
2/26/2010 Z:\ jeh\Self\Book Kannan\Jan-15-2010\4. SVD 
 Chapter 4 Part 1 SVD 1 

4  SingularValue Decomposition (SVD) 
 
The singular value decomposition of a matrix A is the factorization of A into the product of three 
matrices TA UDV where the columns of U are orthonormal and similarly the columns of V are 
orthonormal.  The matrix D is diagonal and has positive (real) diagonal entries.  The SVD is 
useful in many tasks.  Here we mention two examples.  First the rank of a matrix A can be read 
off from its SVD.  It is just the size of D.  The second example is that for a square and invertible 
matrix A, the inverse of A is 1 TVD U� . 
 
To motivate the SVD, we treat the rows of an n du matrix A as n points in a d-dimensional space 
and consider the problem of finding the best k dimensional subspace with respect to the set of 
points.  Here best means minimize the sum of the squares of the perpendicular distances of the 
points to the subspace.  We begin with a special case of the problem where the subspace is 1-
dimensional, a line through the origin.  We will see later that we can find the best-fitting k-
dimensional subspace by k applications of the best fitting line algorithm.  Finding the best fitting 
line through the origin with respect to a set of points � �^ `, |1i ix y i nd d  in the plane means 
minimizing the sum of squared distances of the points to the line.  Here distance is measured 
perpendicular to the line.  The problem is called the best least squares fit.   
 
In the best least squares fit, one is minimizing the distance to a subspace.  A similar problem is to 
find the function that best fits some data.  Here one variable y is a function of the 
variables 1 2, , , nx x x" and one wishes to minimize the vertical distance to the subspace of 
the ix rather than the perpendicular distance to the subspace. 
 
Let y mx be a line through the origin.  Project the point � �,i ix y onto the line y=mx.  Then   

� � � �2 22 2 length of projection distance of point to the linei ix y�  � . 
 

See Figure 4.1.  Thus  
� � � �2 22 2distance of point to the line length of projectioni ix y � � . 

 

To minimize the sum of the squares of the distances to the line, one could minimize � �2 2

1

n

i i
i

x y
 

�¦  

minus the sum of the squares of the lengths of the projections of the points onto the line.  

However, � �2 2

1

n

i i
i

x y
 

�¦ is a constant (independent of the line), so minimizing the sum of the 

squares of the distances is equivalent to maximizing the sum of the squares of the lengths of the 
projections onto the line. Similarly for best-fit subspaces, we could maximize the sum of the 
squared lengths of the projections onto the subspace instead of minimizing the sum of squared 
distances to the subspace.  
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4.1 Singular vectors 
 
We now define the singular vectors of an n du matrix A.  Consider the rows of A as n points in a 
d dimensional space.  Consider the best fit line through the origin.  Let v be a unit vector along 
this line.  The length of the projection of the ith row of A, ia , onto v  is| ·ia v | and from this we see 
that the sum of length squared of the projections is 2| |Av .  The best fit line is the one 
maximizing 2| |Av and hence minimizing the sum of the squared distances of the points to the 
line. 
 
With this in mind, define the first singular vector, 1v of A, which is a column vector, as the best 
fit line through the origin for the n points in d space which are the rows of A. Thus              
 

| | 1
arg max |  | A

 
 1

v
v v . 

The value � �1 A AV  1v  is called the first singular value of A.  Note that 2
1V is the sum of the 

squares of the projections of the points to the line determined by 1v . 
 
The greedy approach to find the best fit 2-dimensional subspace for a matrix A, takes 1v as the 
first basis vector for the 2-dimenional subspace and finds the best 2-dimensional subspace 
containing 1v .  The fact that we are using sum of squared distances helps us.  For every 2-
dimensional subspace containing 1v , the sum of squared lengths of the projections onto the 
subspace is just the sum of squared projections onto 1v plus the sum of squared projections along 
a vector perpendicular to 1v  in the subspace.  Thus, instead of looking for the best 2-dimensional 

� �,i ix y  

y mx  

Figure 4.1:  The projection of the point � �,i ix y onto the line y=mx. 

