2 Computational and mathematical preliminaries

1.2 ERRORS IN COMPUTATIONS

In analyzing the accuracy of numerical results, the numerical analyst should be
aware of the possible sources of error in each stage of the computational
process and of the extent to which these errors can affect the final aggwer.
There are three types of errors that occur in a computation. First, there are
errors that we call “initial data"* errors. When the equations of the mathemat-
ical model are formed, these errors arise because of idealistic assumptions
made to simplify the model, inaccurate measurements of data, miscopying of
figures, or the inaccurate representation of mathematical constants (for exam-
ple, if the constant & occurs in an equation, we must replace 7 by 3.1416 or
3.141593, etc.). Another class of errors, **truncation’” errors, occurs when we
are forced to use mathematical techniques that give approximate, rather than
exact, answers. For example, suppose we use the Maclaurin’s series expansion
to represent e* so that e = 1 + x + x2/2! + -« - + 3%l + - - - If we want a
number that approximates ¢* for some 8, we must terminate the expansion in
ordertoobtaine® =1+ 8+ p¥2!+ - - -+ k. Thuse® =1 + B+ 2! + - - -
+ pYk! + E where E is the truncation error introduced in the calculation.
Truncation errors in numerical analysis usually occur because many numerical
methods are iterative in nature, with the approximations theoretically becom-
ing more accurate as we take more iterations. As a practical matter, we must
stop the iteration after a finite number of steps, and thus introduce a truncation
error. The last type of error we shall consider, “round-off”’ or ‘‘rounding’’
errors, is due to the fact that a computer has a finite word length. Thus most
numbers and the results of arithmetic operations on most numbers cannot be
represented exactly on a computer. Even though the computer is capable of
representing numerical values and performing operations on them, we should
be aware of how this is accomplished so that we can understand the error that is
produced by inexact representation.

Initial data errors and truncation errors are dependent mostly on the par-
ticular problem we are examining, and we shall deal with them as they arise in
the context of the different numerical methods we derive throughout the text.
The total effect of round-off errors is sometimes dependent on the particular
problem in the sense that the more operations we perform, the more we can
probably expect the round-off error to affect the solution. The individual
round-off error caused by any individual number representation or arithmetic
operation is dependent, however, on the particular computer being used; and
thus we shall examine the possible sources of this error in the next section
before we introduce any specific numerical methods. We emphasize that our
ultimate concern is the effect of total error from any and all sources. For
example, we shall later see problems in which a **small’ error (no matter from
what source) can cause a ‘‘large’ error in the final solution. Problems of this
type are called ill-conditioned and must be treated very carefully to obtain an
acceptable computed answer.

1.3 Rounding errors and floating-point arithmetic 3

There are two ways to measure the size of errors. In analyzing the error of
a computation, if we let & represent the *‘computed approximation’’ 10
the “‘true solution™ x, then we define the absolute error to be (x — &) and the
relative error 10 be (x — ¥)/x. (If the true solution x is zero, then we say the
relative error is undefined.) We shall consider these concepts again in later
sections, but we briefly pause to mention here that the relative error is usually
more significant than the absolute error, and hence we shall try to establish
bounds for the relative error whenever possible. To illustrate this point, sup-
pose that in **Computation A’ we have x = 0.5 X 10-*and ¥ = 0.4 X 10~*:in
*-Computation B** we have x = 5000 and % = 4950. The absolute errors are 0.1
x 104 and 50, respectively; but the relative errors are 0.2 and 0.01, respec-
tively. Stated differently, Computation A has a 20% error; Computation B has
only a 1% error.

