
Class Notes, Math 554, Autumn 2012

Lecture XXIV: QR Algorithm

1 The QR algorithm

So far, we have seen ways to solve Ax = b, approximate best ||b� Ax||22, and (theoretically, but in
practice not stably!) find spectral/SVD decompositions.

The induction-based proof of the existence of the Schur form we presented (which is also the
basis for the SVD algorithm we presented) cannot be translated into a practical algorithm (although
you may think that we know how to obtain the largest eigenvalue and an eigenvector for it through
the power method, in practice the power method is not stable. Not to mention that if the largest
eigenvalue is not simple or you have multiple “largest” eigenvalues which have the same absolute
value, the power method will not work.)

We will now see (as our last algorithm this quarter) how these latter decompositions are found
in practice.

The algorithm is iterative. Starting with a matrix A 2 Mn, the first step is to use unitary
similarity transformations to reduce it to a upper Hessenberg matrix: A = UHU⇤. The matrix H
has all entries under the first lower subdiagonal 0; i.e., Hij = 0, for all i� j > 1.

This can be achieved via successive multiplication by Householder reflectors (recall P4 from
Homework 7). The reason why one cannot triangularize to find the Schur form is because, unlike
with the QR decomposition, we need to find a unitary similarity transformation; thus, we act on
the matrix both at the left and at the right, and we cannot ensure that the zeros created in the first
column by the left multiplication will remain in place, unless we leave the first row unchanged. The
picture below should hopefully clarify this. If we try to use the full first column to find the reflector
we end up doing this
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where we have changed symbols to indicate the fact that previous entries change, and x is real.
Whereas if we attempt to zero out only the 3rd through nth entries of the first column, this
translates as
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Essentially, this proves the following claim:

Proposition 1. Any n ⇥ n matrix has an upper Hessenberg form, which can be computed using
n� 1 Householder reflectors (the last of which is scalar).



Remark 1. Note that, in finding the upper Hessenberg form of the matrix, the entries under the
subdiagonal can be made to be always real.

We present now the QR algorithm. The way the algorithm works is that, through unitary
transformations, it iteratively decreases the first subdiagonal entries of H to numerical 0 (or some
user-prescribed tolerance). Then it declares the diagonal entries of the obtained matrix to be the
eigenvalues of A.

Without further ado, here a basic version of the algorithm. Generally, the matrix A is upper
Hessenberg.

A0 = A
i = 0

while max{(Ai)j,j+1, j = 1, . . . , n} > tol do

[Qi, Ri] = qr(Ai)

Ai+1 = RiQi

i = i+ 1

end while

This is only one (and by no means the best) way of stopping a QR iteration. In general, the
algorithm proceeds until one of the entries is very small (so that the matrix is almost divided into
two diagonal blocks. The union of the two eigenvalue sets of the two blocks is very close in some
sense to the set of eigenvalues of the initial matrix–under certain assumptions. So the algorithm
proceeds then by breaking the problem into two subproblems, each dealing with its respective block.

Proposition 2. If A is upper Hessenberg, then all the matrices Ai are upper Hessenberg.

Proof. This is not hard to see. Assume we do QR with a Gram-Schmidt variant. If Ai is upper
Hessenberg, then Gram-Schmidt will produce an upper Hessenberg Qi and a triangular Ri, which
when multiplied in the opposite order, will once again yield an upper Hessenberg Ai+1.

So at every step, the algorithm produces a new Hessenberg matrix, which eventually converges
to a triangular one. We will not give the full proof of this fact, but will assign it as a reading (for
example, under assumptions like |�1| > |�2| > . . . > |�n|, the algorithm converges). However, we
will prove two simple facts that offer a bit of intuition toward this.

Lemma 1. Ak+1 is unitarily similar to A.

Proof. Note that Ak+1 = RkQk = Q⇤
kQkRkQk = Q⇤

kAkQk. Thus, if we denote by ˜Qk = Q0Q1 . . . Qk,
Ak+1 =

˜Q⇤
kA

˜Qk.

Lemma 2. Let ˜Rk = Rk . . . R1R0. Then ˜Qk
˜Rk = Ak+1.

Proof. We prove this by induction; it is immediate for k = 0. Assume now it is true for k � 1, and
let’s prove it for k.

Note that

˜Rk = Rk
˜Rk�1 = Q⇤

kAk�1
˜Rk�1 = Q⇤

k
˜Qk�1A ˜Qk�1

˜Rk�1 =
˜QkAA

k
=

˜QkA
k+1 .



This should suggest that the QR iteration converges under mild assumptions, for the same reason
that the power method converges (on similar assumptions). One can actually do the same for an
appropriately chosen set of eigenvalues (not just the first, and not all of them).

In practice, the QR iteration has many flavors and many additions that speed up convergence
(adding shifts, splittig the matrix as explained above, etc.), but there will always be “problematic”
matrices on which the QR algorithm will NOT converge.

As part of your homework, you will have to read the actual proof.


