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Preface

Numerical mathematics is the branch of mathematics that proposes, develops,
analyzes and applies methods from scientific computing to several fields in-
cluding analysis, linear algebra, geometry, approximation theory, functional
equations, optimization and differential equations. Other disciplines such as
physics, the natural and biological sciences, engineering, and economics and
the financial sciences frequently give rise to problems that need scientific com-
puting for their solutions.

As such, numerical mathematics is the crossroad of several disciplines of
great relevance in modern applied sciences, and can become a crucial tool for
their qualitative and quantitative analysis. This role is also emphasized by the
continual development of computers and algorithms, which make it possible
nowadays, using scientific computing, to tackle problems of such a large size
that real-life phenomena can be simulated providing accurate responses at
affordable computational cost.

The corresponding spread of numerical software represents an enrichment
for the scientific community. However, the user has to make the correct choice
of the method (or the algorithm) which best suits the problem at hand. As a
matter of fact, no black-box methods or algorithms exist that can effectively
and accurately solve all kinds of problems.

One of the purposes of this book is to provide the mathematical foun-
dations of numerical methods, to analyze their basic theoretical properties
(stability, accuracy, computational complexity), and demonstrate their per-
formances on examples and counterexamples which outline their pros and
cons. This is done using the MATLAB® ! software environment. This choice
satisfies the two fundamental needs of user-friendliness and wide-spread dif-
fusion, making it available on virtually every computer.

Every chapter is supplied with examples, exercises and applications of the
discussed theory to the solution of real-life problems. The reader is thus in
the ideal condition for acquiring the theoretical knowledge that is required to

1 MATLAB is a trademark of The MathWorks, Inc.
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make the right choice among the numerical methodologies and make use of
the related computer programs.

This book is primarily addressed to undergraduate students, with partic-
ular focus on the degree courses in Engineering, Mathematics, Physics and
Computer Science. The attention which is paid to the applications and the
related development of software makes it valuable also for graduate students,
researchers and users of scientific computing in the most widespread profes-
sional fields.

The content of the volume is organized into four Parts and 13 chapters.

Part T comprises two chapters in which we review basic linear algebra and
introduce the general concepts of consistency, stability and convergence of a
numerical method as well as the basic elements of computer arithmetic.

Part IT is on numerical linear algebra, and is devoted to the solution of lin-
ear systems (Chapters 3 and 4) and eigenvalues and eigenvectors computation
(Chapter 5).

We continue with Part III where we face several issues about functions
and their approximation. Specifically, we are interested in the solution of non-
linear equations (Chapter 6), solution of nonlinear systems and optimization
problems (Chapter 7), polynomial approximation (Chapter 8) and numerical
integration (Chapter 9).

Part IV, which demands a mathematical background, is concerned with
approximation, integration and transforms based on orthogonal polynomials
(Chapter 10), solution of initial value problems (Chapter 11), boundary value
problems (Chapter 12) and initial-boundary value problems for parabolic and
hyperbolic equations (Chapter 13).

Part I provides the indispensable background. Each of the remaining Parts
has a size and a content that make it well suited for a semester course.

A guideline index to the use of the numerous MATLAB programs devel-
oped in the book is reported at the end of the volume. These programs are
also available at the web site address:

http://wwwl.mate.polimi.it/ calnum/programs.html.

For the reader’s ease, any code is accompanied by a brief description of its
input/output parameters.

We express our thanks to the staff at Springer-Verlag New York for their
expert guidance and assistance with editorial aspects, as well as to Dr. Martin
Peters from Springer-Verlag Heidelberg and Dr. Francesca Bonadei from
Springer-Italia for their advice and friendly collaboration all along this project.

We gratefully thank Professors L. Gastaldi and A. Valli for their useful
comments on Chapters 12 and 13.

We also wish to express our gratitude to our families for their forbearance
and understanding, and dedicate this book to them.

Lausanne, Milan Alfio Quarteroni
January 2000 Riccardo Sacco
Fausto Saleri



Preface to the Second Edition

This second edition is characterized by a thourough overall revision.
Regarding the styling of the book, we have improved the readibility of
pictures, tables and program headings.
Regarding the scientific contents, we have introduced several changes in
the chapter on iterative methods for the solution of linear systems as well as
in the chapter on polynomial approximation of functions and data.

Lausanne, Milan Alfio Quarteroni
September 2006 Riccardo Sacco
Fausto Saleri
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Getting Started



1

Foundations of Matrix Analysis

In this chapter we recall the basic elements of linear algebra which will be
employed in the remainder of the text. For most of the proofs as well as for
the details, the reader is referred to [Bra75], [Nob69], [Hal58]. Further results
on eigenvalues can be found in [Hou75] and [Wil65].

1.1 Vector Spaces

Definition 1.1 A vector space over the numeric field K (K =R or K = C)
is a nonempty set V, whose elements are called wvectors and in which two
operations are defined, called addition and scalar multiplication, that enjoy
the following properties:

1.
2.