In investigating the effect of the total error in various methods, we shall
often mathematically derive an *‘error bound,” which is a limit on how large
the error can be. (This limit applies to both absolute and relative errors.) It is
important that the reader realize that the error bound can be much larger thar
the actual error and in practice often is. Any mathematically derived erros
bound must account for the worst possible case that can occur and is ofter
based upon certain simplifying assumptions about the problem, assumptions
which in many particular cases cannot be actually tested. For the error bounc
1o be used in any practical way, the user must have a good understanding o
how the error bound was derived in order to know how crude it is; i.e., how
likely it is to overestimate the actual error. Of course, whenever possible, ow
goal is to eliminate or lessen the effects of errors, rather than to estimate thenw
after they occur.

' 4.3 ROUNDING ERRORS AND FLOATING-

POINT ARITHMETIC

The first type of rounding error that we encounter in performing a computatios
evolves from the fact that most real numbers cannot be represented exactly o)
a computer. Readers are probably not surprised by this statement since the
are aware that irrational numbers such as 7 or e have an infinite nonrepeatin;
decimal expansion. Thus they know that even for a hand computation the;
must use an approximation such as 3.14159 for 7 or 2.718 for e, and they carr;
as many digits in their approximations as they feel are necessary for a particula
computation. Nevertheless, they realize that once these approximations hav-
been used, an error that can never exactly be corrected has been introduce:
into the calculation.

Since only a finite number of digits can be represented in computer mem
ory, each number x must be represented in some fashion that uses only a fixe:
number of digits. One of the most common forms is the **floating-point’’ form

4 Computational and mathematical preliminaries

in which one position is used to identify the sign of x, a prescribed number of
digits are used to represent the ‘‘mantissa’’ or fractional form of x, and an
integer is used to represent the ‘‘exponent™’ or *‘characteristic’’ of x with re-
spect to the base b of the representation. (Modern, preferred terminology uses
*‘significand’’ for mantissa and “‘exrad’’ for exponent.) Thus each xgean be
thought of as being represented by a number X of the form £(0.4,a; . . . a,) X
(b°) where m is the number of digits allowed in the mantissa, b is the base of the
representation, and ¢ is the exponent. Additionally there are two machine-
dependent constants, u and M, such that p = ¢ = M. We shall consider three
bases: (i) » = 10 (decimal), with which the reader is familiar and which is used
on some machines; (ii) b = 16 (hexadecimal), which is common to the IBM 360
and 370 series; and (iii) # = 2 (binary), which is, in a sense, the most fundamen-
tal of the three. Proper form requires the mantissa, a = 0.a,a, . . . a,,, to satisfy
g} <1 = b"andeach..a,\l\< i=m,tobeanintegersuchthat0 < g, = b - 1
with a, # Q (unless ¥ "_‘_) . JThe floating-point representation, ¥, is then said to
be **normalized "~

The floating-point decimal form (b = 10) should be familiar to the reader.
For example, the decimal number 150.623 is the same as 0.150623 x 10% and can
also be regarded as

(1 %102+ (5 X100+ (0 X 10°+ (6 x 1001 + 2 x 1072) + 3 x 1073).
Likewise, the binary number 110.011 equals
AX2)+ (A x2)+ (0 x2)+ @O0 x27)+(1x27%)+ (1 x279,
and the hexadecimal number 15F.A03 equals
AX1688)+ X1+ (FX 16D+ (AX16)+ 0% 163+ (3 x 1673).

Note that there are only two digits, 0 and 1, in the binary system; and there are
sixteen digits in the hexadecimal system; 0, 1,2,3,4,5,6,7,8,9,A,B,C, D,
E, F where the decimal equivalents of A, B, C, D, E, Fare 10, 11, 12, 13, 14,
15, respectively. Also note that the hexadecimal system is a natural extension
of the binary system since 2* = 16, and hence there is precisely one hexadeci-
mal digit for each group of four binary digits (*'bits’’) and vice versa [0 =
(0000),, 7 = (0111),, A = (1010),, F = (1111),, etc.].

