Class Notes, Math 554, Autumn 2012 Lecture XXI: The Gram-Schmidt Process and the QR factorization; Least Squares The Gram-Schmidt algorithm started on the columns of a matrix A will yield the QR factorization. **Proposition 1.** Given $A \in \mathcal{M}_{m,n}(\mathbb{C})$, $m \geq n$, there exists a unitary matrix $Q \in \mathcal{M}_m(\mathbb{C})$ and an upper triangular matrix $R \in \mathcal{M}_{m,n}(\mathbb{C})$ such that A = QR. (Note that for a rectangular matrix to be upper triangular it means that all entries with indices (i,j), i > j are 0.) *Proof.* Suppose first that the columns of A are independent. The first n columns of Q, \tilde{Q} , will be obtained as a result of the Gram-Schmidt process on A. The same process also yields an upper triangular matrix \tilde{R} which is square (n|timesn). Denote $Q = [\tilde{Q}, Q']$ a completion of \tilde{Q} to full orthonormal basis and by $R = \begin{bmatrix} \tilde{R} \\ 0 \end{bmatrix}$ the completion of R to $m \times n$ by adding m - n rows of zeros. Then A = QR. Now, if the columns of A are dependent, one can continue the Gram-Schmidt process by setting appropriate qs to 0. For example, if a_k is a linear combination of the previous columns, which will be discovered as p_k will be 0, set $a_k = 0$ and also all $r_{kj} = 0$ — for $j \geq k$, and continue. The result will once again be a matrix \tilde{Q} with orthogonal columns, some of which are unit-length and some which are 0, as well as an upper triangular matrix \tilde{R} with some zero rows. Eliminate all zero columns and correspondingly zero rows from \tilde{Q} and \tilde{R} ; complete $Q = [\tilde{Q}, Q']$ to a full unitary matrix, "padd" \tilde{R} with 0 rows to get R, and once again A = QR. Corollary 1. From the Gram-Schmidt process followed by a potential "pruning" of zero columns and rows, one can obtain the "condensed" QR factorization $A = \tilde{Q}\tilde{R}$, where $\tilde{Q} \in \mathcal{M}_{m,r}$ and $\tilde{R} \in \mathcal{M}_{r,n}$, the former having orthonormal columns, and the latter being upper triangular. The parameter r here can take the place of either n (if no pruning) or the rank of A (if pruning) Remark 1. The following are easily seen to be true: - We can choose R to have non-negative diagonal entries. - If A is full rank, R can in fact be chosen to have positive diagonal entries. In this case the condensed QR factorization is unique. - If A is full rank, the only non-uniqueness in the condensed QR form derives from the possibility to attach phases to the columns of \tilde{Q} . In other words, letting $D = diag(e^{i\theta_1}, \dots, e^{i\theta_n})$ be a generic notation for diagonal matrices of phases, for any two factorizations $Q_1R_1 = Q_2R_2$ of A, there exists a D such that $Q_1 = Q_2D^*$ and $R_1 = DR_2$. **Remark 2.** If we replace \mathbb{C} with \mathbb{R} , then Q becomes orthogonal rather than unitary, and R is real. All the rest holds. One last thing that needs to be mentioned: Modified Gram-Schmidt (MGS) is relatively fast and stable. There are, however, more stable algorithms (and arguably better, computationally) for calculating QR; the two most important ones are the Householder reflector one (mentioned in the homework), and the Givens rotation one. ## 0.1 Using QR to solve Least Squares A good part of classical numerical linear algebra (NLA) is concerned with solving the equation Ax = b (... the joke amongst NLA people being that the rest of it is solving $Ax = \lambda x$.) Nevertheless, as we know, if $b \notin \mathcal{R}(A)$, no such