on 
software for general purpose computers, digital 
signal processors and vector processors are made. 
Then, hardware implementations are addressed. 
Some of the open questions when implementing 
FFT algorithms are indicated. 

The presentation we have chosen here is con- 
structive, with the aim of motivating the 'tricks' 
that are used. Sometimes, a shorter but 'plug-in'- 
like presentation could have been chosen, but we 
avoided it, because we desired to insist on the 
mechanisms underlying all these algorithms. We 
have also chosen to avoid the use of some mathe- 
matical tools, such as tensor products (that are 
very useful when deriving some of the FFT 
algorithms) in order to be more widely readable. 

Note that concerning arithmetic complexities, 
all sections will refer to synthetic tables giving 
the computational complexities of the various 
algorithms for which software is available. In a 
few cases, slightly better figures can be obtained, 
and this will be indicated. 

For more convenience, the references are separ- 
ated between books and papers, the latter being 
further classified corresponding to subject mat- 
ters (1-D FFT algorithms, related ones, multi- 
dimensional transforms and implementations). 

2. A historical perspective 

The development of the fast Fourier transform 
will be surveyed below, because, on the one hand, 
its history abounds in interesting events, and on 
the other hand, the important steps correspond to 
parts of  algorithms that will be detailed later. 

A first subsection describes the pre-Cooley- 
Tukey area, recalling that algorithms can get lost 
by lack of  use, or, more precisely, when they 
come too early to be of  immediate practical use. 
The developments following the Cooley-Tukey 
algorithm are then described up to the most recent 
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solutions. Another subsection is concerned with 
the steps that lead to the Winograd and to the 
prime factor algorithm, and finally, an attempt is 
made to briefly describe the current state of  the art. 

2.1. From Gauss to the Cooley-Tukey F F T  

While the publication of a fast algorithm for the 
DFT by Cooley and Tukey in 1965 [25] is certainly 
a turning point in the literature on the subject, the 
divide and conquer approach itself dates back to 
Gauss as noted in a well documented analysis by 
Heideman et al. [34]. Nevertheless, Gauss's work 
on FFTs in the early 19th century (around 1805) 
remained largely unnoticed because it was only 
published in Latin and this after his death. 

Gauss used the divide and conquer approach in 
the same way as Cooley and Tukey have published 
it later in order to evaluate trigonometric series, 
but his work pre-dates even Fourier's work on 
harmonic analysis (1807)! Note that his algorithm 
is quite general, since it is explained for transforms 
on sequences with lengths equal to any composite 
integer. 

During the 19th century, efficient methods for 
evaluating Fourier series appeared independently 
at least three times [33], but were restricted on 
lengths and number of resulting points. In 1903, 
Runge derived an algorithm for lengths equal to 
powers of  2 which was generalized to powers of  3 
as well and used in the forties. Runge's work was 
thus quite well-known, but nevertheless disap- 
peared after the war. 

Another important result useful in the most 
recent FFT algorithms is another type of divide 
and conquer approach, where the initial problem 
of  length N1" N2 is divided into subproblems 
of lengths N1 and N2 without any additional 
operations, N~ and N2 being coprime. 

This result dates back to the work of Good [32] 
who obtained this result by simple index mappings. 
Nevertheless, the full implication of  this result will 
only appear later, when efficient methods will be 
derived for the evaluation of  small, prime length 
DFTs. This mapping itself can be seen as an 
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application of the Chinese remainder theorem 
(CRT), which dates back to 100 years A.D.! 
[10.18]. 

Then, in 1965, appears a brief article by Cooley 
and Tukey, entitled 'An algorithm for the machine 
calculation of  complex Fourier series' [25], which 
reduces the order of  the number of  operations from 
N 2 to  N log2 ( N)  for a length N -- 2 n DFT. 

This will turn out to be a milestone in the 
literature on fast transforms, and will even be 
credited [14, 15] of the tremendous increase of  
interest in DSP beginning in the seventies. The 
algorithm is suited for DFTs on any composite 
length, and is thus of  the type that Gauss had 
derived almost 150 years before. Note that all 
algorithms published in-between were more 
restrictive on the transform length [34]. 

Looking back at this brief history, one may won- 
der why all previous algorithms had disappeared 
or remained unnoticed, whereas the Cooley-Tukey 
algorithm had such a tremendous success. A poss- 
ible explanation is that the growing interest in the 
theoretical aspects of  digital signal processing was 
motivated by technical improvements in the semi- 
conductor technology. And, of  course, this was not 
a one-way street . . . .  

The availability of  reasonable computing power 
produced a situation where such an algorithm 
would suddenly allow numerous new applications. 
Considering this history, one may wonder how 
many other algorithms or ideas are just sleeping 
in some notebook or obscure publication . . . .  

The two types of divide and conquer approaches 
cited above produced two main classes of  algo- 
rithms. For the sake of  clarity, we will now skip 
the chronological order and consider the evolution 
of  each class separately. 

2.2. Development of the twiddle factor FFT 

When the initial DFT is divided into sublengths 
which are not coprime, the divide and conquer 
approach as proposed by Cooley and Tukey leads 
to auxiliary complex multiplications, initially 
named twiddle factors, which cannot be avoided 
in this case. 
Signal Processing 
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While Cooley-Tukey's  algorithm is suited for 
any composite length, and explained in [25] in a 
general form, the authors gave an example with 
N = 2", thus deriving what is now called a radix-2 
decimation in time (DIT) algorithm (the input 
sequence is divided into decimated subsequences 
having different phases). Later, it was often falsely 
assumed that the initial Cooley-Tukey FFT was a 
DIT radix-2 algorithm only. 

A number of subsequent papers presented 
refinements of  the original algorithm, with the aim 
of  increasing its usefulness. 

The following refinements were concerned: 
- -wi th  the structure of  the algorithm: it was 
emphasized that a dual approach leads to 'decima- 
tion in frequency' (DIF) algorithms, 
- - o r  with the efficiency of  the algorithm, meas- 
ured in terms of arithmetic operations: Bergland 
showed that higher radices, for example radix-8, 
could be more efficient [21], 
- - o r  with the extension of  the applicability of  the 
algorithm: Bergland, again, showed that the FFT 
could be specialized to real input data [60], and 
Singleton gave a mixed radix FFT suitable for 
arbitrary composite lengths. 

While these contributions all improved the 
initial algorithm in some sense (fewer operations 
and /o r  easier implementations), actually no new 
idea was suggested. 

Interestingly, in these very early papers, all the 
concerns guiding the recent work were already 
here: arithmetic complexity, but also different 
structures and even real-data algorithms. 

In 1968, Yavne presents a little known paper 
[58] that sets a record: his algorithm requires the 
least known number of  multiplications, as well as 
additions for length-2 n FFTs, and this both for 
real and complex input data. Note that this record 
still holds, at least for practical algorithms. The 
same number of  operations was obtained later on 
by other (simpler) algorithms, but due to Yavne's 
cryptic style, few researchers were able to use his 
ideas at the time of publication. 

Since twiddle factors lead to most computations 
in classical FFTs, Rader and Brenner, perhaps 
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motivated by the appearance of the Winograd 
Fourier transform which possesses the same 
characteristic, proposed an algorithm that replaces 
all complex multiplications by either real or 
imaginary ones, thus substantially reducing the 
number of  multiplications required by the 
algorithm [44]. This reduction in the number of 
multiplications was obtained at the cost of an 
increase in the number of additions, and a greater 
sensitivity to roundoff noise. Hence, further 
developments of  these 'real factor' FFTs appeared 
in [24, 42], reducing these problems. Bruun also 
proposed an original scheme [22] particularly 
suited for real data. Note that these various 
schemes only work for radix-2 approaches. 

It took more than fifteen years to see again 
algorithms for length-2 n FFTs that take as few 
operations as Yavne's algorithm. In 1984, four 
papers appeared or were submitted almost simul- 
taneously [27, 40, 46, 51] and presented so-called 
'split-radix' algorithms. The basic idea is simply 
to use a different radix for the even part of  the 
transform (radix-2) and for the odd part (radix-4). 
The resulting algorithms have a relatively simple 
structure and are well adapted to real and sym- 
metric data while achieving the minimum known 
number of operations for FFTs on power of  2 
lengths. 

2.3. FFTs without twiddle factors 

While the divide and conquer approach used in 
the Cooley-Tukey algorithm can be understood as 
a 'false' mono- to multi-dimensional mapping (this 
will be detailed later), Good 's  mapping, which can 
be used when the factors of the transform lengths 
are coprime, is a true mono- to multi-dimensional 
mapping, thus having the advantage of not produc- 
ing any twiddle factor. 

Its drawback, at first sight, is that it requires 
efficiently computable DFTs on lengths which are 
coprime: For example, a DFT of  length 240 will 
be decomposed as 240 = 16 • 3 • 5, and a DFT of  
length 1008 will be decomposed in a number of 
DFTs of lengths 16, 9 and 7. This method thus 
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requires a set of (relatively) small-length DFTs 
that seemed at first difficult to compute in less than 
N~ operations. In 1968, however, Rader showed 
how to map a DFT of length N, N prime, into 
a circular convolution of length N - 1  [43]. 
However, the whole material to establish the 
new algorithms was not ready yet, and it took 
Winograd's work on complexity theory, in par- 
ticular on the number of multiplications required 
for computing polynomial products or convol- 
utions [55] in order to use Good's  and Rader's 
results efficiently. 

All these results were considered as curiosities 
when they were first published, but their combina- 
tion, first done by Winograd and then by Kolba 
and Parks [39] raised a lot of interest in that class 
of algorithms. Their overall organization is as 
follows: 

After mapping the DFT into a true multi- 
dimensional DFT by Good 's  method and using 
the fast convolution schemes in order to evaluate 
the prime length DFTs, a first algorithm makes use 
of the intimate structure of these convolution 
schemes to obtain a nesting of  the various multipli- 
cations. This algorithm is known as the Winograd 
Fourier transform algorithm (WFTA) [54], an 
algorithm requiring the least known number of  
multiplications among practical algorithms for 
moderate lengths DFTs. If  the nesting is not used, 
and the multi-dimensional DFT is performed by 
the row-column method, the resulting algorithm 
is known as the prime factor algorithm (PFA) [39] 
which, while using more multiplications, has less 
additions and a better structure than the WFTA. 

From the above explanations, one can see that 
these two algorithms, introduced in 1976 and 1977 
respectively, require more mathematics to be 
understood [19]. This is why it took some effort 
to translate the theoretical results, especially con- 
cerning the WFTA, into actual computer code. 

It is even our opinion that what will remain 
mostly of  the WFTA are the theoretical results, 
since although a beautiful result in complexity 
theory, the WFTA did not meet its expectations 
once implemented, thus leading to a more critical 
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evaluation of  what 'complexity'  meant in the con- 
text of  real life computers [41,108, 109]. 

The result of this new look at complexity was 
an evaluation of  the number of  additions and data 
transfers as well (and no longer only of multiplica- 
tions). Furthermore, it turned out recently that 
the theoretical knowledge brought by these 
approaches could give a new understanding of  
FFTs with twiddle factors as well. 

2.4. Multi-dimensional DFTs  

Due to the large amount of  computations they 
require, the multi-dimensional DFTs as such (with 
common factors in the different dimensions, which 
was not the case in the multi-dimensional transla- 
tion of a mono-dimensional problem by PFA) were 
also carefully considered. 

The two most interesting approaches are cer- 
tainly the vector radix FFT (a direct approach to 
the multi-dimensional problem in a Cooley-Tukey 
mood) proposed in 1975 by Rivard [91] and the 
polynomial transform solution of  Nussbaumer and 
Quandalle in 1978 [87, 88]. 

Both algorithms substantially reduce the com- 
plexity over traditional row-column computa- 
tional schemes. 

2.5. State o f  the art 

From a theoretical point  of  view, the complexity 
issue of the discrete Fourier transform has reached 
a certain maturity. Note that Gauss, in his time, 
did not even count the number of  operations 
necessary in his algorithm. In particular, 
Winograd's work on DFTs whose lengths have 
coprime factors both sets lower bounds (on the 
number of  multiplications) and gives algorithms 
to achieve these [35, 55], although they are not 
always practical ones. Similar work was done for 
length-2" DFTs, showing the linear multiplicative 
complexity of  the algorithm [28, 35, 105] but also 
the lack of  practical algorithms achieving this 
minimum (due to the tremendous increase in the 
number of  additions [35]). 
Signal Processing 
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Considering implementations, the situation is of 
course more involved since many more parameters 
have to be taken into account than just the number 
of  operations. 

Nevertheless, it seems that both the radix-4 
and the split-radix algorithm are quite popular  
for lengths which are powers of 2, while the 
PFA, thanks to its better structure and easier 
implementation, wins over the WFTA for lengths 
having coprime factors. 

Recently, however, new questions have come up 
because in software on the one hand, new pro- 
cessors may require different solutions (vector pro- 
cessors, signal processors), and on the other hand, 
the advent of  VLSI for hardware implementations 
sets new constraints (desire for simple structures, 
high cost of  multiplications versus additions). 

3. Motivation (or: why dividing is also conquering) 

This section is devoted to the method that under- 
lies all fast algorithms for DFT, that is the 'divide 
and conquer'  approach. 

The discrete Fourier transform is basically a 
matrix-vector product. Calling (x0, x ~ , . . . ,  XN_0 x 
the vector of  the input samples, 

(X0, X1 . . . .  , XN_1) r 

the vector of  transform values and W N the primi- 
tive Nth  root of  unity (WN =e-J2~/N), the DFT 
can be written as 

T  olr, , , ' ' ' 1 .x ,  / / 1 wN w~, w~ ... w~-' / 
[x~,-d  I.i w~ -' w~ ;~-" . . . . . .  w ~  - '~N-'] LI°1 x1 

× x 2  : • 

x 3 

- 1  

(1) 
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The direct evaluation of the matrix-vector prod- 
uct in (1) requires of the order of N 2 complex 
multiplications and additions (we assume here that 
all signals are complex for simplicity). 

The idea of  the 'divide and conquer'  approach 
is to map the original problem into several sub- 
problems in such a way that the following 
inequality is satisfied: 

cost(subproblems) + cost(mapping) 

<cost(original problem). (2) 

But the real power of the method is that, often, 
the division can be applied recursively to the sub- 
problems as well, thus leading to a reduction of 
the order of  complexity. 