The conversion of an integer from one system to another is fairly simple
and can probably best be presented in terms of an example. Let & = 275 in
decimal form; thatis, X = (2 X 10%) + (7 X 101) + (5 x 10°). Now (k/16®) > 1,
but (k/16%) < 1: so in hexadecimal form & can be written as & = (a, X 16%) +
(@, X 16"} + (, % 16°). Now 275 = 1(16?) + 19 = 1(16*) + 1(16) + 3: and so the
decimal integer 275 can be written in hexadecimal form as 113; that is, (275),, =
(113),5. The reverse process is even simpler. For example, (5C3),; = 5(16%) +
12(16) + 3 = 1280 + 192 + 3 = (1475),,. Conversion of a hexadecimal fraction
to a decimal is similar. For example, (0.2A8),; = (2/16) + (A/16%) + (8/16%) =
(2(16®) + 10(16) + 8)/16% = (680)/4096 = (0.166),, (carrying only three digits in

1.3 Rounding errors and floating-point arithmetic 5

the decimal form). Conversion of a decimal fraction to hexadecimal (or binary)
proceeds as in the following example. Consider the number r, = 1/10 = 0.1
(decimal form). Then there exist constants {e;}%-, such that

ro=0.1=a,/16 + a)/16* + a3/16% + a,/16* +---.

Now 16r, = 1.6 = a; + ay/16 + a3/16*> + a,/16° + - . Thusay =l and r, =
0.6 = as/16 + a3/16% + a,/16% + - -- . Again 16r, = 9.6 = ap + a3/16 + a,/16* +

,s0a, = 9and r; = 0.6 = a;/16 + a,/16* + --- . From this stage on we see
that the process will repeat itself, and so we have (0.1),, equals the infinitely
repeating hexadecimal fraction, (0.1999 . . .),.. Since 1 = (0001), and 9 =
(1001),, we also have the infinite binary expansion

ry = (0.1)y = (0.1999 . . .}, = (0.0001 1001 1001 1001 . . .)..

From the example above we begin to discern one problem of number
representation. Not only do we have problems with irrational numbers and
infinite repeating decimal expansions such as 173 = 0.333, but also we see
that an m-digit terminating fraction with respect to one base may not have an
n-digit terminating representation in another base. (If we were performing an
iteration on a hexadecimal machine, the example above suggests that we should
probably choose a step size of h = 1/16 over h = 1/10, h = 1/1024 = 1/2'° over

= 1/1600, etc., if at all possible.) In Table 1.1 we have taken several integers
k. formed the reciprocals, 1/k, and added the reciprocal to itself &£ times. The
theoretical result of each computation should, of course, equal 1. The calcula-
tions were performed on a six-digit hexadecimal machine.t

TABLE 1.1

k Sum(1/k) k Sum(1/k) k Sum(l/k)

2 0.1000000E 01 9 0.9999999E 00 lﬁ 0.1000000E 01
3 0.9999999E (0 10 0.9999596E 00 :

4 0.1000000E 01 11 0.9999997E 00 1000 0.9999878E (0
5 0.9999999E 00 12 0.9999998E (0 1006 0.9999912E 00
6 0.9999998E (00 13 0.9999999E 00 1012 0.9999843E (00
7 0.9999999E 00 14 0.9999995E 00 1018 0.9999678E 00
8 0.1000000E 01 15 0.9999999E 00 1024 0.1000060E 01

We must, of course, realize that part of the error in Table 1.1 is due to the
round-off from addition. We shall discuss this error momentarily, but for now
the reader should notice the relative accuracies for the values of & that are
powers of 2. For example, compare & = 1000 to k = 1024 = 21°.

We next consider how numbers are represented in an m-digit machine,
particularly those numbers for which s digits are not sufficient to represent the

+Most of the computer programs in this text were run on an IBM 370/158.

