Class Notes, Math 554, Autumn 2012

Lecture XXII: Least Squares and the Moore-Penrose inverse

We have seen last time how to solve the Least Squares Approximation Problem, of finding the
minimum value of ||b — Az||3 (given A and b), with the help of the QR factorization. The obtained
minimizer x is unique, if A is full-rank (rank(A) = n), otherwise-trivially-and =z +vy, y € N (A) will
also be a minimizer.

We address now the issue of finding a specific minimizer—one that, in addition, also has minimal
norm. We start by noting a fact that most undergraduates learn in linear algebra classes: that the
minimizers solves the normal equations.

In the following, F = C or R, and V,W are finite-dimensional spaces endowed with inner
products; we can think of A € L(V, W) and b as a linear transformation, and, respectively, a point
in W.

Proposition 1. (Normal equations) If T is a minimizer, A* AT = A*b.

Proof. Let us first note that (R(A))" = N(4*). Indeed, examine (y, z) for y € N(A*) and Z €
R(A). For z, there must be an z such that z = Az; then (y, Az) = (A*y,z) = 0.

Apply now the Projection Theorem with S = R(A) and z = b; the place of z in now taken by
some AZ for some € V. This  realizes the minimum of ||z —z||2 for z € S iff b— A% € (R(A))* =

N(A*). But then A*(Az —b) =0, so ¥ satisfies the nirmal equations. O

Remark 1. The normal equations are never used in computation! As we will see, there are ways to
define a condition number for matrices not necessarily invertible, or even square—but the condition
number will remain multiplicative, and therefore the condition number of A*A is potentially as high
as the square of the condition number of A. Therefore, accuracy is potentially destroyed when one
uses the normal equations—and why would one want to do this, when one has the QR factorization?

As we have seen & may not be unique. What will be unique will be the value y = AZ; amongst
all Z, we will be looking for the one of minimal norm, z! or “x dagger”:

ol ={zeC . A*Azx = A*b & ||z||s minimal} = {z € C* : AX =y & ||x||o minimal} .

To see that =T is unique, consider the fact that the set A := {x € C* : AX = y} is an affine
hyperplane (recall notion from earlier in the quarter), that is, closed and convex. It follows then
that A contains a unique point closest to the origin. Also, A is an affine translate of N'(A), and so
the closest point to 0 in A will necessarily be in (NV(A))*.

Thus, the map A" which takes b into z is a well-defined map.

Remark 2. A' is called the Moore-Penrose pseudo-inverse. Note that if A is invertible, AT = A~1
(hence the name).

The above considerents show that one can actually write

Al = (A‘W(A))i)_l °F,



where A|(N(A))L is the restriction of A to (M(A))* (which maps into R(A)), which is trivially an
isomorphism, and thus invertible, and P is the orthogonal projection onto the range R(A).

This makes A" a linear map, which-incidentally-has a simple form in terms of the SVD of A,
given in the theorem below.

Theorem 1. If A =UXV* is a (full) SVD for A, such that the singular values o1 > o9 > ... >
Op > Opy] = Opgo = ... = oy are thusly ordered on the diagonal of the m X n matriz 3, then
At = V*StU is an SVD for AY, where the singular values 1/, > 1/o,_1 > ... > 1)y > 0py1 =
Orya = ... =0, =0 are thusly ordered on i,

Proof. The notation X1 is apt, since ' is the Moore-Penrose pseudo-inverse for X.

To prove the theorem, we give the following equivalent characterization of the SVD of A.

For the matrix A of rank r, A = UXV™* is a/the SVD of A if the following three facts are all
true:

o {uy,...,upn}, the columns of U, are an orthonormal basis for C™, with {us,...,u,} being an
orthonormal basis for R(A);

e {v1,...,v,}, the columns of V', are an orthonormal basis for C", with {v,41,...,v,} being an
orthonormal basis for N'(A);

oAvi:aiui,lgigr.

It will suffice to show that the above characterization holds true for AT.

Note that AT = (A‘(N(A))J'> o P implies that {t,,1,...,u,}, being a basis for (R(A))" (which
is precisely the set mapped to 0 by A1), are a basis for N(A"). Also, that {v1,...,v,}, being a
basis for (N (A))* (which is precisely the range of Af), are a basis for R(Af. Both conditions follow
from the fact that P is onto, and the first part of the composition is an isomorphism.

Finally, the last condition is trivially true, since the ' corresponding to u; must be of the form
+-0i +y, where y € N'(A); since v; € (NV(A)T, +-0i + y is minimal when y = 0.

Therefore, conditions 1-3 are fulfilled for A, and the theorem is proved. O