Specifically, let us have a careful look at the 
DFT transform in (3) and its relationship with the 
z-transform of  the squence {xn} as given in (4). 

N - - 1  

Xk = ~. x ,W~,  k = 0 , . . . , N - 1 ,  (3) 
i = 0  

N - - I  

X ( z )  E -'  = x,z . (4) 
i = 0  

{Xk} and {x~} form a transform pair, and it is 
easily seen that Xk is the evaluation of X ( z )  at 
point z = wTvk: 

x k  = X ( z ) z =  w~ k. (5) 
Furthermore, due to the sampled nature of  {x,}, 

{Xk} is periodic, and vice versa: since {Xk} is 
sampled, {x,} must also be periodic. 

From a physical point of  view, this means that 
both sequences {x,} and {Xk} are repeated in- 
definitely with period N. 

This has a number of  consequences as far as 
fast algorithms are concerned. 

All fast algorithms are based on a divide and 
conquer strategy, we have seen this in Section 2. 
But how shall we divide the problem (with the 
purpose of  conquering it)? 

The most natural way is, of  course, to consider 
subsets of  the initial sequence, take the DFT of  
these subseqnences, and reconstruct the DFT of 
the initial sequence from these intermediate results. 

Let It, / = 0 , . . . , r - 1  be the partition of 
{0, 1 , . . . ,  N - 1 }  defining the r different subsets 
of the input sequence. Equation (4) can now be 
rewritten as 

N - I  r - I  
X ( z ) =  Z x, z - i =  ~, Z xi z-i, (6) 

i = 0  1--0 iEl i 

and, normalizing the powers of z with respect to 
some x0t in each subset It: 

r - -1  
X ( z )  = Z z-'o, Z x,z -'÷'°'- (7) 

I = 0  ielt 

From the considerations above, we want the 
replacement of z by W ~  k in the innermost sum of  
(7) to define an element of  the DFT of {xi[i ~ It}. 
Of course, this will be possible only if the subset 
{xil i  ~ It}, possibly permuted, has been chosen in 
such a way that it has the same kind of  periodicity 
as the initial sequence. In what follows, we show 
that the three main classes of  FFT algorithms can 
all be casted into the form given by (7). 
- - I n  some cases, the second sum will also involve 
elements having the same periodicity, and hence 
will define DFTs as well. This corresponds to the 
case of Good 's  mapping: all the subsets Ij have 
the same number of  elements m = N / r  and 
(rn, r ) =  1. 
- - I f  this is not the case, (7) will define one step 
of  an FFT with twiddle factors: when the subsets 
/l all have the same number of elements, (7) defines 
one step of  a radix-r FFT. 
- - I f  r = 3, one of  the subsets having N / 2  elements, 
and the other ones having N / 4  elements, (7) is 
the basis of a split-radix algorithm. 

Furthermore, it is already possible to show from 
(7) that the divide and conquer approach will 
always improve the efficiency of the computation. 

To make this evaluation easier, let us suppose 
that all subsets It have the same number of  ele- 
ments, say N1. If  N = N1 • N2, r = N2, each of the 
innermost sums of (7) can be computed with N 2 
multiplications, which gives a total of N 2 N  2, when 
taking into account the requirement that the sum 
over i ~ It defines a DFT. The outer sum will need 
r - -N 2  multiplications per output point, that is 
N2 • N for the whole sum. 

Vol. 19, No. 4. April 1990 



266 

Hence, the total number of multiplications 
needed to compute (7) is 

N2" N + N2" N~ 

= N  1 • N2( NI + N2) < N 2" N~ 

if N1,  N 2 > 2 ,  (8) 

which shows clearly that the divide and conquer 
approach, as given in (7), has reduced the number 
of  multiplications needed to compute the DFT. 

Of course, when taking into account that, even 
if the outermost sum of  (7) is not already in the 
form of a DFT, it can be rearranged into a DFT 
plus some so-called twiddle-factors, this mapping 
is always even more favorable than is shown by 
(8), especially for small N~, /V2 (for example, the 
length-2 DFT is simply a sum and difference). 

Obviously, if N is highly composite, the division 
can be applied again to the subproblems, which 
results in a number of  operations generally several 
orders of magnitude better than the direct matrix- 
vector product. 

The important point in (2) is that two costs 
appear explicitly in the divide and conquer 
scheme: the cost of  the mapping (which can be 
zero when looking at the number of  operations 
only) and the cost of  the subproblems. Thus, 
different types of  divide and conquer methods 
attempt to find various balancing schemes between 
the mapping and the subproblem costs. In the 
radix-2 algorithm, for example, the subproblems 
end up being quite trivial (only sum and differen- 
ces), while the mapping requires twiddle factors 
that lead to a large number of  multiplications. On 
the contrary, in the prime factor algorithm, the 
mapping requires no arithmetic operation (only 
permutations), while the small DFTs that appear 
as subproblems will lead to substantial costs since 
their lengths are coprime. 

4. FFTs with twiddle factors 

The divide and conquer approach reintroduced 
by Cooley and Tukey [25] can be used for any 
Signal Processing 
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composite length N but has the specificity of  
always introducing twiddle factors. It turns out 
that when the factors of  N are not coprime (for 
example if N = 2"), these twiddle factors cannot 
be avoided at all. This section will be devoted to 
the different algorithms in that class. 

The difference between the various algorithms 
will consist in the fact that more or fewer of  these 
twiddle factors will turn out to be trivial multiplica- 
tions, such as 1, -1 ,  j, - j .  

4.1. The Cooley- Tukey mapping 

Let us assume that the length of  the transform 
is composite: N = N~ • N2. 

As we have seen in Section 3, we want to parti- 
tion { x i l i = O , . . . ,  N - l }  into different subsets 
{x i l i s  I~} in such a way that the periodicities of  
the involved subsequences are compatible with the 
periodicity of  the input sequence, on the one hand, 
and allow to define DFTs of  reduced lengths on 
the other hand. 

Hence, it is natural to consider decimated ver- 
sions of  the initial sequence: 

I,, = {n2N, + n,}, 

nl = 0 , . . . ,  N 1 - 1 ,  n2=0 . . . .  , N 2 -  1, 

which, introduced in (6) gives 

N I - I  N2--1 
X(z)= Z Y x.2,,,,+.,z -~"~'+"°, 

nl=O n2~O 

(9) 

(lO) 

(11) 

Using the fact that 

W ~  rt -~" e-J2"rrNli/N = e- -J2~i /N2 = WN2,i (12) 

N1-1 742-1 
X(z)= Z z-", Z x.~N,+.,z-"#'. 

h i = 0  n2=0 

x~ = X(z)J=:w~ 
NI--1 N2--1 

w n t  k wn2N1 k 
= ~ " ' N  ~" X n 2 N , + n , - - N  " 

n t =0  n2=0 

and, after normalizing with respect to the first 
element of  each subset, 
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(11) can be rewritten as 

N I - - 1  N2--1  
W ~k W ~k (13) x~= Y ..N E x.~,,,,+,,..N2. 

n 1 = 0  n2=O 

Equation (13) is now nearly in its final form, 
since the right-hand sum corresponds to N1 DFTs 
of  length N2, which allows the reduction of arith- 
metic complexity to be achieved by reiterating the 
process. Nevertheless, the structure of  the Cooley-  
Tukey FFT is not fully given yet. 

Call Yn,,k the kth output of the nlth such DFT: 
N2-1 

. . . .  ~k (14) Ynb k = ~., Xn2Nl+n I ~/N2 • 
n 2 ~ 0  

Note that in Y,,,k, k can be taken modulo N2, 
because 

W ~  = WN~N~+k' = WN.N~ W ~ =  W ~ .  (15) 

With this notation, X k  becomes 
N I - - I  

Y,, W n'k (16) 
h i = 0  

At this point, we can notice that all the X k  for 
ks being congruent modulo N2 are obtained from 
the same group of N~ outputs of  Y.,.k. ThUS, we 
express k as 

k = k i N 2 +  k2 

kl = 0 , . . . ,  N l - 1 ,  k2 = 0 . . . . .  N 2 -  1. 
(17) 

Obviously, Yn,,k is equal to Y,,,k2 since k can be 
taken modulo N2 in this case (see (12) and (15)). 
Thus, we rewrite (16) as 

N I - - 1  

X k ,  N2+k2 = ~ Ynl,k2 W ~  (klNE+k2), ( 1 8 )  
n 1 =0 

which can be reduced, using (12), to 

N t - - 1  

X k ,  N~+k~ = Y. Yn,.k~ W"lk~W"Lk' (19) "" N "" N 1 " 
n l = 0  

Calling Yrnl,k2 the result of  the first multiplication 
(by the twiddle factors) in (19) we get 

y ,  - V ll/-nl k2 ,,,k~- • ,.,k~ ,, N • (20) 

We see that the values of  XklN2+k 2 a r e  obtained 
from N2 DFTs of length N~ applied on Ytnl,k2: 

N1--1  
XklN2+k2 ~. V '  Ulnlkl (21) ~t n l , k  2 rv N I  • 

n l = O  

We recapitulate the important steps that lead to 
(21). First, we evaluated N~ DFTs of length N2 in 
(14). Then, N multiplications by the twiddle fac- 
tors were performed in (20). Finally, N2 DFTs of  
length N1 lead to the final result (21). 

A way of  looking at the change of variables 
performed in (9) and (17) is to say that the one- 
dimensional vector xi has been mapped into a 
two-dimensional vector xn,,,: having N1 lines and 
?42 columns. The computation of the DFT is then 
divided into N~ DFTs on the lines of the vector 
x ...... a point by point multiplication with the 
twiddle factors and finally N2 DFTs on the 
columns of  the preceding result. 

Until recently, this was the usual presentation 
of FFT algorithms, by the so-called 'index map- 
pings' [4, 23]. In fact, (9) and (17), taken together, 
are often referred to as the 'Cooley-Tukey map- 
ping' or 'common factor mapping'. However, the 
problem with the two-dimensional interpretation 
is that it does not include all algorithms (like the 
split-radix algorithm that will be seen later). Thus, 
while this interpretation helps the understanding 
of some of  the algorithms, it hinders the compre- 
hension of  others. In our presentation, we tried to 
enhance the role of  the periodicities of the prob- 
lem, which result from the initial choice of the 
subsets. 

Nevertheless, we illustrate pictorially a length-15 
DFT using the two-dimensional view with N1 = 3, 
N2 = 5 (see Fig. 1), together with the Cooley-Tukey 
mapping in Fig. 2, to allow a precise comparison 
with Good's  mapping that leads to the other class 
of  FFTs: the FFTs without twiddle factors. Note 
that for the case where N~ and ?42 are coprime, 
the Good's  mapping will be more efficient as shown 
in the next section, and thus this example is for 
illustration and comparison purpose only. Because 
of the twiddle factors in (20), one cannot inter- 
change the order of DFTs once the input mapping 
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x 6 
/ x3 
x( x 7 
/ x4 
x 1 x 8 

lx0x3x6xgX12  Xx9 
Xl/, 

x 4 

- -  Xl 0 

Fig. 1. 2-D view of the length-15 Cooley-Tukey FFT. 

o) N1 =3,N2=S 
I Xo Xl ............. X13 X1/., [ 

Xo X3 X6 X9 X12 
X 1 X/., X 7 X10X13 
X 2 X 5 X 8 Xll Xl/., 

b)  Nl=5,N2 =3 

X 0 X 5 Xl 0 
X 1 X 6 Xll 
X 2 X7 X12 
X 3 X 8 iX13 
X/., X 9 'X14 

Fig. 2. Cooley-Tukey mapping. (a) N t = 3, N 2 = 5; (b) N 1 = 5, 
N2=3. 

has been chosen. Thus, in Fig. 2(a), one has to 
begin with the DFTs on the rows of the matrix. 
Choosing N1 = 5, N2 = 3 would lead to the matrix 
of  Fig. 2(b), which is obviously different from just 
transposing the matrix of  Fig. 2(a). This shows 
again that the mapping does not lead to a true 
two-dimensional transform (in that case, the 
order of  row and column would not have any 
importance).  
Signal Processing 

4.2. Radix-2  and radix-4 algorithms 

The algorithms suited for lengths equal to 
powers of  2 (or 4) are quite popular  since sequen- 
ces of  such lengths are frequent in signal processing 
(they make full use of  the addressing capabilities 
of  computers  or DSP systems). 

We assume first that N = 2". Choosing N~ = 2 
and N2 = 2 " -1=  N / 2  in (9) and (10) divides the 
imput sequence into the sequence of even and odd 
numbered samples, which is the reason why this 
approach is called 'decimation in time' (DIT).  Both 
sequences are decimated versions, with different 
phases, of  the original sequence. Following (17), 
the output consists of  N / 2  blocks of  2 values. 
Actually, in this simple case, it is easy to rewrite 
(14), (21) exhaustively: 

N/2-1 
w"2k2 Xk2= ~, X2n2 ,, N/2 

n2=0 

N/2--1 
k2 wn2k2 (22a) Jr W N  ~ X2n2+1 "" N/2'  

.2=0 

N/2--1 
wn2k2 XN/2+k2 = ~ X2n2 - - N / 2  

n2=0 

N/2--1 
k~ W "~k~ (22b) -- W N  Y~ X2"2+I "" N/2" 

n2=O 

Thus, X,, and XN/E+m are obtained by 2-point 
DTFs on the outputs of  the l eng th -N/2  DFTs of  
the even and odd-numbered sequences, one of  
which is weighted by twiddle factors. The structure 
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×0" 

N=4 
Xl ~ - -  

x 2 

x 3 

x~ )~l DFT 
N=4 

X 
x 6 • 

x 7 

W 8 

• X 0 xo • 

.X/. x I .-~ 

• X 1 x 2 

• X5 x 3 

• X 2  x / ,  

• X6 x 5 J 

.X 3 x6 J 

• X 7  x 7 • 

__ X 0 
DFT 

N=4 - -  X 2 

- -  1( 6 

DFT - -  x l  

N=4 __ X 3 

- -  X 7 

division DFT multiplication DFT 
info even of by of 
and odd N/2 twiddle 2 
numbered factors 
sequences 

DFT Multiplication DFT 
of by of 
2 lwiddle NI 2 

factors 

Fig. 4. D e c i m a t i o n  in f r equency  radix-2  FFT. 