(0,0)
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subspace containing 1v , we look for a unit vector, call it 2v , perpendicular to 1v  which 
maximizes 2| |Av  among all such unit vectors.  The same argument shows that in pursuing a 
greedy strategy for finding the best three or higher dimensional subspaces, we should 
define , ,}3 4v v in a similar manner.  This is what the following definitions capture.  There is no 
apriori guarantee that the greedy approach gives the best fit.  But, in fact, the greedy algorithm 
does work and yields the best-fit subspaces of every dimension. 
 
The second singular vector, 2v , is defined by the best fit line perpendicular to 1v : 
 

1

2
,| | 1

arg max
v v v

v Av
A  

  

. 
The value � �2 | |A AV  2v  is called the second singular value of A.  The third singular vector 3v  is 
defined similarly by 
 

, ,| | 1
arg max A
A  

 
1 2

3
v v v v

v v  

and so on.  The process stops when we have found  
 , , ,1 2 rv v v"  
as singular vectors and  
 

, , , ,| | 1
arg max 0A

A  
 

1 2 rv v v v v
v

"
.
 

 
 
Now, we give a simple proof that the greedy algorithm indeed finds the best subspaces of every 
dimension. 
 
Theorem  4.1:  Let A be an n du matrix and suppose , ,}1 2 rv v v are the singular vectors defined 
above.  For 1 k rd d , let kV be the subspace spanned by , ,}1 2 kv v v .  Then for each k , kV  is the 
best-fit k dimensional subspace for A. 
 
Proof: The statement is obviously true for 1k  .  For 2k  , letW be a best-fit 2-dimensional 
subspace for A.  For any basis ,1 2w w of W , 2 2| | | |A A�1 2w w is the sum of squared lengths of 
the projections of the rows of A onto W .  Now, choose a basis , 21w w  of W  so that 2w is 
perpendicular to 1v .  If 1v  is perpendicular toW , any unit vector in W  will do as 2w .  If not, we 
choose 2w  to be the unit vector in W  perpendicular to the projection of 1v ontoW .  
Since 1v was chosen to maximize 2| |Av1 , 2 2| | | |A Ad1 1w v  and since 2v  was chosen to maximize 

2
2| |Av over all v perpendicular to 1v , 2

2 2
2| | | |A Adw v .  Thus 

2 2 2 2| | | | | | | |A A A Ad� �1 2 1 2w w v v . 
Hence, 2V  is at least as good as W  and so is a best-fit 2-dimensional subspace.  
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For general k , proceed by induction.  By the induction hypothesis 1kV �  is a best-fit k-1 
dimensional subspace.  SupposeW is a best-fit k dimensional subspace.  Choose a basis 

, ,}1 2 kw w w of W so that kw is perpendicular to , , �}1 2 k 1v v v .  Then  
 2 2 2 2 2 2 2| | | | | | | | | | | | | |A A A A A A A�� �} d � �} �1 2 k 1 2 k 1 kw w w v v v w  
by the fact that 1kV � is an optimal k-1 dimensional subspace.   Since kw is perpendicular to 

, , �}1 2 k 1v v v .  By the definition of kv , 2 2
k kAw Avd and thus 

 2 2 2 2 2 2 2 2| | | | | | | | | | | | | | | |A A A A A A A A� �� �}� � d � �} �1 2 k 1 k 1 2 k 1 kv v v w v v v v , 
proving that kV  is at least as good as W and hence is optimal. 

Ŷ 
 
Note that the n -vector A iv is really a list of lengths (with signs) of the projections of the rows of 
A onto iv .  Thus, think of | | ( )iA AV iv  as the ``component’’ of the matrix A along iv .  For this 
interpretation to make sense, it should be true that adding up the squares of the components 
along each of the iv , gives the  square of the ``whole content of the matrix A ’’.  This is the 
matrix analogy of decomposing a  vector into its  components along orthogonal directions.  The 
length squared of the whole vector then would be the sum of squares of its components.  This is 
indeed the case.   
 
Consider one row, say ja  , of A .  Since , ,}1 2 rv v v span the space of all rows of A, · 0 ja v  for 

all v  perpendicular to , ,}1 2 rv v v .  Thus, for each row ja , 2 2

1
( · ) | |

r

i 
 ¦ i j jv a a .  Summing over all 

rows j ,  

 2 2 2 2

1 1 1 1 1
| | ( · ) | | ( ).

n r n r r

i
j i j i i

A AV
     

   ¦ ¦¦ ¦ ¦j i j ia v a v  

But 2 2

1 1 1
| |

n n d

jk
j j k

a
   

 ¦ ¦¦ja , the sum of squares of all the entries of A .  There is an important norm 

associated with this, namely, the Frobenius norm of A , denoted || ||FA  which is defined as 

 2

,
|| ||F jk

j k
A a ¦ . 