6 Computational and mathematical preliminaries

nurpl?er ex.::tctly. For example, how might a number like % be represented on a
5-digit decimal computer since :1, = 0.3333333 As a general example,
suppose a real number x is given exactly by

x=x(0.aq1a; . . . Qpityy 4, . . .) X 10°, a, #0 v

and suppose we want to represent x in an /m-digit decimal computer. There are
two common ways of representing x. First, we can simply leta, = a,, 1 <k <
m, discard the remaining digits, and let the computer representation be

x=x0.q4y...0a, X 10°

This method is known as *‘chopping.’’ The other representation is the familiar
**symmetric rounding’’ process, which is equivalent to adding 5 X 10°-"~'to x
and then chopping (we think of adding 5to a,, ;). Of course, ifc < porc> M,
the number lies outside the range of admissible computer representations. If ¢
< u, (underflow), it is common to regard x as zero, notify the user, and con-
tinue further computation. If ¢ > M, then overflow results. It is usually deemed
not worth the added expense to use symmetric rounding and most machines
simply chop. Whether a representation is obtained via chopping or symmetric
rounding, we shall hereafter refer to the machine representation, ¥, as being
**rounded.’’ Note that the illustration above was in decimal form for simplicity;
analagous results are valid for other bases. For example, if x has the hexadeci-
mal form

X = I(O.fl.f!g P ('I,,,('l,,”, .. .) X '160, a. #+ 0,

then the **decimal’ point is really a “*hexadecimal’ point; and

x= (i (@ X 16“")) X 16°.
k=i

The chopped form is still obtained by deleting a;, £ = m + 1. Symmetric
rounding is done by adding 8 X 16~ "~! to x and then chopping.
Returning to decimal form for simplicity, we first consider the error in
symmetric rounding. If a,,,, = 5, then
x=X=(x0.a ... 0004, ..) X 10° = [(£0.G, . . . @,) + (£107")] x 10°.
If a,., <5, then
x—=X=(x0a,...a4ney...) %X 10° = (£0.a,...a, X 10

In either case |x — X| = 0.5 x 10°-™, and this is a bound on the absolute error.
To get a bound on the relative error, we note that since a, # 0, then |x| = 0.1 X
10¢. Thus the relative error satisfies
lx % 0.5 x 10
=
|| 0.1 x 10°

=5x 10" = 0.5 x 107"+,

1.3 Rounding errors and floating-point arithmetic 7

I a similar manner we can show that the relative error bound from chopping is
16-=-'. It is interesting to note that neither of these relative error bounds
depends on the magnitude of x, that is, the size of c. Rather they depend only
on the value of m, which is thus said to be the number of **significant digits™" of
the representation. For example, the IBM System 360 and 370 are hexadecimal
with a mantissa of m = 6. The relative error from chopping in number represen-
tation thus does not exceed 1 X 165, To compare this with the size of relative
errors we expect in the decimal mode, we set | X 1673 = 1 x 10="*!. Solving
for m yields i = 7. Thus we have approximately seven-significant-digit decimal
accuracy with respect to the relative error of the representation. This statement
does not mean that any seven-digit decimal number can be represented exactly
on this machine as the previous example of x = 1/10 shows. The statement
says. however, that |x — X|/|x| = 107¢ (approximately, since m = 7).

In the discussion above, we analyzed the error made by replacing the true
value of x by its machine representation . Now we wish to assess the effect of
each arithmetic operation (+, —, -, +) to see how errors propagate. Let us use ¥
to denote the machine approximation to the true value x where the error, e(v) =
x — ¥, includes all errors that have been made in going from x to X: that is, e(x)
not only includes the error of representation but also includes errors from
previous calculations, initial data errors, etc. In other words, e(x) includes all
errors from the beginning of the calculation that have led to any discrepancies
between x and ¥. With e(y) defined similarly for any quantity y, we investigate
the error resulting from the **machine addition™ of x and y. Now,

xty=@E+el)+ (F+e(y) =X+ + (elx) + e(y).