Fig. 3. D e c i m a t i o n  in t ime  radix-2  FFT. 

made by a sum and difference followed (or pre- 
ceded) by a twiddle factor is generally called a 
'butterfly'. The DIT radix-2 algorithm is schemati- 
cally shown in Fig. 3. 

Its implementation can now be done in several 
different ways. The most natural one is to reorder 
the input data such that the samples of which the 
DFT has to be taken lie in subsequent locations. 
This results in the bit-reversed input, in-order out- 
put decimation in time algorithm. Another possi- 
bility is to selectively compute the DFTs over the 
input sequence (taking only the even and odd 
numbered samples), and perform an in-place com- 
putation. The output will now be in bit-reversed 
order. Other implementation schemes can lead to 
constant permutations between the stages (con- 
stant geometry algorithm [15]). 

If  we reverse the role of  N1 and N2, we get the 
decimation in frequency (DIF) version of  the 
algorithm. Inserting N1 = N/2 and N2 = 2 into (9), 
(10) leads to (again from (14) and (21)) 

N/2-1 
X 2 k , =  ~. W~y~(X.n,"]-XN/2+nl), ( 2 3 a )  

n l = 0  

N/2-1 
I I  rl'll k I i i  t?'ll / ~. 

X 2 k l +  1 = ~ W N / 2  WNt ,  Xni -- XN/2+nl ). 
n l = O  

(23b) 

This first step of  a DIF algorithm is represented 
in Fig. 5(a), while a schematic representation of  
the full DIF algorithm is given in Fig. 4. The duality 
between division in time and division in frequency 
is obvious, since one can be obtained from the 
other by interchanging the role of {xi} and {Xk}. 

Let us now consider the computational com- 
plexity of  the radix-2 algorithm (which is the same 
for the DIF and DIT version because of the duality 
indicated above). From (22) or (23), one sees that 
a DFT of length N has been replaced by two DFTs 
of length N/2, and this at the cost of N/2 complex 
multiplications as well as N complex additions. 
Iterating the scheme log2 N -  1 times in order to 
obtain trivial transforms (of length 2) leads to the 
following order of magnitude of the number of 
operations: 

OM[DFTradix.2] ~ N/2(log2 N - 1) 

complex multiplications, 
(24a) 
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DF1 

 iiii' 
x15" 

DFT 
B 

DFT 
8 

X 0 

X14 
Xl 

• X15 

ii X12 
x 4 Xl 

X13 
X2 
Xl/. 

2 X3 

x15 X15 

×o DFT ' ~  DFT x° 
x~ - 21/+ I~ 8 

Xlz. 
x8 ~ ~ DFT I : xl 

x 1 2 ~  EE Z ~ X2 
| ~ /+ I • X15 

Fig. 5. Comparison of various DIF algorithms for the length-16 
DFT. (a) Radix-2; (b) radix-4; (c) split-radix. 

OA[DFWradix_2] ~ N(log2 N -  1) 

complex additions. (24b) 

A closer look at the twiddle factors will enable 
us to still reduce these numbers. For comparison 
purposes, we will count the number of  real 
operations that are required, provided that the 
multiplication of  a complex number x by W~ is 
done using 3 real multiplications and 3 real addi- 
tions [12]. Furthermore, if i is a multiple of  N/4,  
no arithmetic operation is required, and only 2 
real multiplications and additions are required if 
i is an odd multiple of N/8.  Taking into account 
Signal Processing 

these simplifications results in the following total 
number of  operations [12]: 

M[DFTradix.2] = 3 N/2  log2 N - 5 N + 8, 
(25a) 

A[DFTradix_2] = 7N/2  log2 N - 5N + 8. 
(25b) 

Nevertheless, it should be noticed that these 
numbers are obtained by the implementation of  4 
different butterflies (1 general plus 3 special cases), 
which reduces the regularity of  the programs. An 
evaluation of  the number of real operations for 
other number of  special butterflies, is given in [4], 
together with the number of  operations obtained 
with the usual 4-mult, 2-adds complex multiplica- 
tion algorithm. 

Another case of interest appears when N is a 
power of  4. Taking N1 = 4  and N2= N/4,  (13) 
reduces the length-N DFT into 4 DFTs of  length 
N/4,  about 3N/4  multiplications by twiddle fac- 
tors, and N/4  DFTs of  length 4. The interest of  
this case lies in the fact that the length-4 DFTs do 
not cost any multiplication (only 16 real additions). 
Since there are log4 N -  1 stages and the first set 
of twiddle factors (corresponding to nl = 0 in (20)) 
is trivial, the number of complex multiplications 
is about 

OM[OFTradix_4] ~ 3N/4(log4 N - 1). (26) 

Comparing (26) to (24a) shows that the number 
of  multiplications can be reduced with this radix-4 
approach by about a factor of 3/4. Actually, a 
detailed operation count using the simplifications 
indicated above gives the following result [12]: 

M[DFTradix.4] 

= 9N/8  log2 N - 4 3 N / 1 2  + 16/3, (27a) 

A[DFTraeix.4] 

= 25N/8  log2 N -  43N/12 + 16/3. (27b) 

Nevertheless, these operation counts are 
obtained at the cost of  using six different butterflies 
in the programming of  the FFT. Slight additional 
gains can be obtained when going to even higher 
radices (like 8 or 16) and using the best possible 
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algorithms for the small DFTs. Since programs 
with a regular structure are generally more com- 
pact, one often uses recursively the same decompo- 
sition at each stage, thus leading to full radix-2 or 
radix-4 programs, but when the length is not a 
power of the radix (for example 128 for a radix-4 
algorithm), one can use smaller radices towards 
the end of  the decomposition. A length-256 DFT 
could use 2 stages of radix-8 decomposition, and 
finish with one stage of radix-4. This approach is 
called 'mixed-radix' approach [45] and achieves 
low arithmetic complexity while allowing flexible 
transform length (not restricted to powers of  2, 
for example), at the cost of a more involved 
implementation. 

4.3. Split-radix algorithm 
As already noted in Section 2, the lowest known 

number of both multiplications and additions 
for length-2" algorithms was obtained as early as 
1968 and was again achieved recently by new 
algorithms. Their power was to show explicitly 
that the improvement over fixed- or mixed-radix 
algorithms can be obtained by using a radix-2 and 
a radix-4 simultaneously on different parts of  the 
transform. This allowed the emergence of new 
compact and computationally efficient programs 
to compute the length-2" DFT. 

Below, we will try to motivate (a posteriori!) the 
split-radix approach and give the derivation of the 
algorithm as well as its computational complexity. 

When looking at the DIF radix-2 algorithm given 
in (23), one notices immediately that the even 
indexed outputs X2k, are obtained without any 
further multiplicative cost from the DFT of a 
length-N/2  sequence, which is not so well-done 
in the radix-4 algorithm for example, since relative 
to that length-N/2  sequence, the radix-4 behaves 
like a radix-2 algorithm. This lacks logical sense, 
because it is well-known that the radix-4 is better 
than the radix-2 approach. 

From that observation, one can derive a first 
rule: the even samples of  a DIF decomposition 
X2k should be computed separately from the other 
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ones, with the same algorithm (recursively) as the 
DFT of the original sequence (see [53] for more 
details). 

However, as far as the odd indexed outputs X2k+~ 
are concerned, no general simple rule can be estab- 
lished, except that a radix-4 will be more efficient 
than a radix-2, since it allows to compute the 
samples through two N/4 DFTs instead of a single 
N/2 DFT for a radix-2, and this at the same 
multiplicative cost, which will allow the cost of 
the recursions to grow more slowly. Tests showed 
that computing the odd indexed output through 
radices higher than 4 was inefficient. 

The first recursion of  the corresponding 'split- 
radix' algorithm (the radix is split in two parts) is 
obtained by modifying (23) accordingly: 

N/2-1 
wT rntk I / X2k~= Y~ WN/ztX,,+ XN/2+,~), (28a) 

n 1 =0 

N/4 1 
wn~k~ W n t  

X 4 k l + l  ~--- ~ - - N / 4 - - N  
n 1 =0 

× [ (x. ,  - xN/2+. , )  

+j(xn ,+N/4  -- Xn,+3N/4)], ( 2 8 b )  

N/4--1 
i l l n l  kl I~/'3 n 1 

X 4 k t +  3 = ~ vv N / 4  "" N 
n 1 =0 

x [(x.~ + xN/2+.~) 
- j (x ,~+u /4 -  x,,+3N/4)]. (28c) 

The above approach is a DIF SRFFT, and is 
compared in Fig. 5 with the radix-2 and radix-4 
algorithms. The corresponding DIT version, being 
dual, considers separately the subsets {x2i}, {x4i+~} 
and {x4~+3} of the initial sequence. 

Taking Io={2i}, I~={4i+1},  I2={4i+3} and 
normalizing with respect to the first element of  the 
set in (7) leads to 

X k  =~Z.~ "~'2i~ |][zk(2i) " l - r "  N " w k  ~'~ X 4 i + l  |'l[/rk(4i+l)-kvvN 
1o I t 

lll)'k(4i+ 3)-3k  (29) + W ~  ~ x4,+3 ,,  N 
lz 

which can be explicitly decomposed in order to 
make the redundancy between the computation of  

Vol. 19, No. 4, April 1990 



272 P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 

Xk,  Xk+N/4, Xk+N/2 a n d  XR+3N/4 m o r e  apparent: 
N/2--1 N/4-1 

x~ Z '~ w ~  E '~ = X2i WN/2 "~- X4i+1 WN/4 
i=0 i : 0  

N/4-1 
+ w ~  E '~ X4i+ 3 WN/4,  (30a) 

i=0 

N/2-1 y~ ik X2i WN/2 
i=0 

N/4-- 1 
+J w k  X ,k X4i+l WN/4 

i=0 

N/4-1 
- j W ~  Y, ,k X4i+3 WN/4,  

i=0 
(30b) 

Xk+N/4 

N/2--1 
x2i WN/2 

i=0 
N/4--1 ik - W k ~ X4i+l WN/4 

i=0 

N/4-1 
W ik - W ~  2 X4i+3 N/4, 

i=0 
(30c) 

Xk+N/2 ~-- 

N/2-1 ~ ik x2iWN/2 
i=0 

N/4--1 ik - j W  k ~ X4i+1WN/4 
i=0 

N/4--1 
+ j W ~  ~ ik X4i+3 WN/4. (30d) 

i=0 

Xk+3N/4 

The resulting algorithms have the minimum 
known number of operations (multiplications plus 
additions) as well as the minimum number of  
multiplications among practical algorithms for 
lengths which are powers of 2. The number of 
operations can be checked as being equal to 

M[DFZsp l i t . r ad ix ]  --- N log2 N - 3 N + 4, 
(31a) 

A [  DFTsplit_radix] = 3 N log: N - 3 N + 4. 
(31b) 

These numbers of operations can be obtained 
with only 4 different building blocks (with a com- 
plexity slightly lower than the one of a radix-4 
butterfly), and are compared with the other 
algorithms in Tables 1 and 2. 

Of course, due to the asymmetry in the decompo- 
sition, the structure of  the algorithm is slightly 
more involved than for fixed-radix algorithms. 
Nevertheless, the resulting programs remain fairly 
simple [113] and can be highly optimized. Further- 
more, this approach is well suited for applying 
FFTs on real data. It allows an in-place, butterfly 
style implementation to be performed [65, 77]. 

The power of this algorithm comes from the fact 
that it provides the lowest known number of  
operations for computing length-2" FFTs, while 

Table 1 
Number of non trivial real multiplications for various FFTs on complex data 

N Radix 2 Radix 4 SRFFT PFA Winograd 

16 24 20 20 
30 100 68 

32 88 68 
60 200 136 

64 264 208 196 
120 460 276 

128 712 516 
240 1100 632 

256 1800 1392 1284 
504 2524 1572 

512 4360 3076 
1008 5804 3548 

1024 10248 7856 7172 
2048 23560 16388 

2520 17660 9492 

Signal Processing 



P. Duhamel, M. Vetterli / A tutorial on fast Fourier transforms 

Table 2 
Number of real additions for various FFTs on complex data 

N Radix 2 Radix 4 SRFFT PFA Winograd 

16 152 148 148 
30 384 384 

32 408 388 
60 888 888 

64 1032 976 964 
120 2076 2076 

128 2504 2308 
240 4812 5016 

256 5896 5488 5380 
504 13388 14540 

512 13566 12292 
1008 29548 34668 

1024 30728 28336 27652 
2048 68616 61444 

2520 84076 99628 
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being implemented wi th  compact  programs. We 
shall see later that there are some arguments tend- 
ing to show that it is actually the best possible 
compromise.  

Note that the number  of  multiplications in (31 a) 
is equal to the one obtained with the so-called 
' real-factor '  algorithms [44, 24]. In that approach,  
a linear combination of  the data, using additions 
only, is made such that all twiddle factors are either 
pure real or pure imaginary. Thus, a multiplication 
of  a complex number  by a twiddle factor requires 
only 2 real multiplications. However, the real fac- 
tor algorithms are quite costly in terms of addi- 
tions, and are numerically ill-conditioned (division 
by small constants). 

4.4. R e m a r k s  on FFTs  with twiddle factors  

The Cooley-Tukey mapping  in (9) and (17) is 
generally applicable, and actually the only possible 
mapping when the factors on N are not coprime. 
While we have paid particular attention to the case 
N = 2", similar algorithms exist for N =pm (p an 
arbitrary prime). However,  one of the elegances of  
the length-2 n algorithms comes from the fact that 
the small DFTs (lengths 2 and 4) are multiplica- 
tion-free, a fact that does not hold for other radices 

like 3 or 5, for instance. Note, however, that it is 
possible, for radix-3, either to completely remove 
the multiplication inside the butterfly by a change 
of  base [26], at the cost of  a few multiplications 
and additions, or to merge it with the twiddle factor 
[49] in the case where the implementat ion is based 
on the 4-mult 2-add complex multiplication 
scheme. It was also recently shown that, as soon 
as a radix p2 algorithm was more efficient than a 
radix-2 algorithm, a split-radix p /p2  was more 
efficient than both of them [53]. However,  unlike 
the 2 n case, efficient implementations for these p" 
split-radix algorithms have not yet been reported. 
More efficient mixed radix algorithms also remain 
to be found (initial results are given in [40]). 