Thus, we have shown that the sum of squares of the singular values of A is indeed the square of 
the ``whole content of A ’’, i.e., the sum of squares of all the entries.  
 
Lemma 4.1: For any matrix A , the sum of squares of the singular values equals the Frobenius 
norm.  That is, 2 2( ) || ||i FA AV  ¦ . 
 
Proof:  By the preceding discussion. 

Ŷ 
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For each i, A iv  is a list of lengths of projections of the rows of A onto iv .  A can be described 
fully by how it transforms the vectors iv .  Every vector v  can be written as a linear combination 
of , ,}1 2 rv v v and a vector perpendicular to all the iv . Thus, Av is the same linear combination 
of , ,A A A}1 2 rv v v .  So the , ,A A A}1 2 rv v v  form a fundamental set of vectors associated 
with .A   We normalize them to length one by  

 1
( )i

A
AV

 i iu v . 

The vectors , ,}1 2 ru u u are called the left singular vectors of A.  The iv are called the right 
singular vectors.  The SVD theorem below will fully explain the reason for these terms. 
 
For any matrix A, the sequence of singular values is unique and if there are no ties, then the 
sequence of singular vectors is unique also.  When ties exist, they are broken arbitrarily.  
Independent of how the ties are broken, the set of singular values is always unique.  However, 
when some set of singular values are equal the corresponding singular vectors span some 
subspace.  Any set of orthonormal vectors spanning this subspace can be used as the singular 
vectors. 
 
 
4.2 Singular Value Decomposition (SVD) 
 
Let A be an n du matrix with singular vectors . , ,1 2 rv v v" and corresponding singular values 

1 2, , , rV V V" . Then 1
i
AV i iu v for 1, 2, ,i r " are the left singular vectors and A can be 

decomposed into a sum of rank one matrices as    

1

r
T

i
i

A V
 

 ¦ i iu v . 

The decomposition is called the singular value decomposition, SVD, of A.  In matrix notation 
TA UDV where the columns of U and V consist of the left and right singular vectors, 

respectively, and D is a diagonal matrix whose entries are the singular values of A. 
 
Before proceeding, we prove a simple lemma that in order to show two matrices A and B are 
identical it suffices to show that A B v v for all v .  The lemma says that in the abstract, a matrix 
A can be viewed as a transformation which maps vector vonto Av . 
 
Lemma 4.2:  Matrices A and B are identical if and only if for all vectors v, A B v v . 
 
Proof:  Clearly if A=B then A B v v for all v.  For the converse, suppose that A B v v for all v .   
Let ie be the vector that is all zeros except for the ith component which has value 1.  Now A ie is 
the ith column of A and thus A=B if for each i , A B i ie e . 

Ŷ 
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Clearly, the right singular vectors are orthogonal by definition.  We now show that the left 

singular vectors are also orthogonal and that
1

r
T

i
i

A V
 

 ¦ i iu v .
.
 

Theorem 4.2: Let A be a rank r matrix. 
 

(1)  The left singular vectors of A, , , ,1 2 ru u u" , are orthogonal, and 

(2)  
1

r
T

i
i

A V
 

 ¦ i iu v
 

  
Proof:  The proof is by induction on r.  For 1r  , there is only one iu so Condition (1) is trivially 
true.  Condition (2) simplifies to 1

TA V 1 1u v .  To prove Condition (2), it suffices to prove that 
for every vector v , 1

TA V 1 1v u v v .  Write v  as a �1v v w , where a  is a scalar and w  is 
perpendicular to 1v .  Since 1r   
 

1
arg max 0A

A  
 

1v v v
v . 

Since w is perpendicular to 1v and
1

arg max 0A
A  

 
1v v v

v , it follows that 0A  w .  Thus, 

� � 1A A a aA aV �   1 1 1v v w v u . 
Similarly,  
 � �1 1 1 1 1

T T Ta w a aV V V V �   1 1 1 1 1 1 1 1u v v u v v u v v u . 
 
Thus, by Lemma 4.1, 1

TA V 1 1u v . This finishes the proof in the case r=1.  
 