At first glance it seems that the error of the addition is merely the sum of
the individual errors. However, this is not always true since even though ¥ and
¥ can be represented exactly on the machine, it is not necessarily true that theis
sum can also be: i.e., it does not follow that ¥ + ¥ = X + . For example.
consider a four-digit floating-point machine and let X = 0.9621 X 10°and y =
0.6732 x 10°, Then ¥ + ¥ = 1.6353 x 10°. Now it is not uncommon for an
m-digit machine to perform arithmetic operations in a 2n-digit accumulator and
then to round the answer. Assuming this situation to be true, we have X + y =
0.1635 x 10'. Returning to our general analysis, we see that where z = x + y.
the true error, z — Z, is actually (e(x) + e(y)) plus the error between X + ¥ and
xX+y.

Beforc examining the other three arithmetic operations, let us conside:
addition somewhat further. We can see immediately that addition can lead tc
overflow: for instance, ¥ = 0.9621 X 10" and ¥ = 0.6732 x 10¥; thus X + ¥ doe:
not fall within the range of the computer. Another factor that we must conside:
is that before a machine can perform an addition, it must align the decima
points. For example, again let m = 4 with X, = 0.5055 X 10*andX; = X; =---¥,
= 0.4000 x 10°. To perform the addition ¥, + X., the computer must shift the
decimal four places to the left in X, and form X, + ¥, = (0.5055 x 10%) + (0.0000<

8 Computational and mathematical preliminaries

x 10%) = (0.50554 x 10*), which rounds to x, + x; = 0.5055 x 10* = X,.
Continuing, we see that

('..(((}l+f2)+}3)+f-l)+"'+.?")=.?l,

v

but

G (g + Xpp) + X) + X))+ + X,) = 0.5059 x 104,

which is the correct answer. Thus the machine calculates 2!, X,, -; correctly,

but not the sum =%, X;. This example illustrates the rule of thumb that if we
- T ——

have several numbers of the same sign to add, we should add them in ascending

grd_c?l'_qimgg@tp@'ﬁfnﬁnfmi‘ze‘the propagation of round-off error. The mathe-

matical foundation underlying this statement is that machine addition is not

associative; i.e., it can happen that

xX+V+Z+X+(y+732).

The following numerical examples were run to illustrate this phenomenon.
(We used a hexadecimal machine with m = 6.) With x = 1048576 = 16° = ¥ and
y =z = 12 = 8/16 = § = Z, our machine results were

(x +) + 7 = 0.1048576E07

and

X + (y + 2) = 0.1048577E07

as our analysis above leads us to expect. Letting w, = 1048576 = 16% = W, and
w, = 1/16 = Wy, 1 < k < 256, we also obtained the following results (adding in
the order indicated by the sum):

256
3 wi = 0.1048576E07 = w,
k=0

but

256
St Wass—x = 0.1048592E07,

k=0

the latter being the correct result (which we can easily check by hand). As a
final example we computed the sum § = 32, (I/k(k + 1)) = 0.999 by adding
forwards and backwards and obtained :

S = 0.9959709EQ0 (forwards), S = 0.9989992E00 (backwards).

A concept that is useful in numerical methods is that of machine epsilon.
Machine epsilon is the smallest positive machine number, ¢, such that

l+e>1.

{**1chine ~~<ilon varies ©m comnut~r '~ computer and from compiler to

1.3 Rounding errors and floating-point arithmetic 9

. . compiler, but a simple program can be written to determine machine epsilon for
& given machine and compiler.) As an example to clarify machine epsilon, let us

coasider a machine (such as the IBM 370) using 6-digit hexadecimal arithmetic.
Cousider the machine numbers 1 and § where

1 = .100000 x 16 8 = .000001 x 16'.