5. FFTs based on eostless mono- to multi- 
dimensional mapping 

The divide and conquer strategy, as explained 
in Section 3, has few requirements for feasibility: 
N needs only to be composite,  and the whole DFT 
is computed from DFTs on a number  of  points 
which is a factor of  N (this is required for the 
redundancy in the computat ion of  (11) to be 
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apparent). This requirement allows the expression 
of  the innermost sum of  (11) as a DFT, provided 
that the subsets It have been chosen in such a way 
that xi, i ~ / t  is periodic. But, when N factors 
into relatively prime factors, say N = N 1 - N 2 ,  
(NI,  N2) = 1, a very simple property will allow a 
stronger requirement to be fulfilled: 

Starting from any point of the sequence xi, you 
can take as a first subset with compatible periodic- 
ity either {x~+N1. nz[ n2 ----- 1 , . . . ,  N 2 - 1} or, equiva- 
lently { X i + N 2 . , , l ] n l =  1 , . . . ,  N~- I} ,  and both 
subsets only have one common point x~ (by com- 
patible, it is meant that the periodicity of  the sub- 
sets divides the periodicity of  the set). This allows 
a rearrangement of  the input (periodic) vector into 
a matrix with a periodicity in both dimensions 
(rows and columns), both periodicities being com- 
patible with the initial one (see Fig. 6). 

5.1. Basic tools 

FFTs without twiddle factors are all based on 
the same mapping, which is explained in Section 
5.1.1. This mapping turns the original transform 
into sets of  small DFTs, the lengths of  which are 

I01112131, 1 1617181911011111211311 J 
LL 

i 
0.)Good's mopping 0 3 6 9 12 

I 5 8 11 14 2 

10 13 1 4 7 

b)CRT mopping 0 6 12 3 g 

10 1 7 13 /. 

5 11 2 8 14 

Fig. 6. The prime factor mappings for  N =  15. 
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coprime. It is therefore necessary to find efficient 
ways of  computing these short-length DFTs. Sec- 
tion 5.1.2 explains how to turn them into cyclic 
convolutions for which efficient algorithms are 
described in Section 5.1.3. 

5.1.1. The mapping o f  Good [32] 
Performing the selection of  subsets described in 

the introduction of Section 5 for any index i is 
equivalent to writing i as 

i = ( n  1 • N 2 q -  n 2 • N 1 ) N ,  

nx---- 1 , . . . ,  N I - 1 ,  n 2 =  1 , . . . ,  N 2 - 1 ,  

N = N~ N2, (32) 

and, since N1 and N2 are coprime, this mapping 
is easily seen to be one to one. (It is obvious from 
the right-hand side of  (32) that all congruences 
modulo N~ are obtained for a given congruence 
modulo N2, and vice versa.) 

This mapping is another arrangement of  the 
'Chinese Remainder Theorem' mapping, which 
can be explained as follows on index k. 

The Chinese Remainder Theorem (CRT) states 
that if we know the residue of  some number k 
modulo two relatively prime numbers N~ and N2, 
it is possible to reconstruct (k)NIN: as follows: 

Let (k)N, = k~ and ( k ) ~  = k2. Then the value of  
k mod N ( N  = N~ • N2) can be found by 

k = (N~ t I k2 + N2t2k,)N, (33) 

tl being the multiplicative inverse of N1 mod N2, 
that is (tl,  N~)N~=I, and t2 the multiplicative 
inverse of  N2 rood N1 (these inverses always exist, 
since N1 and N2 are coprime: (N1, N2) = 1). 

Taking into account these two mappings in the 
definition of  the DFT (3) leads to 

NI--1 N 2 - 1  

XNitlk2+N2t2kl = ~ ~ XnlN2+n2NI 
n l~O r12=O 

W(~v, N2 + N'":)~ N d' kz + N2'2k O, (35) 

but 
N 2 W N = WN, (36) 
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and 

wN~,~ W<~ ~'#~, = WN,, (37) 

which implies 
NI--1 N2--1 

XNlt lk2+N2t2k  1 -~- ~ ~, XnIN2+n2N 1 
nl=O n2=O 

w"'k~ w "~k~ (38) 
X , ,  N1  . .  N 2  , 

which, with 

X/rll,tl2 ~ XrlIN2+rl2N 1 

and 

Xtkl,k2 = X Nittk2+ N2t2k I , 

leads to a formulation of the initial DFT into a 
true bidimensional transform: 

Nt--1 N2-1 
Xtklk2 = ~-~ E ?,el w n l k l  w n2k2 (39) ~-rllrl 2 ' '  N1 "" N2 • 

rll=O n2=0 

An illustration of the prime factor mapping is 
given in Fig. 6(a) for the length N = 15 - 3-5, and 
Fig. 6(b) provides the CRT mapping. Note that 
these mappings, which were provided for a fac- 
torization of N into two coprime numbers easily 
generalizes to more factors, and that reversing the 
roles of N~ and N2 results in a transposition of 
the matrices of  Fig. 6. 

5.1.2. D F T  computation as a convolution 
With the aid of  Good's  mapping, the DFT 

computation is now reduced to that of  a multi- 
dimensional DFT, with the characteristic that 
the lengths along each dimension are coprime. 
Furthermore, supposing that these lengths are 
small is quite reasonable, since Good's  mapping 
can provide a full multi-dimensional factorization 
when N is highly composite. 

The question is now to find the best way of 
computing this M-D DFT and these small-length 
DFTs. A first step in that direction was obtained 
by Rader [43] who showed that a DFT of prime 
length could be obtained as the result of a cyclic 
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convolution: Let us rewrite (1) for a prime length 
N = 5 :  

XI 1 W 1 W 5  2 W 3 W 4] Xl 

x 2 - -  1 wq (40) 
X3 1 W 3 W51 W 4 W2 / x3 
X,  1 W~ W 3 W 2 W~J x4 

Obviously, removing the first column and first 
row of the matrix will not change the problem, 
since they do not involve any multiplication. 
Furthermore, careful examination of the remaining 
part of the matrix shows that each column and 
each row involves every possible power of  Ws, 
which is the first condition to be met for this part 
of  the DFT to become a cyclic convolution. Let 
us now permute the last two rows and last two 
columns of the reduced matrix: 

ix1 rw w w4 w l[Xl] 
xq=/w  w: / x2  (41) / / W4 wq 
x u  

Equation (41) is then a cyclic correlation (or a 
convolution with the reversed sequence). 

It turns out that this a general result. 
It is well-known in number theory that the set 

of numbers lower than a prime p admits some 
primitive elements g such that the successive 
powers of g modulo p generate all the elements 
of  the set. In the example above, p = 5, g = 2, and 
we observe that 

gO = 1, g l  = 2, g 2  = 4, 43  = 8 = 3 (mod 5). 

The above result (41) is only the writing of  the 
g. DFT in terms of the successive powers of w e. 

p--1 
X'k=  ~ xiW~ k, k - - l , . . . , p - 1 ,  (42) 

i=1 

(ik)p = ((i)p. (k)p)p - -  ((gU,)p(gOk)p)p, 
p--2 

Xgo,= Y~ Xg-," (Wg) "'+v', v i=0  . . . .  , p - E ,  
u i ~ 0 

(43) 
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and the length-p DFT turns out to be a length 
(p - 1) cyclic correlation: 

{X~} = {Xg} * { W~}. (44) 

5.1.3. C o m p u t a t i o n  o f  the cyclic convolut ion 
Of course (43) has changed the problem, but it 

is not solved yet. And in fact, Rader 's  result was 
considered as a curiosity up to the moment  when 
Winograd [55] obtained some new results on the 
computat ion of  cyclic convolution. 

And, again, this was obtained by application of  
the CRT. In fact, the CRT, as explained in (33), 
(34) can be rewritten in the polynomial  domain: 
if we know the residues of  some polynomial  K ( z )  
modulo two mutually prime polynomials 

(K( z ) ) v . ( z )  = KI(Z), 
( P , ( z ) ,  P2(z)) = 1, 

(K(z))v2(~) = K2( z ) ,  
(45) 

we shall be able to obtain 

K ( z )  mod PI(Z) • P2(z) = P ( z )  

by a procedure similar to that of (33). 
This fact will be used twice in order to obtain 

Winograd's method of computing cyclic con- 
volutions: 

A first application of the CRT is the breaking 
of the cyclic convolution into a set of polynomial 
products. For more convenience, let us first state 
(44) in polynomial notation: 

X ' ( z )  = x ' ( z ) ,  w(z )  mod (z p-'  - 1). (46) 

Now, since p - 1 is not prime (it is at least even), 
z p - ' -  1 can be factorized at least as 

z v - '  - 1 = ( z (P- ' ) /2+ 1) ( z  ( p - ' ) / 2 -  1), (47) 

and possibly further, depending on the value of  p. 
These polynomial  factors are known and named 
cyclotomic polynomials ¢q(Z) .  They provide the 
full factorization of  any z N - 1: 

z N - 1 = rI q~q(Z). (48) 
q[N 

A useful property of  these cyclotomic poly- 
nomials is that the roots of  (pq(z) are all the qth 
Signal Processing 

primitive roots of  unity, hence degree {~0q(Z)}= 
(p (q), which is by definition the number  of  integers 
lower than q and coprime with it. Namely, if 
Wq = e -j2=/q, the roots of  q~q(Z) are { W~, [ (r, q) = 1}. 

As an example,  for p = 5, z p- '  - 1 = z 4 -  1, 

z 4 -  1 = qh(z) • ~o2(z) • ~04(z) 

= ( z -  1) (z+ 1)(z2+ 1). 

The first use of  the CRT to compute the cyclic 
convolution (46) is then as follows: 

(1) compute x'q(z)  = x ' ( z )  mod q~q(z), 
q l p - 1 ,  

Wq(Z) = w ( z )  mod ~Oq(Z), 

(2) then obtain 

X'q(Z)  : X'q(Z) . w'q(z) mod q~q(z) 

(3) and reconstruct X ' ( z )  mod z p - '  - 1 from the 
polynomials  X'q ( z )  using the CRT. 

Let us apply this procedure to our simple 
example: 

Xt (Z )  = X 1 -[- X2Z "P X4 Z2 "~ X3 Z3, 

w(z) : wl+ w ~ +  W~z~+ W~z 3. 

Step 1. 

W4(Z ) = W(Z) mod ~4(Z) 

= ( w ~ -  w~') + ( w ~ -  w~)z ,  

w2(z) 

wl(z) 

x;(z) 
x~(z) 
x~(z) 

Step 2. 

= w ( z )  mod ~p2(z) 

= ( w~ + w~" - w~  - w~) ,  

= w ( z )  rood qh(z) 

= ( w ~ +  w 4 +  w ~ +  w~)  

= (Xl - x4) + (x2-  x3)z, 

= ( X l ' ~ - X 4 - - X 2 - - X 3 )  , 

-7- ( XI"~- X4"~- X2"~- X3). 

[ = - 1 ] ,  

X ' 4 ( z )  = x ' 4 ( z )  " w4(z) mod ~04(z), 
X ~ ( z )  = x ~ ( z )  " w2(z )  mod ~p2(z), 
X ~ ( z )  : x ~ ( z )  ° Wl(Z ) mod qh(z). 
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Step 3. 

X ' ( z )  = [X;(z)(1 + z ) / 2 +  X~(z)(1 - z) /2]  

x (1 + z2)/2+ X~(z)(1 - z2)/2. 

Note that all the coefficients of  Wq(Z) are either 
real or purely imaginary. This is a general property 
due to the symmetries of the successive powers 
of Wp. 

The only missing tool needed to complete the 
procedure now is the algorithm to compute the 
polynomial products modulo the cyclotomic fac- 
tors. Of course, a straightforward polynomial prod- 
uct followed by a reduction modulo q~q(z) would 
be applicable, but a much more efficient algorithm 
can be obtained by a second application of  the 
CRT in the field of  polynomials. 

It is already well-known that knowing the values 
of  an Nth  degree polynomial at N + 1 different 
points can provide the value of the same poly- 
nomial anywhere else by Lagrange interpolation. 
The CRT provides an analogous way of  obtaining 
its coefficients. 

Let us first recall the equation to be solved: 

X'q(z) = x'q(z).  Wq(Z) mod ~Oq(Z), (49) 

with 

deg ~pq(Z) = q~(q). 

Since ~q(Z) is irreducible, the CRT cannot be 
used directly. Instead, we choose to evaluate the 
product X q( z ) = X'q( Z ) . wq( z ) modulo an auxiliary 
polynomial A(z )  of degree greater than the degree 
of  the product. This auxiliary polynomial will be 
chosen to be fully factorizable. The CRT hence 
applies, providing 

X ~ ( z )  = x'~(z)  . w q ( 2 ) ,  

since the mod A(z )  is totally artificial, and the 
reduction modulo ~q(z) will be performed after- 
wards. 

The procedure is then as follows. 
Let us evaluate both X'q(Z) and Wq(Z) modulo a 

number of  different monomials of the form 

( z - a , ) ,  i = l , . . . , 2 q ~ ( q ) - l .  

Then compute 

X q( ai) = Xiq( ai)wq( ai), i=  1 , . . . ,2~p(q)-  1. 
(50) 

The CRT then provides a way of obtaining 

X~(z) mod A(z), (51) 

with 
2q~(q)--I 

A ( z ) =  I] ( z - a i ) ,  
/=1 

which is equal to X~(z )  itself, since 

deg Xq(z )  = 2tp(q) - 2. (52) 

Reduction of  X'~(z) mod ~pz(z) will then provide 
the desired result. 

In practical cases, the points {a~} will be chosen 
in such a way that the evaluation of  Wq(a~) involves 
only additions {i.e.: a~ =0 ,  +1 . . . .  ). 

This limits the degree of  the polynomials whose 
products can be computed by this method. Other 
suboptimal methods exist [ 12], but are nevertheless 
based on the same kind of approach (the 'dot 
products'  (50) become polynomial products of  
lower degree, but the overall structure remains 
identical). 

