
Class Notes, Math 554, Autumn 2012

Lecture XXII: Least Squares and the Moore-Penrose inverse

We have seen last time how to solve the Least Squares Approximation Problem, of finding the

minimum value of ||b�Ax||22 (given A and b), with the help of the QR factorization. The obtained

minimizer x is unique, if A is full-rank (rank(A) = n), otherwise–trivially–and x+y, y 2 N (A) will

also be a minimizer.

We address now the issue of finding a specific minimizer–one that, in addition, also has minimal

norm. We start by noting a fact that most undergraduates learn in linear algebra classes: that the

minimizers solves the normal equations.

In the following, F = C or R, and V,W are finite-dimensional spaces endowed with inner

products; we can think of A 2 L(V,W ) and b as a linear transformation, and, respectively, a point

in W .

Proposition 1. (Normal equations) If x̃ is a minimizer, A

⇤
Ax̃ = A

⇤
b.

Proof. Let us first note that (R(A))? = N (A⇤). Indeed, examine hy, zi for y 2 N (A⇤) and Z 2
R(A). For z, there must be an x such that z = Ax; then hy,Axi = hA⇤

y, xi = 0.
Apply now the Projection Theorem with S = R(A) and z = b; the place of x in now taken by

some Ax̃ for some x̃ 2 V . This x realizes the minimum of ||z�x||22 for x 2 S iff b�Ax̃ 2 (R(A))? =
N (A⇤). But then A

⇤(Ax̃� b) = 0, so x̃ satisfies the nirmal equations.

Remark 1. The normal equations are never used in computation! As we will see, there are ways to

define a condition number for matrices not necessarily invertible, or even square–but the condition

number will remain multiplicative, and therefore the condition number of A

⇤
A is potentially as high

as the square of the condition number of A. Therefore, accuracy is potentially destroyed when one

uses the normal equations–and why would one want to do this, when one has the QR factorization?

As we have seen x̃ may not be unique. What will be unique will be the value y = Ax̃; amongst

all x̃, we will be looking for the one of minimal norm, x

†
or “x dagger”:

x

† = {x 2 Cn : A

⇤
Ax = A

⇤
b & ||x||2 minimal} = {x 2 Cn : AX = y & ||x||2 minimal} .

To see that x

†
is unique, consider the fact that the set A := {x 2 Cn : AX = y} is an affine

hyperplane (recall notion from earlier in the quarter), that is, closed and convex. It follows then

that A contains a unique point closest to the origin. Also, A is an affine translate of N (A), and so

the closest point to 0 in A will necessarily be in (N (A))?.

Thus, the map A

†
which takes b into x

†
is a well-defined map.

Remark 2. A

†
is called the Moore-Penrose pseudo-inverse. Note that if A is invertible, A

† = A

�1

(hence the name).

The above considerents show that one can actually write

A

† =
⇣
A

��
(N (A))?

⌘�1
� P ,



where A

��
(N (A))?

is the restriction of A to (N (A))? (which maps into R(A)), which is trivially an

isomorphism, and thus invertible, and P is the orthogonal projection onto the range R(A).
This makes A

†
a linear map, which–incidentally–has a simple form in terms of the SVD of A,

given in the theorem below.

Theorem 1. If A = U⌃V ⇤
is a (full) SVD for A, such that the singular values �1 � �2 � . . . �

�r > �r+1 = �r+2 = . . . = �n are thusly ordered on the diagonal of the m ⇥ n matrix ⌃, then

A

† = V

⇤⌃†
U is an SVD for A

†
, where the singular values 1/�r � 1/�r�1 � . . . � 1/�1 > �r+1 =

�r+2 = . . . = �n = 0 are thusly ordered on ⌃†
.

Proof. The notation ⌃†
is apt, since ⌃†

is the Moore-Penrose pseudo-inverse for ⌃.

To prove the theorem, we give the following equivalent characterization of the SVD of A.

For the matrix A of rank r, A = U⌃V ⇤
is a/the SVD of A if the following three facts are all

true:

• {u1, . . . , um}, the columns of U , are an orthonormal basis for Cm
, with {u1, . . . , ur} being an

orthonormal basis for R(A);

• {v1, . . . , vn}, the columns of V , are an orthonormal basis for Cn
, with {vr+1, . . . , vn} being an

orthonormal basis for N (A);

• Avi = �iui, 1  i  r.

It will suffice to show that the above characterization holds true for A

†
.

Note that A

† =
⇣
A

��
(N (A))?

⌘�1
�P implies that {ur+1, . . . , un}, being a basis for (R(A))? (which

is precisely the set mapped to 0 by A

?
), are a basis for N (A†). Also, that {v1, . . . , vr}, being a

basis for (N (A))? (which is precisely the range of A

†
), are a basis for R(A†

. Both conditions follow

from the fact that P is onto, and the first part of the composition is an isomorphism.

Finally, the last condition is trivially true, since the x

†
corresponding to ui must be of the form

1
�i
vi + y, where y 2 N (A); since vi 2 (N (A))?,

1
�i
vi + y is minimal when y = 0.

Therefore, conditions 1-3 are fulfilled for A

†
, and the theorem is proved.