Clearly the machine addition of 1 + & will produce 1 + 5 = .100001 x 16'.
Therefore 1 + & > 1, and thus machine epsilon is at least as large as & = 1673 =
95367432 x 1075, If the machine arithmetic rounds by chopping, then machine
epsilon is exactly equal to 3, for the next smallest machine number is

8' = .000000F x 16'

and (assuming the machine chops) 1 + &' = 1.
To see the significance of machine epsilon, consider the following fre-
quently used approximation to f*(x):

foy=Lfer NS

" In problems in which such an approximation would be used, we would be able

to program the machine to evaluate f at any point; and by choosing /i smaller
and smaller, we would expect to get better and better estimates of f'(x). How-
ever if h is small relative to the size of x, then it is quite possible that the
machine number x and the machine number x + / are the same. If x + & = x in
the machine, then fix + h) = f(x) in the machine; and we have passed the point
at which we can improve our estimate to f7(x) by choosing /i smaller. Thus if the
approximation is to be reasonable, we need to have (if x and & are machine
numbers and i1 > 0)

x+h>x;

or (assuming x > 0) we need to have

l+l—'>1.
X

For the approximation to be valid, we need the machine representation for i/a
to be at least as large as machine epsilon. In general, machine epsilon gives us
the limit to which we can resolve or distinguish two numbers (relative to the
size of the numbers).

The error analysis for subtraction is much the same as for addition in that

r-y=(X -5+ (el — e(y),

but now we have the problem that subtraction can cause loss of significan
digits. This problem occurs when x and y are nearly equal. For example, if x =
0.6532849 x 102, ¥ = 0.6531212 x 10?, and m = 4, then ¥ = 0.6532 X 10* anc
7 = 0.6531 ¥ 102 (rounding by chopping). Now ¥ — ¥ = 0.1000 % 10", which it

10 Computational and mathematical preliminaries

the machine representation for ¥ — v, thatis, ¥ — ¥ = 0.1000 x 10~'. However,
x — y=0.1637 x 107!, The problem we encounter here is not with this compu-

tation itself, but in its effect on later computations since the zeros in x —~ y have :
no significance whatsoever and are, in effect®ust filling up spaces. The answer ;
is smaller than x or y; and hence errors already present, ¢(x) and e(y), can have

a drastic effect on the relative error of any further calculations since the zeros
will be treated thereafter as though they were significant. This source of error is
known as subtractive cancellation and leads to serious errors in many computa-
tions.

When this type of error occurs, we may try to locate the “‘sensitive”

subtraction and eliminate it, if possible, by analytical manipulation. For exam-

ple, consider the function f{x) = (1 + x — e*)/x2. Even if we have a very precise
way of evaluating e+, if x is **small,” the evaluation of f(x) will suffer from
subtractive cancellation in the numerator, which will be magnified by the divi-
sion by a number very close to zero. One way to help alleviate this problem is
to use the Maclaurin series expansion, ¢ = 3., Xkt =1 + x + 232! + X¥/3! +
--«. Then1 + x — e = —x¥2! — x3/3! — x¥/4! — ---, and we see that the factor
[(1 + x) = (1 + x)], which was essentially causing the trouble, is eliminated.
Furthermore, flx) = —1/2! — x/3! — x%4! — -.-; thus this analytical technique
also eliminates the problem of **division by zero.’’ Since we are considering the
evaluation of f{x) for small values of x, this series should be fairly rapidly
convergent as evidenced in the following computer results. However, for large
values of x, the series is no longer rapidly convergent and we experience
considerable difficulties when the series is truncated after a finite number of
terms.

We note from the convergent series expansion for f{x) above that f{0) =
—1/2. In Table 1.2 the series evaluation was truncated after the seventh term
such truncation should theoretically give us at least seven-decimal-place accu-
racy for the values of x that were used. Table 1.2 demonstrates that the series
evaluations yield good answers whereas direct substitution becomes worse as x
decreases.