All this seems fairly complicated, but results 
in extremely efficient algorithms that have a low 
number of operations. The full derivation of  
our example (p = 5) then provides the following 
algorithm: 

5 point DFT: 

u = 2"rr/5, 

(reduction modulo z 2 - 1 : )  

t l=XlWX4 ,  t 2 = x 2 + x 3 ,  

(reduction modulo z 2 + 1 :) 

t3=Xl--X4,  / 4 =  X 3 - - X 2 ,  

t5 = t~ + t 2 (reduction modulo z - 1), 

t 6 = t I - -  t 2 (reduction modulo z + 1), 

(X~(z)  = x~(z) . Wl(Z) mod ~ol(z):) 

ml = [(cos u + c o s  2u)/2]ts ,  

(X~(z)  = x'2(z) . w2(z) rood ~2(z):) 
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2 7 8  

m 2= [(COS U--COS 2U)/2]t6, 

polynomial product modulo z 2 + 1, 

X'4(z) = x'4(zj) . w,(z) mod ~0,(z):) 

m 3 = - j ( s in  u)(t3 + t4), 

m 4  = - j (s in  u +sin 2u)t4, 

ms =j(sin u - s i n  2u)t3, 

,5'1 = 

S 2 = 

P Duhamel, M. Vetterli / A tutorial on fast  Fourier transforms 

D = diag[ 1, ((cos u + cos 2u) /2  - 1), 

(cos u - c o s  2u)/2,  - j  sin u, 

- j ( s in  u + sin 2u), 

j(sin u - sin 2u)], 

"$'3 : 

S 4 ~--- 

S5 = S3 - -  m 2 ,  

Xo = xo + ts, 

X 1 = $ 4 + s  1 , 

X 2 - ~  S5-F S2, 

X 3 = s 5 - $ 2 ,  

X 4 = S 4 - - S 1  o 

??13 - -  m 4 , 

m3+ ms, 

(reconstruction following Step 3, the 
1/2 terms have been included into the 
polynomial products:) 

xo+ ml,  

S3 + m 2 ,  

When applied to complex data, this algorithm 
requires 10 real multiplications and 34 real addi- 
tions, vs. 48 real multiplications and 88 real addi- 
tions for a straightforward algorithm (matrix- 
vector product). 

In matrix form, and slightly changed, this 
algorithm may be written as follows: 

( X L  X ~ , . . . , X ~ )  ~ 

= C.  D .  B.  (Xo, Xl . . . .  , x4) T, (53) [i o0o0 ] 1 1 1 - 1  
1 - 1  1 0 , 
1 - 1  - 1  0 - 
1 1 - 1  1 

with 

C =  

B =  

Signal Processing 

1 1 1 1 1 
0 1 1 1 1 
0 1 -1  -1  1 
0 1 -1  1 -1  
0 0 -1  1 0 
0 1 0 0 1 

By construction, D is a diagonal matrix, where 
all multiplications are grouped, while C and B 
only involve additions (they correspond to the 
reductions and reconstructions in the applications 
of the CRT). 

It is easily seen that this structure is a general 
property of  the short-length DFTs based on CRT: 
all multiplications are 'nested' at the center of the 
algorithms. By construction, also, D has dimen- 
sion Mp, which is the number of  multiplications 
required for computing the DFT, some of  them 
being trivial (at least one, needed for the computa- 
tion of Xo). In fact, using such a formulation, we 
have Mp/> p. This notation looks awkward, at first 
glance (why include trivial multiplications in the 
total number?), but Section 5.3 will show that it is 
necessary in order to evaluate the number of  multi- 
plications in the Winograd FFT. 

It can also be proven that the methods explained 
in this section are essentially the only ways of  
obtaining FFTs with the minimum number of  
multiplications. In fact, this gives the optimum 
structure, mathematically speaking. These meth- 
ods always provide a number of  multiplications 
lower than twice the length of  the DFT: 

MNL<2N1. 

This shows the linear complexity of  the DFT in 
this case. 

5.2. Prime factor algorithms [95] 

Let us now come back to the initial problem of  
this section: the computation of the bidimensional 
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transform given in (39). Rearranging the data in 
matrix form, of size NtN2, and F~ (resp. F2) denot- 
ing the Fourier matrix of size N~ (resp. N2), results 
in the following notation, often used in the context 
of image processing: 

X = F2xF T. (54) 

Performing the FFT algorithm separately along 
each dimension results in the so-called prime factor 
algorithm (PFA). 

To summarize, PFA makes use of Good's 
mapping (Section 5.1.1) to convert the length 
N] • N2 1-D DFT into a size N1 x N2 2-D DFT, 
and then computes this 2-D DFT in a row-column 
fashion, using the most efficient algorithms along 
each dimension. 

Of course, this applies recursively to more than 
two factors, the constraints being that they must 
be mutually coprime. Nevertheless, this constraint 
implies the availability of a whole set of efficient 
small DFTs (Ni = 2, 3, 4, 5, 7, 8, 16 is already suf- 
ficient to provide a dense set of feasible lengths). 

A graphical display of PFA for length N = 15 
is given in Fig. 7. Since there are N2 applications 
of length N~ FFT and N 1 applications of length 
N2 FFTs, the computational costs are as follows: 

M N I N  2 = N1M2+ NeM1, 
(55) 

ANON2 = N~A2+ N2A~, 

or, equivalently, the number of operations to be 
performed per output point is the sum of the 
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individual number of operations in each short 
algorithm: let mN and aN be these reduced 
numbers 

mN, N2N3N4 = m N l +  mN2+ mN3+ mN 4, 
(56) 

aN, N2N3N, = aN,+aN2+aN3+aN,. 
An evaluation of these figures is provided in 

Tables 1 and 2. 

5.3. Winograd' s Fourier transform algorithm 
( WFFA ) [56] 

Winograd's FFT makes full use of all the tools 
explained in Section 5.1. 

Good's mapping is used to convert the length 
N1 " N2 1-D DFT into a length N1 x N 2 2-D DFT, 
and the intimate structure of the small-length 
algorithms is used to nest all the multiplications 
at the center of the overall algorithm as follows. 

Reporting (53) into (54) results in 

X = CID,B,xBT:D2C T. (57) 

Since C and B do not involve any multiplication, 
the matrix (B]xB T) is obtained by only adding 
properly chosen input elements. The resulting 
matrix now has to be multiplied on the left and 
on the right by diagonal matrices D~ and DE,  of 
respective dimensions M~ and M2. Let M~ and 
M~ be the numbers of trivial multiplications 
involved. 

Premultiplying by the diagonal matrix D, 
multiplies each row by some constant, while 

x12, 
x% 

x3, x 6 ~ - ~  

xoa 

• DFT 

x s .  3 
I 

Xloe 

, X4 

• • , X14 

• , X 2 

• X11 

• X 5 

Fig. 7. Schematic view of PFA for N = 15. 
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xlO " 7 /  "1 

input add itions 
N=3 

- j  
input additions 

N=5 

I X11 

Xl 4 

X 4 

t 
ioint wise output additions output additions 
multiplication N = 5 N = 3 

Fig. 8. Schematic view of  WFTA for N = 15. 

postmultiplying does it for each column. Merging 
both multiplications leads to a total number of 

MNIN2 = MN, " MN2 (58) 

out of  which M '  N," M N2 are trivial. 
Pre- and postmultiplying by C1 and C2 T will then 

complete the algorithm. 
A graphical display of  WFTA for length N = 15 

is given in Fig. 8, which clearly shows that this 
algorithm cannot be performed in place. 

The number of  additions is more intricate to 
obtain. 

Let us consider the pictorial representation of  
(57) as given in Fig. 8. 

Let C~ involve A~ additions (output additions) 
and B1 involve A~ additions (input additions). 
(Which means that there exists an algorithm for 
multiplying C~ by some vector involving A] addi- 
tions. This is different from the number of  a: l ' s  in 
the matrix--see the p = 5 example.) 

Under these conditions, obtaining xB2 will cost 
A22. N~ additions, B~(xB T) will cost AI 2. M2 addi- 
tions, CI(DIBIXB T) will cost A] • M2 additions and 
(C~DIBlXB T) C2 will cost A2 ~- N1 additions, which 
gives a total of  

AN~N: = N~A2 + M 2 A  ' . (59) 
This formula is not symmetric in N~ and N2. 

Hence, it is possible to interchange N~ and N2, 
which does not change the number of multiplica- 
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tions. This is used to minimize the number of  
additions. 

Since M2/> N2, it is clear that WFTA will always 
require at least as many additions as PFA, while 
it will always need fewer multiplications, as long 
as optimum short length DFTs are used. The 
demonstration is as follows. 

Let 

Ml=Nl+e l ,  M2=N2+e2, 

MpFA = NIM2 + N2M1 

= 2N1N2 + Nle2+ N2e~, 

MWFTA = M1 " M2 

= NIN2+ ele2+ Nle2+ N2el. 

Since el and e2 are strictly smaller than N~ and 
N2 in optimum short-length DFTs, we have, as a 
result 

MWFTA < M p F A .  

Note that this result is not true if suboptimal 
short-length FFTs are used. The numbers of  
operations to be performed per output point (to 
be compared with (56)) are as follows in the 
WFTA: 

mNIN2= mN, • MN2 , a~,N2= aN2+ rnN2aN1. 
(60) 

These numbers are given in Tables 1 and 2. 
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Note that the number of  additions in the WFTA 
was reduced later by Nussbaumer with a scheme 
called 'split nesting' [12], leading to the algorithm 
with the least known number of operations (multi- 
plications + additions). 

5.4. Other members of this class [38] 

PFA and WFTA are seen to be both described 
by the following equation: 

X = CIDIB1xBT2D2CT2. (61) 

Each of them is obtained by different ordering 
of  the matrix products. 
- - T h e  PFA multiplies (C1DIB1)x first, and then 
the result is postmultiplied by (B~D2C'~). 
- - T h e  WFTA starts with xB~, then (D1 × D2), then 
C~ and finally C~. 

Nevertheless, these are not the only ways of 
obtaining X: C and B can be factorized as two 
matrices each, to fully describe the way the 
algorithms are implemented. Taking this fact into 
account allows a great number of  different 
algorithms to be obtained. Johnson and Burrus 
[38] systematically investigated this whole class of 
algorithms, obtaining interesting results, such as 
- - some  WFTA-type algorithms, with reduced 
number of  additions. 
--algori thms with lower number of multiplications 
than both PFA and WFTA in the case where the 
short-length algorithms are not optimum. 

5.5. Remarks on FFTs without twiddle factors 

It is easily seen that members of this class of  
algorithms differ fundamentally from FFTs with 
twiddle factors. 

Both classes of  algorithms are based on a divide 
and conquer strategy, but the mapping used to 
eliminate the twiddle factors introduced strong 
constraints on the type of lengths that were possible 
with Good's  mapping. 

Due to those constraints, the elaboration of  
efficient FFTs based on Good 's  mapping required 
considerable work on the structure of the short 
FFTs. This resulted in a better understanding of  

281 

the mathematical structure of the problem, and a 
better idea of  what was feasible and what was not. 

This new understanding has been applied to the 
study of FFTs with twiddle factors. In this study, 
issues, such as optimality, distance (in cost) of  the 
practical algorithms from the best possible ones 
and the structural properties of the algorithms, 
have been prominent in the recent evolution of the 
field of algorithms. 

6. State of the art 

FFT algorithms have now reached a great matur- 
ity, at least in the 1-D case, and it is now possible 
to make strong statements about what eventual 
improvements are feasible and what are not. 

In fact, lower bounds on the number of multipli- 
cations necessary to compute a DFT of  given 
length can be obtained by using the techniques 
described in Section 5.1. 

6.1. Multiplicative complexity 

Let us first consider the FFTs with lengths that 
are powers of  two. 

Winograd [57] was first able to obtain a lower 
bound on the number of complex multiplications 
necessary to compute length 2" DFTs. This work 
was then refined in [28], which provided realizable 
lower bounds, with the following multiplicative 
complexity: 

/~¢[ DFT 2" ] = 2 "+1 - 2n 2 + 4n - 8. (62) 

This means that there will never exist any 
algorithm computing a length 2" DFT with a lower 
number of  non-trivial complex multiplications 
than the one in (62). 

Furthermore, since the demonstration is con- 
structive [28], this optimum algorithm is known. 
Unfortunately, it is of  no practical use for lengths 
greater than 64 (it involves much too many 
additions). 

The lower part of Fig. 9 shows the variation 
of  this lower bound and of  the number of com- 
plex multiplications required by some practical 
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Fig. 9. Number of non-trivial real or complex multiplications per output point. 

algorithms (radix 2, radix 4, SRFT). It is clearly 
seen that SRFFT follows this lower bound up to 
N = 64, and is fairly close for N = 128. Divergence 
is quite fast afterwards. 

It is also possible to obtain a realizable lower 
bound on the number of  real multiplications 
[35, 36]. 

/Zr[ DF'F 2 n ] = 2 n÷2 - 2n 2 - 2n +4. (63) 

The variation of this bound, together with that 
of the number of  real multiplications required by 
some practical algorithms is provided on the upper 
part of Fig. 9. Once again, this realizable lower 
bound is of  no practical use above a certain limit. 
But, this time, the limit is much lower: SRFFT, 
together with radix 4, meets the lower bound on 
the number of real multiplications up to N = 16, 
which is also the last point where one can use an 
optimal polynomial product  algorithm (modulo 
U2-F1) which is still practical. ( N = 3 2  would 
require an optimal product  modulo u4+1 that 
requires a large number of  additions). 
Signal Processing 

It was also shown [31, 76] that all of  the three 
following algorithms: optimum algorithm mini- 
mizing complex multiplications, optimum algo- 
rithm minimizing real multiplications and SRFFT, 
had exactly the same structure. They performed 
the decomposition into polynomial products 
exactly in the same manner, and they differ only 
in the way the polynomial products are computed. 

Another interesting remark is as follows: the 
same number of  multiplications as in SRFFT could 
also be obtained by so-called 'real factor radix-2 
FFTs' [24, 42, 44] (which were, on another respect, 
somewhat numerically ill-conditioned and needed 
about 20% more additions). They were obtained 
by making use of  some computational trick to 
replace the complex twiddle factors by purely real 
or purely imaginary ones. Now, the question is: is 
it possible to do the same kind of  thing with radix 
4, or even SRFFT? Such a result would provide 
algorithms with still fewer operations. The knowl- 
edge of  the lower bound tells us that it is impossible 
since, for some points ( N  = 16, for example) this 
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would produce an algorithm with better perform- 
ance than the lower bound. The challenge of event- 
ually improving SRFFT is now as follows: 

Comparison of  SRFFT with/x¢[DFT 2"] tells us 
that no algorithm using complex multiplications 
will be able to improve significantly SRFFT for 
lengths < 512. Furthermore, the trick allowing real 
factor algorithms to be obtained cannot be applied 
to radices greater than 2 (or at least not in the 
same manner). 