Next, we prove the inductive part. Consider the matrix 
 1

TB A V � 1 1u v . 
Apply the implied algorithm in the definition of singular value decomposition to B.  We claim 
that a run of this algorithm is identical to a run of the algorithm on A for its second and later 
singular vectors/values. To see this, first observe that 0B  1v . So, the first right singular vector, 
call it z , of B will be perpendicular to 1v  since if it had a component 1z along 1v , then,  

| || | | |
| | | |

BB B�
 !

� �
1

1 1

z z z z
z z z z

,  contradicting the arg max definition.  But for any v  perpendicular 

to 1v , B A v v . Thus, the top singular vector of B is indeed a second singular vector of A.  Now 
repeat this argument to show that a run of the algorithm on B is the same as a run on A for its 
second and later singular vectors; this is left as an exercise. 
 
Thus, there is a run of the algorithm that finds that B has right singular vectors , , ,2 3 rv v v"  
and corresponding left singular vectors , , ,2 3 ru u u" .  By the induction hypothesis,  

2

r
T

i
i

B V
 

 ¦ i iu v and , ,2 3 ru u u" are orthogonal.  It follows that
1

r
T

i
i

A V
 

 ¦ i iu v . 
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It still remains to prove that 1u is orthogonal to the other iu .  Suppose not and for some 2i t ,  
0T z1 iu u .  Without loss of generality assume that 0T !1 iu u . The proof is symmetric for the case 

where 0T �1 iu u .  Now, for infinitesimally small 0H ! , the vector 

 11
21

iA V HVH
H H

§ · ��
 ¨ ¸¨ ¸� �© ¹

1 ii

1 i

u uv v
v v

 

has length at least as large as its component along 1u  which is  

 � � � �� � � �2 4 2
1 1 121T T

i iO OHV HV H V HV H V� � �  � � !1 i 1 iu u u u  

which contradicts the definition of 1V .  Thus , , ,1 2 ru u u" are orthogonal. 

Ŷ 
 
4.3 Best rank k approximations 
 
There are two important matrix norms, the Frobenius norm denoted || ||FA  (seen already) and the 
2-norm denoted 2|| ||A .  The 2-norm of the matrix A is given by  
 

1
max A

 v
v  

and thus equals the largest singular value of the matrix.   
 
Let A be an n du matrix and think of the rows of A as points in d-dimensional space.  The 
Frobenius norm of A is the sum of the squared distance of the points to the origin.  The two norm 
is the sum of squared distances to the origin along the direction that maximizes this quantity. 
 
Let  

 
1

r
T

i
i

A V
 

 ¦ i iu v  

be the SVD of A.   For ^ `1,2, , ,k r� " , let  

 

 1

k
T

k i
i

A V
 

 ¦ i iu v  

be the sum truncated after k terms. It is clear that kA has rank k. We will see that it is the best 
rank k approximation to A , when the error is measured in either of the 2- norm or the Frobenius 
norm.  
 
Lemma 4.3: The rows of kA are precisely the projections of the (corresponding) rows of A onto 
the subspace kV  defined in Theorem 4.1. 
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Proof : For an arbitrary row vector a , its projection onto kV  is given by � �
1

·
k

T

i
a

 
¦ i iv v since the iv  

are orthonormal.  Thus, the matrix whose rows are the projections of the rows of A onto kV  is 

given by
1

.
k

T

i
A

 

§ ·
¨ ¸
© ¹
¦ i iv v   This last expression simplifies to       

1 1 1 1 1 1
( ) ( ) ( )

k r k r k
T T T T T T

k

j j j j j i
i j i i i

j
j

i i kAA A A AV V V
      

§ ·
  ¨ ¸

© ¹

§ ·
  ¨ ¸

© ¹
¦ ¦ ¦ ¦¦ ¦i i i i i iv v u v v v u v v v u v  

using orthogonality. 
Ŷ 

 
The matrix kA is the best rank k approximation to A in both the Frobenius and the 2-norm.  First 
we show that the matrix kA is the best rank k approximation to A in the Frobenius norm. 
 