TABLE 1.2

x Jf(x) (Direct Substitution) f(x) (Series Evaluation)
0.1 -0.5171781E 00 —0.5170917E 00
0.01 ~0.5054476E 00 ~0.5016708E 00
0.001 -0.9536749E 00 —-0.5001667E 00
0.0001 -0.9536745E 02 —0.5000166E 00
0.00001 0.0 -0.5000016E 00

Analysis of multiplication yields
x:y=(X+ () (¥ + e(y)) =Xy + Xe(y) + ye(x) + e(x)e(y).
We can usually assume that the term e(x)e(y) is negligible with respect to the

1.3 Rounding errors and floating-point arithmetic 1°

other terms and we omit it. Furthermore, the product of the m-digit numbers,
and ¥, is at most a 2m-digit number and can be represented exactly in l.h‘
2m-digit mode that computers commonly use for individual operations. The
product will be rounded to m digits, of course, to form its machine representa
tion, v. Thus, even though X7 # X7 (necessarily), the error is merely that o
rounding X7 to its machine representation. Thus the relative error of the diff_er
eace between Xy and Xy is bounded by 0.5 x 10~"** for symmetric roundin;
and by 1 x 10-™+! for chopping. _

It is common, especially in matrix methods, to have to compute a quanut:
of the form, 2}, X3, called an **inner product.” The multiplications, X;¥;, ar
individually done in the 2m-digit mode, but often the addtion is not. In tha
case, it is often a simple task in a high-level language to program the machine t
do the additions of this type in double precision as well. This method is calle:
**double precision accumulation of inner products,” and serves to lessen th
errors resulting from the multiplications, Xy, 1 <j =< n.

Finally, we analyze the division operation

x _ X+ el _ (x + e(x))(1)
y ¥+ e y 1+ e(Niy/)

Assuming that e(y) is **small’” with respect to 7, we recall the geometric serie
where for |r] < 1

1
1+r

=l—r+r-rP+--,

Letting r = e(y)/¥ in the expression above for x/y, we have

- _ > y ('\'
:f:= (x—f—;(—x)) (1 — eIy + e(PIy* — e(YVIy* +)= %4" % - u;—.z

where we assume the omitted terms in the expansion are negligible with respec
to the first three.

Division is much the same as multiplication in that the difference betwee
/¥ and its machine representation (x/y) is merely that of rounding the represet
tation for X/5. The preceding expression clearly illustrates the disastrous effec
on the total error that division by a value of ¥ very close to zero can have. A
mentioned earlier, this problem can sometimes be avoided by alternate aj
proaches that analytically circumvent *‘zero divisions."’

SROBLEMS, SECTION 1.3

; _i; a) Convert the following decimal numbers to hexadecimal form:
T 1023 i 1025
iii. 278.5 ¢ iv. }14.09375
“v. 0.1240234375
« b) \Convert the answers above to binary form.

12 Computational and mathematical preliminaries

2. Convert the following hexadecimal numbers to decimal form.
a) 1023, b) 100, ¢) 1A4.C, d) 6B.1IC, e) FFF.118
3. Convert the numbers 7, ¢, and 1/3 into hexadecimal form with a mantissa of six
hexdigits using
a) symmetric rounding,
7 'b) chopping.
=g, Prove that any proper fraction that has a terminating hexadecimal expansion also
.__-"has a terminating decimal expansion. Explain in general terms why the converse of
. ~this statement is not valid.
{ S/For the computer example that computed the sums of reciprocals, compute the
“~" relative errors for the operations corresponding to k = 1000, 1006. 1012, 1018,

6. a) If x is a real number and X is its chopped machine representation on a computer
with base 10 and mantissa length m, show that the relative error, |x = F|/|x|, is
bounded by 10- ™ *?,

b) If 6 = 10-™*" (in the case of chopping) or & = 0.5 x 10-"** (in the case of
symmetric rounding), show that ¥ = x(1 + £) where [¢] < 4.