The above discussion thus shows that there 
remain very few approaches (yet unknown) that 
could eventually improve the best known length 
2 n FFT. 

And what is the situation for FFTs based on 
Good's  mapping? 

Realizable lower bounds are not so easily 
obtained. For a given length N = [ I  Ni, they 
involve a fairly complicated number theoretic 
function [8], and simple analytical expressions 
cannot be obtained. Nevertheless, programs can 
be written to compute /zr{DFTN}, and are given 
in [36]. Table 3 provides numerical values for a 
number of lengths of interest. 

Careful examination of  Table 3 provides a num- 
ber of interesting conclusions. 
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First, one can see that, for comparable lengths 
(since SRFFT and WFTA cannot exist for the 
same lengths), a classification depending on the 
efficiency is as follows: WFTA always requires 
the lowest number of multiplications, followed by 
PFA, and followed by SRFFT, all fixed or mixed- 
radix FFTs being next. Nevertheless, none of  these 
algorithms attains the lower bound, except for very 
small lengths. 

Another remark is that the number of multiplica- 
tions required by WFTA is always smaller than 
the lower bound for the corresponding length that 
is a power of 2. This means on the one hand that 
transform lengths for which Good's  mapping can 
be applied are well suited for a reduction in the 
number of multiplications, and on the other hand, 
that they are very efficiently computed by WFTA, 
from this point of  view. 

And this states the problem of  the relative 
efficiencies of these algorithms: How close are they 
to their respective lower bound? 

The last column of Table 3 shows that the relative 
efficiency of  SRFFT decreases almost linearly with 
the length (it requires about twice the minimum 
number of multiplications for N =  2048), while 
the relative efficiency of  WFTA remains almost 

Table 3 

Practical algorithms vs. lower bounds (number of non-trivial real multiplications for FFTs on real data) 

Lower bound SRFFT WFTA 
N SRFFT WFTA (L.B.) L.B. L.B. 

16 20 20 1 
30 68 56 1.21 

32 68 64 1.06 
60 136 112 1.21 

64 196 168 1.16 
120 276 240 1.15 

128 516 396 1.3 
240 632 548 1.15 

256 1284 876 1.47 
504 1572 1320 1.19 

512 3076 1864 1.64 
1008 3548 2844 1.25 

1024 7172 3872 1.85 
2048 16388 7876 2.08 

2520 9492 7440 1.27 
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constant for all the lengths of  interest (it would 
not be the same result for much greater N) .  Lower 
bounds for Winograd-type lengths are also seen to 
be smaller than for the corresponding power of  2 
lengths. 

All these considerations result in the following 
conclusion: lengths for which Good's  mapping is 
applicable allow a greater reduction of the number 
of  multiplications (which is due directly to the 
mathematical structure of  the problem). And, 
furthermore, they allow a greater relative effi- 
ciency of the actual algorithms vs. the lower bounds 
(and this is due indirectly to the mathematical 
structure). 

6.2. Additive complexity 

Nevertheless, the situation is not the same as 
regards the number of  additions. 

Most of  the work on optimality was concerned 
with the number of multiplications. Concerning 
the number of  additions, one can distinguish 
between additions due to the complex multiplica- 
tions and the ones due to the butterflies. For 
the case N = 2 " ,  it was shown in [106, 110], that 
the latter number which is achieved in actual 
algorithms is also the optimum. Differences 
between the various algorithms is thus only due to 
varying numbers of complex multiplications. As a 
conclusion, one can see that the only way to 
decrease the number of  additions is to decrease 
the number of  true complex multiplications (which 
is close to the lower bound).  

Figure 10 gives the variation of  the total number 
of operations (multiplications plus additions) for 
these algorithms, showing that SRFFT has the 
lowest operation count. Furthermore, its more 
regular structure results in faster implementations. 

Note that all the numbers given here concern 
the initial versions of  SRFFT, PFA and WFTA, 
for which FORTRAN programs are available. It 
is nevertheless possible to improve the number of 
additions in WFTA by using the so-called split- 
nesting technique [12] (which is used in Fig. 10), 
and the number of multiplications of PFA by using 
Signal Processing 
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Fig. 10. Total number of operations per output point for 
different algorithms. 

small-length FFTs with scaled output [12], result- 
ing in an overall scaled DFT. 

As a conclusion, one can realize that we now 
have practical algorithms (mainly WFTA and 
SRFFT) that follow the mathematical structure of  
the problem of computing the DFT with the 
minimum number of multiplications, as well as a 
knowledge of  their degree of suboptimality. 

7. Structural considerations 

This section is devoted to some points that are 
important in the comparison of  different FFT 
algorithms, namely easy obtention of inverse FFT, 
in-place computation, regularity of  the algorithm, 
quantization noise and parallelization, all of  which 
are related to the structure of  the algorithms. 

7.1. Inverse F F T  

FFTs are often used regardless of  their 
'frequency' interpretation for computing FIR 
filtering in blocks, which achieves a reduction in 
arithmetic complexity compared to the direct 
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algorithm. In that case, the forward FFT has to be 
followed, after pointwise multiplication of the 
result, by an inverse FFT. It is of course possible 
to rewrite a program along the same lines as the 
forward one, or to reorder the outputs of a forward 
FFT. A simpler way of  computing an inverse FFT 
by using a forward FFT program is given (or 
reminded) in [99], where it is shown that, if CALL 
FFT (XR, XI, N) computes a forward FFT of the 
sequence {XR(i) + jXI( i )  I i = 0 , . . . ,  N - 1}, CALL 
FFT(XI,  XR, N)  will compute an inverse FFT of 
the same sequence, whatever the algorithm is. 
Thus, all FFT algorithms on complex data are 
equivalent in that sense. 

7.2. In-place computation 

Another point in the comparison of algorithms 
is the memory requirement: most algorithms 
(Cooley-Tukey,  SRFFT, PFA) allow in-place 
computation (no auxiliary storage of size depend- 
ing on N is necessary), while WFTA does not. 
And this may be a drawback for WFTA when 
applied to rather large sequences. 

Cooley-Tukey and split-radix FFTs also allow 
rather compact programs [4, 113], the size of  which 
is independent of  the length of  the FFT to be 
computed. 

On the contrary, PFA and WFTA will require 
longer and longer programs when the upper limit 
on the possible lengths is increased: an 8-module 
program (n = 2, 4, 8, 16, 3, 5, 7, 9) allows to obtain 
a rather dense set of lengths up to N = 5040 only. 
Longer transforms can only be obtained either by 
the use of rather 'exotic' modules that can be found 
in [37], or by some kind of  mixture between 
Cooley-Tukey FFT (or SRFFT) and PFA. 

7.3. Regularity, parallelism 

Regularity has been discussed for nearly all 
algorithms when they were described. Let us recall 
here that Cooley-Tukey FFT (CTFFT) is very 
regular (based on repetitive use of  a few modules). 
SRFFT follows (repetitive use of  very few modules 
in a slightly more involved manner). Then, PFA 
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requires repetitive use (more intricate than 
CTFFT) of  more modules, and finally WFTA 
requires some combining of parts of these modules, 
which means that, even if it has some regularity, 
this regularity is more hidden . . . .  

Let us point out also that the regularity of  an 
algorithm cannot really be seen from its flowgraph. 
The equations describing the algorithm, as given in 
(13) or (39) do not fully define the implementa- 
tions, which is partially done in the flowgraph. The 
reordering of the nodes of a flowgraph may provide 
a more regular one (the classical radix 2 and 4 
CTFFT can be reordered into a constant geometry 
algorithm. See also [30] for SRFFT). 

Parallelization of CTFFT and SRFFT is fairly 
easy, since the small modules are applied on sets 
of  data that are separable and contiguous, while 
it is slightly more difficult with PFA, where the 
data required by each module are not in contiguous 
locations. 

Finally, let us point out that mathematical tools 
such as tensor products can be used to work on 
the structure of  the FFT algorithms [50, 101], since 
the structure of the algorithm reflects the mathe- 
matical structure of the underlying problem. 

7.4. Quantization noise 

Roundoff noise generated by finite precision 
operations inside the FFT algorithm is also of 
importance. Of course, fixed point implementa- 
tions of CTFFT for lengths 2 n were studied first, 
and it was shown that the error-to-signal ratio of  
the FFT process increases as ~ (which means 
1/2 bit per stage) [117]. SRFFT and radix-4 
algorithms were also reported to generate less 
roundoff than radix-2 [102]. 

Although the WFTA requires fewer multiplica- 
tions than the CTFFT (hence has less noise sour- 
ces), it was soon recognized that proper  scaling 
was difficult to include in the algorithm, and that 
the resulting noise-to-signal ratio was higher. It is 
usually thought that two more bits are necessary 
for representing data in the WFTA to give an error 
of the same order as CTFFT (at least for practical 
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lengths). A floating point analysis of  PFA is 
provided in [104]. 
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8. Particular cases and related transforms 

The previous sections have been devoted exclus- 
ively to the computation of  the matrix-vector prod- 
uct involving the Fourier matrix. In particular, no 
assumption has been made on the input or output 
vector. In the following subsections, restrictions 
will be put on these vectors, showing how the 
previously described algorithms can be applied 
when the input is e.g. real valued, or when only a 
part of  the output is desired. Then, transforms 
closely related to the DFT will be discussed as well. 

8.1. DFT algorithms for real data 

Very often in applications, the vector to be trans- 
formed is made up of  real data. The transformed 
vector then has an hermitian symmetry, that is, 

X N - k  = X~k, (64) 

as can be seen from the definition of the DFT. 
Thus, Xo is real, and when N is even, XN/2 is real 
as well. That is, the N input values map to 2 real 
and N / 2 - 1  complex conjugate values when N is 
even, or 1 real and ( N - 1 ) / 2  complex conjugate 
values when N is odd (which leaves the number 
of free variables unchanged). 

This redundancy in both input and output vec- 
tors can be exploited in the FFT algorithms in 
order to reduce the complexity and storage by a 
factor of  2. That the complexity should be half can 
be shown by the following argument. If one takes 
a real DFT of  the real and imaginary parts of  a 
complex vector separately, then 2N  additions are 
sufficient in order to obtain the result of the com- 
plex DFT [3]. Therefore, the goal is to obtain a 
real DFT that uses half  as many multiplications 
and less than half as many additions. If one could 
do better, then it would improve the complex FFT 
as well by  the above construction. 

For example, take the DIF SRFFT algorithm 
(28). First, X 2 k  requires a half  length DFT on real 
Signal Processing 

data, and thus the algorithm can be reiterated. 
Then, because of the hermitian symmetry property 
(64): 

X4k+l = X4(N /4_k_ l )+3  , (65) 

and therefore (28c) is redundant  and only one DFT 
of size N/4  on complex data needs to be evaluated 
for (28b). Counting operations, this algorithm 
requires exactly half as many multiplications and 
slightly less than half as many additions as its 
complex counterpart, or [30] 

M(R-DFT(2m)) = 2 n - ~ ( n - 3 ) + 2 ,  (66) 

A(R-DFT(2m)) = 2"-~(3n - 5 ) + 4 .  (67) 

Thus, the goal for the real DFT stated earlier 
has been achieved. Similar algorithms have been 
developed for radix-2 and radix-4 FFTs as well. 
Note that even if DIF algorithms are more easily 
explained, it turns out that DIT ones have a better 
structure when applied to real data [29, 65, 77]. 

In the PFA case, one has to evaluate a multi- 
dimensional DFT on real input. Because the PFA 
is a row-column algorithm, data become hermitian 
after the first 1-D FFTs, hence an accounting has 
to be made of the real and conjugate parts so as 
to divide the complexity by 2 [77]. Finally, in the 
WFTA case, the input addition matrix and the 
diagonal matrix are real, and the output addition 
matrix has complex conjugate rows, showing again 
the saving of 50% when the input is real. Note, 
however, that these algorithms generally have a 
more involved structure than their complex 
counterparts (especially in the PFA and WFTA 
case). Some algorithms have been developed which 
are inherently 'real', like the real factor FFTs 
[44, 22] or the FFCT algorithm [51], and do not 
require substantial changes for real input. 

A closely related question is how to transform 
(or actually back transform) data that possess 
hermitian symmetry. An actual algorithm is best 
derived by using the transposition principle: since 
the Fourier transform is unitary, its inverse is equal 
to its hermitian transpose, and the required 
algorithm can be obtained simply by transposing 
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the flow graph of the forward transform (or by 
transposing the matrix factorization of  the 
algorithm). Simple graph theoretic arguments 
show that both the multiplicative and additive 
complexity are exactly conserved. 

Assume next that the input is real and that only 
the real (or imaginary) part of the output is desired. 
This corresponds to what has been called a cosine 
(or sine) DFT, and obviously, a cosine and a sine 
DFT on a real vector can be taken altogether at 
the cost of  a single real DFT. When only a cosine 
DFT has to be computed, it turns out that 
algorithms can be derived so that only half the 
complexity of a real DFT (that is, the quarter of  
a complex DFT) is required [30, 52], and the same 
holds for the sine DFT as well [52]. Note that the 
above two cases correspond to DFTs on real and 
symmetric (or antisymmetric) vectors. 

8.2. DFT pruning 

In practice, it may happen that only a small 
number of  the DFT outputs are necessary, or that 
only a few inputs are different from zero. Typical 
cases appear in spectral analysis, interpolation and 
fast convolution applications. Then, computing a 
full FFT algorithm can be wasteful, and advantage 
should be taken of the inputs and outputs that can 
be discarded. 

We will not discuss 'approximate'  methods 
which are based on filtering and sampling rate 
changes [2, pp. 317-319] but only consider 'exact' 
methods. One such algorithm is due to Goertzel 
[68] which is based on the complex resonator idea. 
It is very efficient if only a few outputs of the FFT 
are required. A direct approach to the problem 
consists in pruning the flowgraph of the complete 
FFT so as to disregard redundant paths (corre- 
sponding to zero inputs or unwanted outputs). 
As an inspection of  a flow graph quickly shows, 
the achievable gains are not spectacular, mainly 
because of  the fact that data communication is not 
local (since all arithmetic improvements in the FFT 
over the DFT are achieved through data shuffling). 
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More complex methods are therefore necessary 
in order to achieve the gains one would expect. 
Such methods lead to an order of N I0g2K 
operations, where N is the transform size and K 
the number of active inputs or outputs [48]. Refer- 
ence [78] also provides a method combining Goert- 
zel's method with shorter FFT algorithms. Note 
that the problems of input and output pruning are 
dual, and that algorithms for one problem can be 
applied to the other by transposition. 