Theorem 4.3:  For any matrix B of rank at most k, we have 
 || || || || .k F FA A A B� d �  
 
Proof:  We use the fact that the subspaces kV defined in Theorem 4.1 are the best-fit subspaces. 
Suppose B minimizes 2|| ||FA B�  among all rank k or less matrices.  Let V be the space spanned 
by the rows of B.  The dimension of V is at most k.  We may assume that each row of B is the 
projection of the corresponding row of A onto V, since this is the vector in V closest to the row of 
A.  Thus, 2|| ||FA B�  is at least the sum of squared distances of the rows of A to kV  by the 

optimality of kV .  Now, Theorem 4.3 follows from Lemma 4.3.   CLARIFY 

Ŷ 
 
Next we tackle 2-norm. 
 
Lemma 4.4: 2 2

12k kA A V ��  . 
 

Proof:  
1

r
T

k i i i
i k

A A u vV
 �

�  ¦ .  Let vbe the top singular vector of kA A� .  Express vas a linear 

combination of , ,}1 2 rv v v : 
1

r

i
i
D

 

 ¦ iv v .  Then,  

2 2

1 1 1 1 1
( ) | | | | .

i

r r r r r

k i i i i i i i i
i k j i k

T T
i j j i

i k i k
u v v u v vA A V D D V D V D V

 �   �  �  �

�     ¦ ¦ ¦ ¦ ¦i iv u  

The v maximizing this last quantity is subject to the constraint that 2 2

1
| | 1

r

i
i
D

 

  ¦v  occurs when 

1 1kD �   and the rest of the ia are 0.  This proves the Lemma.                CLARIFY 
Ŷ 
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The next theorem states that kA is the best rank k approximation to A in 2-norm. 
 
Theorem 4.4:  

� �2 2rank
mink B k

A A A B
d

�  �  

Proof:  By Lemma 4.4, 2 2
12k kA A V ��  .  Now suppose there is some matrix B of rank at most k 

such that B is a better 2-norm approximation to A than kA , that is 12 kA B V �� � .  The null space 

� �N B  of B (the set of vectors v such that 0Bv  ) has dimension at least d-k.  By a dimension 
argument, it follows that there exists a 0z z in 

� � ^ `1 2 1, , , kN B span v v v �� " . 
 
Scale z so that 1z  .  We now show that for this vector z which lies in the space of the first k+1 

singular vectors, � � � �1kA B z AV �� t .  First 

� � 22

2
A B A B z� t � . 

Since 0Bz  ,  
2 2

2
A B Az� t . 

Since z is in the ^ `1 2 1, , , kspan v v v �"  

� �
1 22 2 2

12
1

k
T

i i k
i

A B v zV V
�

�
 

� t t¦  

 
contradicting that 2 1|| || kA B V �� � .   This proves the Theorem. 
 

Ŷ 
 

4.4 Algorithm for Computing the Singular Value Decomposition 
 
Computing the singular value decomposition is an important branch of numerical analysis in 
which there has been many sophisticated developments over a long period of time.  Here we 
present an ``in-principle’’ method to establish that the approximate SVD of a matrix A may be 
computed in polynomial time. The reader is referred to numerical analysis texts for more details. 
The method we present, called the Power Method, is conceptually simple. The word power refers 
to taking high powers of the matrix TB AA . We see by direct multiplication that if the SVD of 
A is T

i i i
i
V¦ u v , then  

2

, ,
( · ) ,T T T T T T T T

i j i j i j i i
i j i j i j i

AA V V V V V V V
§ ·§ ·

    ¨ ¸¨ ¸
© ¹© ¹
¦ ¦ ¦ ¦ ¦i i j j i i j j i j j i iu v v u u v v u u v v u u u  

since T
i jv v is just the dot product of the two vectors and it is zero unless i j .  [Caution : 
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T
i jv v  is a matrix and is not zero even for i j � .]  Using the same kind of calculation,   

  
 2k k T

i
i

B V ¦ i iu u . 

As k increases,
2

2
1

k
i

k
V
V

,  goes to zero and kB is approximately equal to  

 2
1

k TV 1 1u u  
 provided � � � �1i A AV V� .  
 
This suggests a way of finding 1V and 1u , by successively powering B .  But, computing kB costs 
k matrix multiplications when done in a straight-forward manner or � �logO k when done by 
successive squaring.  Instead we compute  
 kB u  
whereu  is a random unit length vector.  Each increase in k requires a matrix-vector product 
which takes time proportional to the number of non-zero entries in B.  Further saving may be 
achieved by writing 
 � �1k T kB AA B � u u . 