¢) Given a function F(x), F' continuous, we have from the mean-value theorem
that in evaluating F at x the relative error from this source alone is

FO-Fx) Fa+®-Fo_ FE+s9-x1_ FE
Fo F0) = F) =& T

Analogously, F(¥) — F(x) = exF'(x). Use these formulas to give estimates of
absolute and relative error if

i. F(x) = a%, for various values of & and x;
ii. F(x) = e*, for large values of x:
iii. F(x) = sin(x), for small values of x:
iv. F(x) = x* = 1, for x near 1.
v. F(x) = cos(x), for x near 7 /2.

7. Write a program to compute the value of Sy = Z}., 1/k for various values of N.
Adapt the program so that it sums forwards and backwards, and compare the
results as N increases. Find the value of N such that S, = S, for all # = N for the
forward summation. How is this value reconciled with the fact that theoretically
limy—~= Sy = *? Would there be such a number N for any modern digital computer

7/ and would the number be the same on all such machines?

8. Consider a computer with mantissa length m = 3, base 4 = 10, and exponent
i/ constraints ¢ = -2 = ¢ =2 = M. How many real numbers will this computer
represent exactly?
9. For any positive integer N and a fixed constant, r # 1, we recall the formula for the
geometric sum:

Gi=l+r+rr+-+r¥=(~-r""Y1-n= Q.
Wrile a computer program to compute G, and Q. for arbitrary values of r and N.

15t vetvay wnbatn . dantsth LT renn . h af th R T

1.4 Review of fundamental mathematical results 13

check the exact value of Qy by hand calculation (for example, r = 1 — 107* for some
integer & = 0). Calculate the relative and the absolute errors of these computations.

444 REVIEW OF FUNDAMENTAL
© MATHEMATICAL RESULTS

la this section we shall briefly list some basic mathematical results, mainly
from the calculus, that are useful in the development and investigation of nu-
merical procedures in subsequent chapters. We are, of course, assuming famil-
sarity with the rudiments of calculus such as the real number system, functions
and at least an intuitive understanding of the concept of limits (the latter being
‘especially true with respect to sequences since many numerical methods are
Aerative in nature and thus generate a sequence of approximations to the truc
solution). A simple example is the classical Newton's method applied to finding
~ the square root of an arbitrary positive real number, a. Given lan initial guess
1. for \’a, Newton's method generates the sequence: x, 4+, = 3(%, + alx,), fo
a=0.1.2.....Three questions immediately come to mind if we are to be abl
1o use this algorithm successfully in practice. (1) Is the sequence generated b!
thz algorithm convergent to Va and Va alone? (2) How is the convergenc:
selated to the choice of the initial guess x,? (3) How fast does the methos
converge, or how large is the error, x, — Va, after the nth iteration? These ar
questions involving the concept of convergence of sequences. There are, o
course. other important questions to answer. (4) How does rounding_erro
affect the method? (5) Is it competitive with other methods for finding \ a? (€
How well can the method be implemented on the particular computer availabl

and what cost is necessary to obtain an acceptable answer?

Other basic ideas necessary from calculus are the concepts of continuity

differentiation, and integration. We have assumed in Chapters 2 and 3 that th
reader is able to evaluate determinants. We have, however, tried to keep th
material involving determinants minimal, and the other necessary material froi
matrix theory and linear algebra is self-contained. We have also assumed th:
the reader is aware of the importance of differential equations in modeling an
solving modern technological problems although we assume very little bacl
ground in the mathematical theory of differential equations in Chapter 7.
" We list here some fundamental theorems of calculus and algebra that a
used in later chapters and with which the reader should already be familiar. W
will present other results only as they are needed to treat particular topics, an
the results will be presented only in the context of the particular topic beir
wreated. The following results and their proofs can be found in almost an
sophomore-level calculus text.

‘Taworem 1.1. Rolle’s Theorem

. 1f ix) is a continuous function in the closed interval [a, b] and is differentiab
in ta. b), and if f{a) = flb), then there exists at least one point £ in («, 5) suc
P . . f .