8.3. Related transforms 

Two transforms which are intimately related to 
the DFT are the discrete Hartley transform (DHT) 
[61, 62] and the discrete cosine transform (DCT) 
[1,59]. The former has been proposed as an 
alternative for the real DFT and the latter is widely 
used in image processing. 

The D H T is defined by 
N--1 

Xk = ~ xn(cos(2~rnk/ N)+sin(2~rnk/ N) )  
n = 0  

(68) 

and is self-inverse, provided that X0 is further 
weighted by l/v/2. Initial claims for the DHT were 
- - improved  arithmetic efficiency. This was soon 
recognized to be false, when compared to the real 
DFT. The structures of  both programs are very 
similar and their arithmetic complexities are 
equivalent (DHTs actually require slightly more 
additions than real-valued FFTs). 
--self-inverse property. It has been explained 
above that the inverse real DFT on hermitian data 
has exactly the same complexity as the real DFT 
(by transposition). If the transposed algorithm is 
not available, it can be found in [65] how to 
compute the inverse of a real DFT with a real DFT 
with only a minor increase in additive complexity. 

Therefore, there is no computational gain in 
using a DHT, and only a minor structural gain if 
an inverse real DFT cannot be used. 

The DCT, on the other hand, has found 
numerous applications in image and video process- 
ing. This has led to the proposal of several fast 
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algorithms for its computation [51, 64, 70, 72]. The 
DCT is defined by 

N--1 
Xk = ~ x, cos(2,rr(2k+l)n/4N). (69) 

n - - O  

A scale factor of l /x/2 for Xo has been left out 
in (69), mainly because the above transform 
appears as a subproblem in a length-4N real DFT 
[51]. From this, the multiplicative complexity of 
the DCT can be related to that of the real DFT 
as [69] 

/~(DCT(N))  

= (/z ( real-DFT(4N))  

- / z ( r ea l -DFT(2N)) ) /2 .  (70) 

Practical algorithms for the DCT depend as 
expected, on the transform length. 
- - N  odd: the DCT can be mapped through permu- 
tations and sign changes only into a same length 
real DFT [69]. 
- - N  even: the DCT can be mapped into a same 
length real DFT plus N / 2  rotations [51]. This is 
not the optimal algorithm [69, 100] but, however, 
a very practical one. 

Other sinusoidal transforms [71], like the dis- 
crete sine transform (DST), can be mapped into 
DCTs as well, with permutations and sign changes 
only. The main point of  this paragraph is that 
DHTs, DCTs and other related sinusoidal trans- 
forms can be mapped into DFTs, and therefore 
one can resort to the vast and mature body of  
knowledge that exists for DFTs. It is worth noting 
that so far, for all sinusoidal transforms that have 
been considered, a mapping into a DFT has always 
produced an algorithm that is at least as efficient 
as any direct factorization. And if an improvement 
is ever achieved with a direct factorization, then 
it could be used to improve the DFT as well. This 
is the main reason why establishing equivalences 
between computational problems is fruitful, since 
it allows to improve the whole class when any 
member can be improved. 

Figure 11 shows the various ways the different 
transforms are related: starting from any transform 
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with the best known number of operations, you 
may obtain by following the appropriate arrows 
the corresponding transform for which the 
minimum number of operations will be obtained 
as well. 

9. Multi-dimensional transforms 

We have already seen in Sections 4 and 5 that 
both types of  divide and conquer strategies resulted 
in a multi-dimensional transform with some par- 
ticularities: in the case of  the Cooley-Tukey map- 
ping, some 'twiddle factors' operations had to 
be performed between the treatment of  both 
dimensions, while in the Good's  mapping, the 
resulting array had dimensions which were 
coprime. 

Here, we shall concentrate on true 2-D FFTs 
with the same size along each dimension (general- 
ization to more dimensions is usually straight- 
forward). 

Another characteristic of the 2-D case, is the 
large memory size required to store the data. It is 
therefore important to work in-place. As a con- 
sequence, in-place programs performing FFTs on 
real data are also more important in the 2-D case, 
due to this memory size problem. Furthermore, the 
required memory is often so large that the data 
are stored in mass memory and brought into core 
memory when required, by rows or columns. 
Hence, an important parameter when evaluating 
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Fig. l l(a). Consistency of  the split-radix based algorithms. 
Path showing the connections between the various transforms. 
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1) a Complex DFT 2 n 

b Real DFT 2 n 

2) a Rea IDFT2 n 

b DCT 2 n 

3) a Complex DbT 2 ~ 

b O d d D F T 2  n l  

4) a RealDF1 ~2 n 

b DHT 2 n 

5) Complex DFT 2nx2 n 

6) a Real Db-T2 n 

b Real symm DFT 2 n 

2 real DFT's 2 n 
+ 2 n÷l - 4 additions 
1 real DFT 2 nd + 1 complex DFF 2 n2 
+ (3.2 n-2 - 4) multiplications + (2 n +3.2n-2-n) additions 
1 real DFT 2 n'l + 2 DCT's 2 n'2 
+ 3.2n'1-2 additions 
1 real DFF 2 n 
+ (3.2n'1-2) multiplications + (3.2n'1-3) additions 
1 odd Db"F 2n-l+ 1 complex DFF 2 nd 
+ 2 n+l additions 
2 complex DFT's 2 n-2 
+ 2(3.2n2-4) multiplications + (2n+3.2n'l-8) additions 
1 DHT 2 n 
- 2 additions 
I real DFT 2 n 
+ 2 additions 
3.2 n'l odd DFF 2 n'l + 1 complex DFT 2n-lx2 n'l 
+ n.2 n additions 
1 real symmetric DFT 2 n + 1 real antisymmetric DFT 2 n 
+ (6n+10).4 n l  additions 
1 real symmetric DFT 2 n-1 + 1 inverse real DFT 
+ 3(2n'3-1)+1 multiplications + (3n-4).2n-3+l additions 

Fig. 11(b). Consistency of the split-radix based algorithms. Weighting of each connection in terms of real operations. 

2-D FFT algorithms is the amount of  memory calls 
required for performing the algorithm. 

The 2-D DFT to be computed is defined as 
follows: 

N--1 N--1 
Xk.r E E ..,,k+jr ~-- X i ,  j I ~  N , 

i = 0  j ~ 0  

k , r = O  . . . . .  N - 1 .  (71) 

The methods for computing this transform are 
distributed in four classes: row-column algorithms, 
vector-radix algorithms, nested algorithms and 
polynomial transform algorithms. Among them, 
only the vector-radix and the polynomial trans- 
form were specifically designed for the 2-D case. 
We shall only give the basic principles underlying 
these algorithms and refer to the literature for more 
details. 

9.1. Row-column algorithms 

Since the DFT is separable in each dimension, 
the 2-D transform given in (71) can be performed 
in two steps, as was explained for the PFA. 
- -Fi rs t  compute N FFTs on the columns of the 
data. 
- - T h e n  compute N FFTs on the rows of the inter- 
mediate result. 

Nevertheless, when considering 2-D transforms, 
one should not forget that the size of the data 
becomes huge quickly: a length 1024 x 1024 DFT 
r e q u i r e s  10 6 words of  storage, and the matrix is 
therefore stored in mass memory. But, in that case, 
accessing a single data is not more costly than 
reading the whole block in which it is stored. An 
important parameter is then the number of memory 
accesses required for computing the 2-D FFT. 

This is why the row-column FFT is often perfor- 
med as shown in Fig. 12, by performing a matrix 
transposition between the FFTs on the columns 
and the FFTs on the rows, in order to allow 
an access to the data by blocks. Row-column 
algorithms are very easily implemented and only 
require efficient 1-D FFTs, as described before, 
together with a matrix transposition algorithm (for 
which an efficient algorithm [84] was proposed). 
Note, however, that the access problem tends to 
be reduced with the availability of  huge core 
memories. 

I. Dim I. Dim Tronsp. I 
I--Pioperator i - ~  DFT DFT ] !leventual~ 

I L . . . .  J 
Fig. 12. Row-column implementation of the 2-D FFT. 
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9.2. Vector-radix algorithms 

A computationally more efficient way of  per- 
forming the 2-D FFT is a direct approach to the 
multi-dimensional problem: the vector-radix (VR) 
algorithm [91, 92, 85]. 

They can easily be understood through an 
example: the radix-2 DIT VRFFT. 

This algorithm is 
decomposition: 

N/2--1 N / 2 - 1  
x~,,= E E 

i=o j=o 

based on the following 

X 
ul. ik+jr 

2i,2j ww N / 2  

N / 2 - 1  N / 2 - 1  
. .  .ik +jr 

"l- WkN E E X 2 i + I , 2 j W N / 2  
i = 0  j = 0  

N/2--1 N / 2 - 1  
r | Iz ik+jr 

"~- W N ~, ~. X2i ,2 j+  1 rv N / 2  
i = 0  j = 0  

N / 2 - 1  N/2--1 
l]~[k + r "~ ~ v IXf ik +jr + 
" "  N .~,  ~ "~'2i+1,2j+1 " "  N/2 , 

i = 0  j = 0  

(72t 

and the redundancy in the computation of X k ,  r,  

Xk+N/2,r, X k ,  r+N/2  and X k + N / 2 , r + N / 2  leads to sim- 
plifications which allow to reduce the arithmetic 
complexity. 

This is the same approach as was used in the 
Cooley-Tukey FFTs, the decomposition being 
applied to both indices altogether. 

Of course, higher radix decompositions or split 
radix decompositions are also feasible [86], the 
main difference being that the vector-radix SRFFT, 
as derived in [86], although being more efficient 
than the one in [90] is not the algorithm with the 
lowest arithmetic complexity in that class: For the 
2-D case, the best algorithm is not only a mixture 
of radices 2 and 4. 

(o)V-R- 2 (b)V-R- /, (c)V-S- R 

Fig. 13. Decomposition performed in various vector radix 
algorithms. 

Figure 13 shows what kind of decompositions 
are performed in the various algorithms. Due to 
the fact that the VR algorithms are true generaliz- 
ations of  the Cooley-Tukey approach, it is easy to 
realize that they will be obtained by repetitive use 
of  small blocks of the same type (the 'butterflies', 
by extension). Figure 14 provides the basic but- 
terfly for a vector radix-2 FFT, as derived by (72). 
It should be clear, also, from Fig. 13 that the 
complexity of these butterflies increases very 
quickly with the radix: a radix-2 butterfly involves 
4 inputs (it is a 2 x 2  DFT followed by some 
'twiddle factors'), while VR4 and VSR butterflies 
involve 16 inputs. 

Note also that the only VR algorithms that have 
seriously been considered all apply to lengths that 
are powers of 2, although other radices are of 
course feasible. 

The number of  read/write cycles of  the whole 
set of data needed to perform the various FFTs of 
this class, compared to the row-column algorithm, 
can be found in [86]. 

9.3. Nes ted  algorithms 

They are based on the remark that the nest- 
ing property used in Winograd's algorithm, as 

Signal Processing 

X(k,r)÷ jx(N/2-k.N/z-r) ~ t .  ~ ~ , ,  X lk , r )÷ j x (N-k .N- r )  

X(N/2.k.r)÷ jx(N-k,N/2-r) W - ~ -  ~ X[N/2+k.r)+jx(N/2-k.N-r) 

X(k.N/2+rl+jxlN/2_k.N_r) W r ~. * X(N-k.N/2-rl+jxlk. N/2,r) 

Wk~ ' / '~ "  ~ ~ X (N/2-k, N/2-r) + j x(N/2*k. N2+r) X (N/2+ k'N/2*r)+J x(N-k' N-r) "4  :1 

Fig. 14. General vector-radix 2 butterfly. 
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explained in Section 5.3 is not bound to the fact 
that the lengths are coprime (this requirement was 
only needed for Good ' s  mapping).  Hence, if the 
length of  the DFT allows the corresponding 1-D 
DFT to be of  a nested type (product of  mutually 
prime factors), it is possible to nest further the 
multiplications, so that the overall 2-D algorithm 
is also nested. 

The number  of  multiplications thus obtained are 
very low (see Table 4), but the main problem deals 
with memory  requirements: WFTA is not perfor- 
med in-place, and since all multiplications are 
nested, it requires the availability of  a number  of  
memory  locations equal to the number  of  multipli- 
cations involved in the algorithms. For a length 
1008x 1008 FFT, this amounts to about 6 .  10 6 

locations. This restricts the practical usefulness of  
these algorithms to small or medium length DFTs. 

9.4. Polynomial transform 

Polynomial transforms were first proposed by 
Nussbaumer  [74] for the computat ion of 2-D cyclic 
convolutions. They can be seen as a generalization 
of Fourier transforms in the field of  polynomials. 
Working in the field of  polynomials resulted in a 
simplification of the multiplications by the root of  
unity, which was changed from a complex multi- 
plication to a vector reordering. This powerful 
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approach was applied in [87, 88] to the computa-  
tion of  2-D DFTs as follows. 

Let us consider the case where N -- 2 n, which is 
the most common case. 

The 2-D DFT of  (71) can be represented by the 
following three polynomial  equations: 

N--I  
Xi(z)  = ~ xi, j" z ~, (73a) 

j = o  

N - I  
Xk(Z) = ~ X,(z)  W ~  mod(z  N - 1), (73b) 

i=o 

Xk, r = -~k( Z ) mod(z  - W~).  (73c) 

This set of  equations can be interpreted as fol- 
lows: (73a) writes each row of  the data as a poly- 
nomial, (73b) computes explicitly the DFTs 
on the columns, while (73c) computes the DFTs 
on the rows as a polynomial  reduction (it is 
merely the equivalent of  (5). Note that the modulo 
operation in (73b) is not necessary (no polynomial  
involved has a degree greater than N) ,  but it will 
allow a divide and conquer strategy on (73c). 

In fact, since (z N - 1) = (z N/2-  1 ) ( z N / 2 - 1  - 1), the 
set of  two equations (73b), (73c) can be separated 
into two cases, depending on the parity of  r: 

N - 1  
X I ( z )  = ~ Xi(z)  W ~  mod(z  N/2-1) ,  

i--0 

(74a) 

Table 4 
Number of non-trivial real multiplications per output point for various 2-D FFTs on real data 

N x N  N x N  
(WFTA) (Others) R.C. VR2 VR4 VSR WFTA P.T. 