Now the cost is proportional to the number of nonzero entries in A.  From kB u , we can recover 
1u since, 2

11 ( · )kk TB V| 1u u u u ; so it is a scaler multiple of 1u . 
 
If there is a significant gap between the first and second singular values of a matrix, then the 
above argument should apply and the power method will quickly converge to the first left 
singular vector.  Suppose there is no significant gap.  In the extreme case, there may be ties for 
the top singular value.  Then the above argument does not work.  The theorem below says that 
even with ties, the power method converges to some vector in the span of those singular vectors 
corresponding to the ``nearly highest’’ singular values. 
 
Theorem 4.5:  Suppose A is an n du matrix and u  is a random unit length vector.  Let V be the 
space spanned by the left singular vectors of A corresponding to singular values greater 
than � � 11 H V� .  Let k be any positive integer.  With probability at least 9/10, the unit vector 

 
� �
� �

kT

kT

AA

AA

u

u
 

  
has a component in V of length at least 41 200 kne�� �   
. 
Proof: Let 

 
1

T
m

i
i

A V
 

 ¦ i iu v  



2/26/2010 Z:\ jeh\Self\Book Kannan\Jan-15-2010\4. SVD 
 Chapter 4 Part 1 SVD 11 

 be the SVD of A.  If the rank of A is less than n ,  then complete { , , }}1 2 mu u u  into a basis 
{ , , }}1 2 nu u u of n-space with vectors other than the singular vectors of A.  Write u  in the basis 
of the sciu  as  

 
1

n

i
i

a
 

 ¦ iu u . 

Since 2( )T k k T
i

i
AA V ¦ i iu u , we have 2( )T k k

i i
i

AA aV ¦ iu u  .  For a random vector u picked 

independently of A  the iu  are fixed vectors and picking u at random is equivalent to picking 

random ia .  Thus, we know from ???? that 1
1 10 n

a t  with probability at least 9
10 . 

Suppose  
� � 1 11r rV H V V �t � ! , 

so r is the last singular value which is at least � � 11 H V� .  Then V is the span of { , , }}1 2 ru u u . We 
have 

 2 2 2 4 2

1 1
| ( ) | | | .

m m
T k k k

i i i i
i i

AA a aV V
  

  ¦ ¦iu u  

We split the last sum into two parts, one corresponding to the high singular values (up to the 
r th) and the other corresponding to the low ones.  We have (using 1 e�� d ��  and 2 | | 1i

i
a   ¦ u )  

(Component of ( )T kAA u  perpendicular to V) 2  =  

                                        � �44 2 4 2 4 4
1 1

1 1

1 kk k k k
i i i

i r r

m

i

m

a a e HV H V V�

 �  �

d � d¦ ¦  

 
 (Component of ( )T kAA u  in V) 2 = 

2
2 2 4 41

1 1 1100
1

r
k k k

i i i n
i

a u aV V V
 

t t¦ . 

From these two, the theorem follows.  
Ŷ 

 
 

 
 
 
Exercises 
 
Exercise 4.1:  Let A be a square n nu  matrix whose rows are orthonormal.  Prove that the 
columns of A are orthonormal. 
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Exercise 4.2:  (Best fit functions versus best least squares fit) In many experiments one collects 
the value of a parameter at various instances of time.  Let iy be the value of the parameter y at 
time ix .  Suppose we wish to construct the best linear approximation to the data in the sense that 
we wish to minimize the mean square error.  Here error is measured vertically rather than 
perpendicular to the line.  Develop formulas for m and b to minimize the mean square error of 
the points � �^ `, |1i ix y i nd d to the line y mx b � . 

Ŷ 
 
Exercise 4.3:  Given five observed parameters, height, weight, age, income, and blood pressure 
of n people how would one find the best least squares fit subspace of the form  

3(height)+4(weight) – 2(age) -1.72(income) + 2.89(BP) = 0? 
If there is a good best fit 4-dimensional subspace, then one can think of the points as lying close 
to a 4-dimensional sheet rather than points lying in 5-dimensions.  Why is it better to use the 
perpendicular distance rather than vertical distance?  What is vertical distance anyway? 

Ŷ 
Exercise 4.4:  What is the best fit line for each of the following set of points? 

