
Class Notes, Math 554, Autumn 2012

Lecture XXI: The Gram-Schmidt Process and the QR factorization; Least

Squares

The Gram-Schmidt algorithm started on the columns of a matrix A will yield the QR factoriza-

tion.

Proposition 1. Given A 2 Mm,n(C), m � n, there exists a unitary matrix Q 2 Mm(C) and an

upper triangular matrix R 2 Mm,n(C) such that A = QR. (Note that for a rectangular matrix to

be upper triangular it means that all entries with indices (i, j), i > j are 0.)

Proof. Suppose first that the columns of A are independent. The first n columns of Q, Q̃, will be
obtained as a result of the Gram-Schmidt process on A. The same process also yields an upper
triangular matrix R̃ which is square (n]timesn).

Denote Q = [Q̃,Q

0] a completion of Q̃ to full orthonormal basis and by R =


R̃

0

�
the comple-

tion of R to m⇥ n by adding m� n rows of zeros.
Then A = QR.
Now, if the columns of A are dependent, one can continue the Gram-Schmidt process by setting

appropriate qs to 0. For example, if ak is a linear combination of the previous columns, which will be
discovered as pk will be 0, set ak = 0 and also all rkj = 0� for j � k, and continue. The result will
once again be a matrix Q̃ with orthogonal columns, some of which are unit-length and some which
are 0, as well as an upper triangular matrix R̃ with some zero rows. Eliminate all zero columns and
correspdondingly zero rows from Q̃ and R̃; complete Q = [Q̃,Q

0] to a full unitary matrix, “padd” R̃

with 0 rows to get R, and once again A = QR.

Corollary 1. From the Gram-Schmidt process followed by a potential “pruning” of zero columns and

rows, one can obtain the “condensed” QR factorization A = Q̃R̃, where Q̃ 2 Mm,r and R̃ 2 Mr,n,

the former having orthonormal columns, and the latter being upper triangular. The parameter r

here can take the place of either n (if no pruning) or the rank of A (if pruning)

Remark 1. The following are easily seen to be true:

• We can choose R to have non-negative diagonal entries.

• If A is full rank, R can in fact be chosen to have positive diagonal entries. In this case the

condensed QR factorization is unique.

• If A is full rank, the only non-uniqueness in the condensed QR form derives from the possibility

to attach phases to the columns of Q̃. In other words, letting D =diag(ei✓1 , . . . , ei✓n) be a

generic notation for diagonal matrices of phases, for any two factorizations Q1R1 = Q2R2 of

A, there exists a D such that Q1 = Q2D
⇤

and R1 = DR2.

Remark 2. If we replace C with R, then Q becomes orthogonal rather than unitary, and R is real.

All the rest holds.



One last thing that needs to be mentioned: Modified Gram-Schmidt (MGS) is relatively fast
and stable. There are, however, more stable algorithms (and arguably better, computationally) for
calculating QR; the two most important ones are the Householder reflector one (mentioned in the
homework), and the Givens rotation one.

0.1 Using QR to solve Least Squares

A good part of classical numerical linear algebra (NLA) is concerned with solving the equation
Ax = b (... the joke amongst NLA people being that the rest of it is solving Ax = �x.) Nevertheless,
as we know, if b /2 R(A), no such solution exists. What can one do then? The answer is to change
the question: rather than solve, focus on approximate.

The “Least Squares” approximation problem is to minimize ||Ax�b||2, or equivalently, ||b�Ax||2,
for given A and b (naturally, if Ax = b does have solutions, then the minimization problem reverts
to finding a/the solution). Equivalently, and more simply, we choose to minimize the square of this
quantity, namely ||Ax� b||22.

Generally speaking, the reason for choosing the 2-norm is because it has an associated inner
product, which makes things a lot less complicated, by transforming the problem into a geometry
one: finding the projection of b onto R(A). This is illustrated by the following (not very hard)
theorem.

Theorem 1. (The Projection Theorem, finite dimensional version) Let V be an inner-product space,

and S 2 V be a finite dimensional subspace. Then

1) V = S � S

?
; that is, 8z 2 V , 9!x 2 S, y 2 S

?
, such that z = x + y. Incidentally, x = PSz,

y = PS?z = (I � PS)z.

2) Given z 2 V , the x in 1) is the unique element of S which satisfies z � y 2 S

?
.

3) Given z 2 V , the x in 1) is the unique element of V realizing the minimum mins2S ||z � s||22.
The norm here is the one induced by the inner product.

Proof. The proof is in the picture.
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1) Let {�1, . . . ,�k} be an orthonormal basis for S. Let x =
Pk

i=1h�i, zi�i, and let y = z � x.
Then trivially x 2 S, and

h�i, yi = h�i, zi � h�i, xi = 0 ,

so y 2 S

?. Uniqueness for both x and y follows from the fact that S \ S

? = {0}.



2) This is a restatement of 1).

3) Note that for s 2 S, z � s = x� s+ y, and since x� s 2 S and y 2 S

?, we can write by the
Pythagorean Theorem

||z � s||22 = ||x� s||22 + ||y||22 ,

so clearly the LHS is minimized when x = s.

0.1.1 Solving Least Squares with QR

We start with this, because it is the most widely used algorithm for solving Least Squares. Recall
that we want to minimize ||b�Ax||22 for some matrix A 2 Mm,n and vector b 2 Cn.

Assume wlog rank(A) = n, write A = QR, the full QR decomposition of A, and let A = Q̃R̃

be the condensed QR decomposition of A (so that R̃ has no zero rows, and Q̃ has orthonormal

columns), and rearrange Q = [Q̃,Q

0], R =


R̃

0

�
.

(If A is not full rank, one can still do the condensed decomposition of A, find a “solution” x

0,
and then “padd” it appropriately with zeros.)

Write
||b�Ax||22 = ||QRx� b||22 = ||Q⇤(QRx� b)||22 ,

since the 2-norm is invariant under unitary multiplication, and thus

||b�Ax||22 = ||Rx�Q

⇤
b||22 =

����

����


R̃x� Q̃

⇤
b

(Q0)⇤b

�����

����
2

2

= ||R̃� Q̃

⇤
b||22 + ||(Q0)⇤b||22 .

Thus the minimization problem is transformed into finding the minimum of ||R̃x�Q̃

⇤
b||22, but, since

we can choose Q̃ so that R̃ has all positive entries on the diagonal, R̃ is invertible, and R̃x = Q̃

⇤
b

is solvable.
Thus, the minimum is obtained uniquely at the point for which R̃x = Q̃

⇤
b.

Note that we only need matrix multiplication and computing QR to solve; we will see later why
this is important.


