
Class Notes, Math 554, Autumn 2012

Lecture XIX: The Singular Value Decomposition

1 Singular Value Decomposition

We have now seen the importance of the eigenvalues in determining the “essence” of a linear
transformation by identifying its invariant subspaces, and finding the e↵ect of the restriction of
the transformation on these subspaces. But what about rectangular matrices? We need a di↵erent
kind of measure, one that will o↵er a slightly di↵erent characterization: singular values.

Given A 2 Mm,nC (or Mm,n(R)), we have the following important theorem. Assume wlog
m � n; if the reverse is true, everything below can be transposed to yield the desired result.

Theorem 1. (SVD Decomposition) There exist matrices U 2 Mm(C) (repectively, Mm(R)), U
unitary, V 2 Mn(C) (repectively, Mn(R)), V unitary, and ⌃ a diagonal, real matrix in Mm,n(R)
with �i := ⌃ii � 0, for all i  n, and �1 � �2 � . . . � �n, such that A = U⌃V ⇤. Moreover,
||A||a =

p
⇢(A⇤

A) = �1.

We will give a direct proof of this theorem, based on a priori knowledge of the form of the
decomposition we are looking for. There are other proofs among which there is an inductive one
which closely ressembles the proof for the Schur form; they are a little less intuitive, and we choose
to omit them.

Proof. We begin by noting that, as mentioned before, A⇤
A is a Hermitian, positive semi-definite

matrix, therefore it is diagonalizable via an orthogonal transformation: A

⇤
A = V ⇤V ⇤ for some

unitary n⇥ n V , and ⇤ � 0, in the sense that all eigenvalues of A⇤
A are positive. We can assume

that the eigenvalues are ordered in non-increasing order on the diagonal of ⇤; write ⇤ = ⌃T⌃ for
a diagonal matrix ⌃ 2 Mm,n.

Let k be such that �1 � �2 � . . . � �k > 0 and �k+1 = . . . = �n = 0, and let ui for
i = 1, 2, ldots, k be such that Avi = �iui, where V = [v1, v2, . . . , vn] (vi is the ith column of V ).
Let us now examine

u

⇤
iuj =

1

�i�j
v

⇤
iA

⇤
Avi = �ij ;

this indicates that {u1, . . . , uk} are an orthonormal set.
Note that for �k+1, . . . ,�n, vk+1, . . . , vn are an orthonormal basis for N (A)–we leave it as a

simple exercise to note that if v⇤A⇤
Av = 0, then v 2 N (A).

Therefore we choose to complete the basis {u1, . . . , uk} to an orthonormal basis for the entire
space Cm by tacking on the vectors {uk+1, . . . , um}, so that the matrix U = [u1, . . . , um] is unitary.

Thus, AV = U⌃, and A = U⌃V ⇤.

Note that we could have done the same thing starting not with A

⇤
A, but with AA

⇤; the fact
that the underlying singular values (at least the non-zero ones) would still have been the same is
non-trivial, and so we give the following Proposition to explain it.



Proposition 1. Let A 2 Mm,n, B 2 Mn,m. Then AB and BA have the same eigenvalues, except
that the larger matrix has an extra |m� n| zero eigenvalues.

Proof. You have proved this in the case when m = n in HW1 (more or less). For m 6= n, we define
the following two (m+ n)⇥ (m+ n) matrices:

C1 =


AB 0
B 0

�
, C2 =


0 0
B BA

�
.

We note that the matrix S =


I A

0 I

�
, with inverse S

�1 =


I �A

0 I

�
, provides a similarity

transformation between C1 and C2, as follows: C1 = SC2S
�1. We leave the details of this as an

easy exercise.
The matrix C1 has as eigenvalues those of AB, and an additional n zeros, while C2’s eigenvalues

are those of BA plus an additional n zeros. Since the two sets of eigenvalues must be the same,
the conclusion follows.

Remark 1. One can apply this proposition to A

⇤
A and AA

⇤ to obtain the result about the singular
values of A being the same as for A

⇤, by alternate means.

Remark 2. ||A||22 = ||A⇤
A||, for all A. This is due to the fact that the operator 2-norm (induced

by the Euclidean norm on vectors) is not changed by multiplication with a unitary matrix. Thus
||A||2 = �1.

An alternative proof follows the lines of the proof we did for the square case.

The vectors ui are known as the left singular vectors of A, while the vectors vj are known as
the right singular vectors of A. In general, the SVD is not unique (even if one conditions on the
strictly non-increasing ordering of singular values, one could have repeated singular values, zero
singular values, having to complete the orthogonal basis, etc.

A better (less choice-y) solution is to seek the “compact” singular value decomposition, A =
Ur⌃rV

⇤
r , where each of the three matrices on the right has r columns (where r = k is the rank of

A, i.e., the number of non-zero singular values), while Ur has m columns, ⌃ is square, and Vr has n
rows. After conditioning on the non-increasing ordering of the singular values, the non-uniqueness
can only come from repeated singular values.