solution exists. What can one do then? The answer is to change the question: rather than *solve*, focus on *approximate*. The "Least Squares" approximation problem is to minimize $||Ax-b||_2$, or equivalently, $||b-Ax||_2$, for given A and b (naturally, if Ax = b does have solutions, then the minimization problem reverts to finding a/the solution). Equivalently, and more simply, we choose to minimize the square of this quantity, namely $||Ax-b||_2^2$. Generally speaking, the reason for choosing the 2-norm is because it has an associated inner product, which makes things a lot less complicated, by transforming the problem into a geometry one: finding the projection of b onto $\mathcal{R}(A)$. This is illustrated by the following (not very hard) theorem. **Theorem 1.** (The Projection Theorem, finite dimensional version) Let V be an inner-product space, and $S \in V$ be a finite dimensional subspace. Then - 1) $V = S \oplus S^{\perp}$; that is, $\forall z \in V$, $\exists ! x \in S$, $y \in S^{\perp}$, such that z = x + y. Incidentally, $x = P_S z$, $y = P_{S^{\perp}} z = (I P_S) z$. - 2) Given $z \in V$, the x in 1) is the unique element of S which satisfies $z y \in S^{\perp}$. - 3) Given $z \in V$, the x in 1) is the unique element of V realizing the minimum $\min_{s \in S} ||z s||_2^2$. The norm here is the one induced by the inner product. *Proof.* The proof is in the picture. 1) Let $\{\phi_1,\ldots,\phi_k\}$ be an orthonormal basis for S. Let $x=\sum_{i=1}^k \langle \phi_i,z\rangle \phi_i$, and let y=z-x. Then trivially $x\in S$, and $$\langle \phi_i, y \rangle = \langle \phi_i, z \rangle - \langle \phi_i, x \rangle = 0$$, so $y \in S^{\perp}$. Uniqueness for both x and y follows from the fact that $S \cap S^{\perp} = \{0\}$. - 2) This is a restatement of 1). - 3) Note that for $s \in S$, z s = x s + y, and since $x s \in S$ and $y \in S^{\perp}$, we can write by the Pythagorean Theorem $$||z - s||_2^2 = ||x - s||_2^2 + ||y||_2^2$$, so clearly the LHS is minimized when x = s. ## 0.1.1 Solving Least Squares with QR We start with this, because it is the most widely used algorithm for solving Least Squares. Recall that we want to minimize $||b - Ax||_2^2$ for some matrix $A \in \mathcal{M}_{m,n}$ and vector $b \in \mathbb{C}^n$. Assume wlog rank(A) = n, write A = QR, the full QR decomposition of A, and let $A = \tilde{Q}\tilde{R}$ be the condensed QR decomposition of A (so that \tilde{R} has no zero rows, and \tilde{Q} has orthonormal columns), and rearrange $Q = [\tilde{Q}, Q']$, $R = \begin{bmatrix} \tilde{R} \\ 0 \end{bmatrix}$. (If A is not full rank, one can still do the condensed decomposition of A, find a "solution" x', and then "padd" it appropriately with zeros.) Write $$||b - Ax||_2^2 = ||QRx - b||_2^2 = ||Q^*(QRx - b)||_2^2$$ since the 2-norm is invariant under unitary multiplication, and thus $$||b - Ax||_2^2 = ||Rx - Q^*b||_2^2 = \left| \left| \left[\begin{array}{c} \tilde{R}x - \tilde{Q}^*b \\ (Q')^*b \end{array} \right] \right| \right|_2^2 = ||\tilde{R} - \tilde{Q}^*b||_2^2 + ||(Q')^*b||_2^2 \ .$$ Thus the minimization problem is transformed into finding the minimum of $||\tilde{R}x - \tilde{Q}^*b||_2^2$, but, since we can choose \tilde{Q} so that \tilde{R} has all positive entries on the diagonal, \tilde{R} is invertible, and $\tilde{R}x = \tilde{Q}^*b$ is solvable. Thus, the minimum is obtained uniquely at the point for which $\tilde{R}x = \tilde{Q}^*b$. Note that we only need matrix multiplication and computing QR to solve; we will see later why this is important.