Norms on \mathbb{R}^n

October 7, 2013

Theorem 1. All norms on \mathbb{R}^n are equivalent (even norms you never heard of). In other words if ||| and ||| are norms then there are positive constants a, b such that

$$a|||v||| \le ||v|| \le b|||v|||, \forall v \in \mathbb{R}.$$

Proof. Let || be any norm. We will prove that there are a > 0, b > 0 so that

$$a|||v||| < ||v||_2 < b|||v|||.$$

This will be good enough. First let $v = x_1e_1 + x_2e_2 + \dots + x_ne_n$, where $\{e_1, e_2, \dots, e_n\}$ is a basis for \mathbb{R}^n . By the triangle inequality

$$||v|| \le \sum_{j} |x_j|||e_j||.$$

By Cauchy's inequality, for the inner product $\sum_{j} |x_{j}| ||e_{j}||$,

$$\sum_{j} |x_{j}| ||e_{j}|| \le (\sum_{j} x_{j}^{2})^{1/2} (\sum_{j} ||e_{j}||^{2})^{1/2},$$

so

$$a||v|| \le ||v||_2$$
, where $a = 1/((\sum_j ||e_j||^2)^{1/2})$.

Next consider the function |||v||| on the set $\sum_j x_j^2 = 1$. Let m > 0 be its minimum. By what we have just proved the function $v \to ||v||$ is continuous on \mathbb{R}^n , meaning that if $||v_j||_2 \to 0$ then $||v_j|| \to 0$. Also the set $v: ||v||_2 = 1$ is compact (closed and bounded). Now let v be any vector and let $u = v/||v||_2 \in \mathbb{R}^n$. Then $||u||_2 = 1$ so $|||u||| \ge m$. Hence

$$|||v||| \ge m||v||_2$$
, or $||v||_2 \le b|||v|||$, where $b = 1/m$.