(a) � � � �^ `0,1 , 1,0  

(b) � � � �^ `0,1 , 2,0  

(c)  The rows of :
17 4

2 26
11 7

§ ·
¨ ¸�¨ ¸
¨ ¸
© ¹

 

 
Exercise 4.5: Suppose A is a m du  matrix with block diagonal structure where the blocks 

1 2, , , kB B B"   are m d
k ku  and all entries of each iB  are ia with 1 2 ka a a! ! !" .  Show that A has 

exactly k nonzero singular vectors , , ,1 2 kv v v" where iv  has the value 1/2( )k
d  in coordinates 

� � � �1 1, 1 2, ,d d d
k k ki i i� � � � "  and 0 elsewhere.  In other words, the singular vectors exactly 

identify the blocks of the diagonal.  
 
Hint: By symmetry, the top singular vector’s component must be constant in each block.  

Ŷ 
Exercise 4.6:  Prove that the left singular vectors of A are the right singular vectors of TA . 
 

Ŷ 
Exercise 4.7:  Interpret the right and left singular vectors for the document term matrix.   
 

Exercise 4.8: Verify that the sum of rank one matrices 
1

r
T

i
i
V

 
¦ i iu v can be written as TUDV , 

where the iu  are the columns of U  and iv are the columns of V . To do this, first verify that for 
any two matrices P and Q, we have  
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i
PQ  ¦ i ip q  

where, ip is the i th column of P and  iq  is the i th row of Q.  

Ŷ 
 
Exercise 4.9: Let A be a matrix.  Suppose we have an algorithm for finding  
 

1
arg max A

 
 1

v
v v . 

Describe an algorithm to find the SVD of A. 
Ŷ 

 
Exercise 4.10:   

(a)  Show that the rank of A is r.   

(b) Show that 11
maxT A A V

 
  T

1 u
u u .�

Hint: Use SVD. 
Ŷ 

 
Exercise 4.11: If 1 2, , rV V V}  are the singular values of A  and 1 2, , r}v v v  are the corresponding 
right singular vectors, show that 

 (a) 2

1

r
T T

i i i
i

A A v vV
 

 ¦
 
 

(b) 1 2, , r}v v v are eigen-vectors of TA A . 
(c)  Assuming that the set of eigen-vectors of a matrix is unique, conclude that the set of 

singular values of any matrix is unique.  
 

See the appendix for the definition of eigen vectors. 
Ŷ 

Exercise 4.12:  Computational Problem : Compute the SVD of ????. Or write a program to 
implement the power method and SVD (run the power 

method for a fixed number of steps…)…………..More Details 

 
Exercise 4.13:  Suppose A is a square invertible matrix and the SVD of A is T

i i i
i

A u vV ¦ . 

Prove that the inverse of A is 1 T
i i

i i

v u
V¦ . 

Exercise 4.14:  Suppose A is square, but not necessarily invertible and has SVD
1

r
T

i i i
i

A u vV
 

 ¦ .  

Let 1 T
i i

i i

B v u
V

 ¦ . Show that Bv v  for all v in the span of the right singular vectors of A. For 
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this reason B is sometimes called the pseudo inverse of A and can play the role of 1A�  in many 
applications.  
 
Exercise 4.15:   

(a) For any matrix A, show that || ||F
k

A
k

V d . 

(b) Prove that there exists a matrix B of rank at most k such that 2
|| |||| || FAA B

k
� d . 

(c) Can the 2-norm on the left hand side be replaced by Frobenius norm? 
 
Exercise 4.16:  Suppose a n du matrix A is given and you are allowed to preprocess A. Then you 
will be given a number of d-vectors 1 2, ,...., mx x x  and for each of these you must find the vector 

iAx  approximately, in the sense that you must find a vector satisfyingiu  | | || || | |i i F iu Ax A xH� d  
(here İ >0 is a given error bound.)  Describe an algorithm which accomplishes this in time 

2

d nO
H
�§ ·

¨ ¸
© ¹

 per  ix  (not counting the pre-processing time). 

 
Exercise 4.17:  Constrained Least Squares Problem using SVD – Golub and van Loan, Chapter 
12 : 

Use SVD to solve : Given A,b and M, find a vector x with |x|<M minimizing |Ax-b|. 

(More explanation or algorithm as in GL chapter 12 should be given…..) 