3 0 x 3 0  

120 x 120 
240 x 240 
504 x 504 

1008 x 1008 

2 x 2  0 0 0 0 
4×4  0 0 0 0 0 
8 x 8 0.5 0.375 0.375 0.375 

16 × 16 1.25 1.25 0.844 0.844 0.844 
32 x 32 2.125 2.062 1.43 1.435 1.336 
64 x 64 3.0625 3.094 2.109 2.02 1.834 

128 × 128 4.031 4.172 2.655 1.4375 2.333 
256 x 256 5.015 5.273 3.48 3.28 1.82 2.833 
512 x 512 6.008 6.386 3.92 2.47 3.33 

1024 x 1024 7.004 7.506 4.878 4.56 3.12 3.83 
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Xk, zr = g~(Z) mod(z - 2r WN), (74b) 

N - 1  
g ~ ( z ) =  Y. Xgz)W~mod(zN/:+l), (75a) 

i=0  

Xk~2r+~ = 3¢2(Z) mod(z  - W~"~). (75b) 

Equation (74) is still of  the same type as the 
initial one, hence the same procedure as the one 
being derived will apply. Let us now concentrate 
on (75) which is now recognized to be the key 
aspect of  the problem. 

Since (2 r+  1, N ) =  1, the permutation (2 r+  1) • 
k(mod N)  maps all values of  k, and replacing k 
with ( 2 r + 1 ) .  k in (74a) will merely result in a 
reordering of  the outputs: 

N--1 
--2 X~<~r+I)(Z) = E X,(~) w ~  ~+')~ 

i=0  

mod(z  N/2 + 1), (76a) 
--2 Xk(Zr+l),2r+l = Xk(Zr+l)(Z ) rood(z- W~+~), 

(76b) 

u/2r+~ in (76b), we can replace and, since z =  ,, N 
W2r+l by z in (76a): N 

N - I  
X2¢2r+,)(Z) = Z X,(z) zik mod( zu/:+ 1), 

i=0  
(77) 

which is exactly a polynomial transform, as defined 
in [74]. This polynomial transform can be com- 

puted using an FFT-type algorithm, without multi- 
plications, and with only N2/2 log2 N additions. 

Xk,2,+l will now be obtained by application of  
(76b). XE(z) being computed mod(zN/2+ 1) is of  
degree N/2-1.  For each k, (76b) will then corre- 
spond to the reduction of  one polynomial modulo 
the odd powers of  WN. From (5), this is seen to 
be the computation of the odd outputs of  a length- 
N DFT, which is sometimes called an odd DFT. 

The terms Xk, Er+l a r e  seen to be obtained by one 
reduction mod(zN/2+l) (75), one polynomial 
transform of  N terms modzN/2+l (77) and N 
odd DFTs. This procedure is then iterated on the 
t e r m s  X2k+l,2r, by using exactly the same algorithm, 
the role of  k and r being interchanged. X2k,2 r is 
exactly a length N/2x N/2 DFT, on which the 
same algorithm is recursively applied. 

In the first version of  the polynomial transform 
computation of the 2-D FFT, the odd DFT was 
computed by a real-factor algorithm, resulting in 
an excess in the number of  additions required. 

As seen in Tables 4 and 5, where the number of 
multiplications and additions for the various 2-D 
FFT algorithms are given, the polynomial trans- 
form approach results in the algorithm requiring 
the lowest arithmetic complexity, when counting 
multiplications and additions altogether. The addi- 
tion counts given in Table 5 are updates of  the 
previous ones, assuming that the odd DFTs are 
computed by a split-radix algorithm. 

T a b l e  5 

N u m b e r  o f  rea l  a d d i t i o n s  p e r  o u t p u t  p o i n t  fo r  v a r i o u s  2 - D  F F T s  o n  real  d a t a  

N x N  N x N  
( W F T A )  (Othe r s )  R .C.  VR2 V R 4  V S R  W F T A  P.T. 

2 X 2  2 2 2 2 
4 X 4 3.25 3.25 3.25 3.25 3.25 
8 X 8 5.56 5.43 5.43 5.43 

16 X 16 8.26 8.14 7.86 7.86 7.86 
30 X 30 32 × 32 11.13 11.06 10.43 12.98 10.34 

64 X 64 14.06 14.09 13.11 13.02 12.83 
120 X 120 128 X 128 17.03 17.17 15.65 17.48 15.33 
240 X 240 256 X 256 20.01 20.27 18.48 17.67 22.79 17.83 
504 X 504 512 X 512 23 .00  23.38 20.92 34.42 20.33 

1008 X 1008 1024 X 1024 26.00 26.5 23.88 23.56 45 .30  22.83 

Signal Processing 
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Note that the same kind of performance was 
obtained by Auslander et al. [82, 83] with a similar 
approach which, while more sophisticated, gave a 
better insight on the mathematical structure of this 
problem. Polynomial transform were also applied 
to the computation of 2-D DCT [79, 52]. 

efficient implementations of polynomial transform 
based FFTs is worth the trouble. The precise under- 
standing of the link between VR algorithms and 
polynomial transforms may be a useful guide for 
this work. 

9.5. Discuss ion 

A number of conclusions can be stated by con- 
sidering Tables 4 and 5, keeping the principles of 
the various methods in mind. 

VR2 is more complicated to implement than 
row-column algorithms, and requires more 
operations for lengths t>32. Therefore, it should 
not be considered. Note that this result holds only 
because efficient and compact 1-D FFTs, such as 
SRFFT, have been developed. 

The row-column algorithm is the one allowing 
the easiest implementation, while having a reason- 
able arithmetic complexity. Furthermore, it is 
easily parallelized, and simplifications can be 
found for the reorderings (bit reversal, and matrix 
transposition [66]), allowing one of them to be 
free in nearly any kind of implementation. WFTA 
has a huge number of additions (twice the number 
required for the other algorithms for N = 1024), 
requires huge memory, has a difficult implementa- 
tion, but requires the least multiplications. Never- 
theless, we think that, in today's implementations, 
this advantage will in general not outweigh its 
drawbacks. 

VSR is difficult to implement, and will certainly 
seldom defeat VR4, except in very special cases 
(huge memory available and N very large). 

VR4 is a good compromise between structural 
and arithmetic complexity. When row-column 
algorithms are not fast enough, we think it is the 
next choice to be considered. 

Polynomial transforms have the greatest 
possibilities: lowest arithmetic complexity, possi- 
bility of in-place computation, but very little work 
was done on the best way of implementing them. 
It was even reported to be slower than VR2 [103]. 
Nevertheless, it is our belief that looking for 

10. Implementation issues 

It is by now well recognized that there is a 
strong interaction between the algorithm and its 
implementation. For example, regularity, as dis- 
cussed before, will 0nly pay off if it is closely 
matched by the target architecture. This is the 
reason why we will discuss in the sequel different 
types of implementations. Note that very often, 
the difference in computational complexity be- 
tween algorithms is not large enough so as to 
differentiate between the efficiency of the algorithm 
and the quality of the implementation . . . .  

10.1. Genera l  purpose  computers  

FFT algorithms are built by repetitive use of 
basic building blocks. Hence, any improvement 
(even small) in these building blocks will pay in 
the overall performance. In the Cooley-Tukey or 
the split-radix case, the building blocks are small 
and thus easily optimizable, and the effect of 
improvements will be relatively more important 
than in the PFA/WFTA case where the blocks are 
larger. 

When monitoring the amount of time spent in 
various elementary floating point operations, it is 
interesting to note that more time is spent in 
load/store operations than in actual arithmetic 
computations [30, 107, 109] (this is due to the fact 
that memory access times are comparable to ALU 
cycle times on current machines). Therefore, the 
locality of the algorithm is of paramount import- 
ance. This is why the PFA and WFTA do not meet 
the performance expected from their computa- 
tional complexity only. 

On another side, this drawback of PFA is com- 
pensated by the fact that only a few coefficients 
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have to be stored. On the contrary, classical FFTs 
must store a large table of  sine and cosine values, 
calculate them as needed, or update them with 
resulting roundoff errors. 

Note that special automatic code generation 
techniques have been developed in order to pro- 
duce efficient code for often used programs like 
the FFT. They are based on a 'de-looping' tech- 
nique that produces loop free code from a given 
piece of  code [ 107]. While this can produce unrea- 
sonably large code for large transforms, it can be 
applied successfully to sub-transforms as well. 

10.2. Digital signal processors 

Digital signal processors (DSPs) strongly favor 
multiply/accumulate based algorithms. Unfortu- 
nately, this is not matched by any of the fast FFT 
algorithms (where sums of  products have been 
changed to fewer but less regular computations). 
Nevertheless, DSPs now take into account some 
of  the FFT requirements, like modulo counters 
and bit-reversed addressing. If  the modulo counter 
is general, it will help the implementation of all 
FFT algorithms, but it is often restricted to the 
Cooley-Tukey/SRFFT case only (modulo a power 
of  2) for which efficient timings are provided on 
nearly all available machines by manufacturers, at 
least for small to medium lengths. 

10.3. Vector and multi processors 

Implementations of Fourier transforms on vec- 
torized computers must deal with two interconnec- 
ted problems [93]. First, the vector (the size of  
data that can be processed at the maximal rate) 
has to be full as often as possible. Then, the loading 
of  the vector should be made from data available 
inside the cache memory (like in general purpose 
computers) in order to save time. The usual hard- 
ware design parameters will in general favor 
length-2 m FFT implementations. For example, a 
radix-4 FFT was reported to be efficiently realized 
on a commercial vector processor [93]. 

In the multi-processor case, the performance 
will be dependent on the number and power of  
Signal Processing 
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the processing nodes but also strongly on the avail- 
able interconnection network. Because the FFT 
algorithms are deterministic, the resource alloca- 
tion problem can be solved off-line. Typical 
configurations include arithmetic units specialized 
for butterfly operations [98], arrays with attached 
shuffle networks and pipelines of arithmetic units 
with intermediate storage and reordering [17]. 
Obviously, these schemes will often favor classical 
Cooley-Tukey algorithms, because of their high 
regularity. However, SRFFT or PFA implementa- 
tions have not been reported yet, but could be 
promising in high speed applications. 

10.4. VLSI 

The discussion of partially dedicated multi- 
processors leads naturally to fully dedicated hard- 
ware structures like the ones that can be realized 
in very large scale integration (VLSI) [9, 11]. As 
a measure of  efficiency both chip area (A) and 
time (T)  between two successive DFT computa- 
tions (set-up times are neglected since only 
throughput is of  interest) are of importance. 
Asymptotic lower bounds for the product A- T 2 
have been reported for the FFT [116] and lead to 

~(2AT2(DFT(N)) = N 2 log2(N), (78) 

that is, no circuit will achieve a better behavior 
than (78) for large N. Interestingly, this lower 
bound is achieved by several algorithms, notably 
the algorithms based on shuffle-exchange networks 
and the ones based on square grids [96, 114]. The 
trouble with these optimal schemes is that they 
outperform more traditional ones, like the cascade 
connection with variable delay [98] (which is 
asymptotically sub-optimal), only for extremely 
large Ns  and are therefore not relevant in 
practice [96]. 

Dedicated chips for the FFT computation are 
therefore often based on some traditional 
algorithm which is then efficiently mapped into a 
layout. Examples include chips for image process- 
ing with small size DCTs [115] as well as wafer 
scale integration for larger transforms. Note that 
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the cost is dominated both by the number  of  multi- 
plications (which outweigh additions in VLSI) and 
the cost of  communication.  While the former figure 
is available from traditional complexity theory, the 
latter one is not yet well studied and depends 
strongly on the structure of  the algorithm as dis- 
cussed in Section 7. Also, dedicated arithmetic 
units suited for the FFT problem have been 
devised, like the butterfly unit [98] or the C O R D I C  
unit [94, 97] and contribute substantially to the 
quality of  the overall design. But, similarly to the 
software case, the realization of  an efficient VLSI 
implementat ion is still more an art than a mere 
technique. 

11. Conclusion 

The purpose of  this paper  has been threefold: 
a tutorial presentation of  classic and recent results, 
a review of  the state of  the art, and a statement of  
open problems and directions. 

After a brief  history of the FFT development,  
we have shown by simple arguments, that the 
fundamental  technique used in all fast Fourier 
transforms algorithms, namely the divide and con- 
quer approach,  will always improve the computa-  
tional efficiency. 

Then, a tutorial presentation of  all known FFT 
algorithms has been made. A simple notation, 
showing how various algorithms perform various 
divisions of  the input into periodic subsets, was 
used as the basis for a unified presentation of 
Cooley-Tukey,  split-radix, prime factor, and 
Winograd fast Fourier transforms algorithms. 
From this presentation, it is clear that Cooley-  
Tukey and split-radix algorithms are instances of  
one family of  FFT algorithms, namely FFTs with 
twiddle factors. 

The other family is based on a divide and con- 
quer scheme (Good 's  mapping) which is costless 
(computationally speaking). The necessary tools 
for computing the short-length FFTs which then 
appear  were derived constructively and lead to the 
presentation of the PFA and of  the WFTA. 
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These practical algorithms were then compared 
to the best possible ones, leading to an evaluation 
of their suboptimality. Structural considerations 
and special cases were addressed next. In par- 
ticular, it was shown that recently proposed 
alternative transforms like the Hartley transform 
do not show any advantage when compared to real 
valued FFTs. 

Special attention was then paid to multi- 
dimensional transforms, where several open prob- 
lems remain. Finally, implementat ion issues were 
outlined, indicating that most computat ional  
structures implicitly favor classical algorithms. 
Therefore, there is room for improvements if one 
is able to develop architectures that match more 
recent and powerful algorithms. 
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S o f t w a r e  

FORTRAN (or DSP) code can be found in the following 
references. 

[7] contains a set of classical FFT algorithms. 
[111] contains a prime factor FFT program. 

[4] contains a set of classical programs and considerations 
on program optimization, as well as TMS 32010 code. 

[113] contains a compact split-radix Fortran program. 
[29] contains a speed-optimized split-radix FFT. 
[77] contains a set of real-valued FFTs with twiddle factors. 
[65] contains a split-radix real valued FFT, as well as a 

Hartley transform program. 
[112], as well as [7] contains a Winograd Fourier transform 
Fortran program. 
[66], [67] and [75] contain improved bit-reversal algorithms. 
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