3.

addition is commutative and associative;

there exists an element 0 € V' (the zero vector or null vector) such that
v+ 0=v for each v € V;

0-v=0,1-v=yv,for each v € V, where 0 and 1 are respectively the
zero and the unity of K;

. for each element v € V there exists its opposite, —v, in V such that

v+ (—v) =0;

. the following distributive properties hold

Vae K, Vv,w eV, a(v+w)=av+aw,

Va,B € K, Yv eV, (a+ B)v=av+ [v;

. the following associative property holds

Va,p € K, Vv eV, (af)v =a(fV).



4 1 Foundations of Matrix Analysis

Example 1.1 Remarkable instances of vector spaces are:

- V = R" (respectively V' = C"): the set of the n-tuples of real (respectively
complex) numbers, n > 1;

- V = Py: the set of polynomials p,(z) = >} apx”® with real (or complex)
coefficients a; having degree less than or equal to n, n > 0;

-V = CP?([a, b]): the set of real (or complex)-valued functions which are contin-
uous on [a, b] up to their p-th derivative, 0 < p < co. °

Definition 1.2 We say that a nonempty part W of V is a vector subspace of
V iff W is a vector space over K. |

Example 1.2 The vector space P, is a vector subspace of C°°(R), which is the
space of infinite continuously differentiable functions on the real line. A trivial sub-
space of any vector space is the one containing only the zero vector. °

In particular, the set W of the linear combinations of a system of p vectors
of V., {v1,...,vp}, is a vector subspace of V, called the generated subspace or
span of the vector system, and is denoted by

W =span{vi,...,v,}
={v=avi+...+pv, witho €K, i=1,...,p}.

The system {vy,...,v,} is called a system of generators for W.
If Wy,...,W,, are vector subspaces of V', then the set

S={w: w=vi+...+v, withv, e W;, i=1,...,m}

is also a vector subspace of V. We say that S is the direct sum of the subspaces
W; if any element s € S admits a unique representation of the form s =
vi+...+ v, with v, € W, and : = 1,...,m. In such a case, we shall write
S=W1®...oW,,.

Definition 1.3 A system of vectors {vy,...,v,,} of a vector space V is called
linearly independent if the relation

a1vy +aove + ...+ oy, =0

with aq,as,...,q,, € K implies that oy = as = ... = «,, = 0. Otherwise,
the system will be called linearly dependent. |

We call a basis of V' any system of linearly independent generators of V. If
{uy,...,u,} is a basis of V, the expression v = vju; +...+wv,u, is called the
decomposition of v with respect to the basis and the scalars vy, ...,v, € K are
the components of v with respect to the given basis. Moreover, the following
property holds.
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Property 1.1 LetV be a vector space which admits a basis of n vectors. Then
every system of linearly independent vectors of V' has at most n elements and
any other basis of V' has n elements. The number n is called the dimension of
V and we write dim(V') = n.

If, instead, for any n there always exist n linearly independent vectors of V,
the vector space is called infinite dimensional.

Example 1.3 For any integer p the space C”([a,b]) is infinite dimensional. The
spaces R"™ and C" have dimension equal to n. The usual basis for R" is the set of

unit vectors {ei,...,en} where (e;); = d;; for i,7 = 1,...n, where J;; denotes the
Kronecker symbol equal to 0 if i # j and 1 if 4 = j. This choice is of course not the
only one that is possible (see Exercise 2). °

1.2 Matrices

Let m and n be two positive integers. We call a matriz having m rows and
n columns, or a matrix m X n, or a matrix (m,n), with elements in K, a set
of mn scalars a;; € K, with ¢ =1,...,m and j = 1,...n, represented in the
following rectangular array

aiy arg ... Qin
a21 a22 ... A2p

A= . (L1)
am1 Am2 - - - Amn

When K =R or K = C we shall respectively write A € R™*" or A € C"™*",
to explicitly outline the numerical fields which the elements of A belong to.
Capital letters will be used to denote the matrices, while the lower case letters
corresponding to those upper case letters will denote the matrix entries.

We shall abbreviate (1.1) as A = (a;;) with ¢ = 1,...,mand j = 1,...n.
The index ¢ is called row index, while j is the column index. The set
(@i1, a2, ..., a;,) is called the i-th row of A; likewise, (a1, asj,...,am; ) is
the j-th column of A.

If n = m the matrix is called squared or having order n and the set of the
entries (a11,a99,...,any) is called its main diagonal.

A matrix having one row or one column is called a row wvector or column
vector respectively. Unless otherwise specified, we shall always assume that
a vector is a column vector. In the case n = m = 1, the matrix will simply
denote a scalar of K.

Sometimes it turns out to be useful to distinguish within a matrix the set
made up by specified rows and columns. This prompts us to introduce the
following definition.

Definition 1.4 Let A be amatrix mxn. Let 1 < i1 < iy < ... < i, <m and
1 <71 <jo <...< g <ntwo sets of contiguous indexes. The matrix S(k x 1)



6 1 Foundations of Matrix Analysis

of entries s,y = a;,;, withp=1,...,k, ¢=1,...,1is called a submatriz of A.
Ifk=1land i, =j. forr=1,... k, Sis called a principal submatriz of A. B

Definition 1.5 A matrix A(m x n) is called block partitioned or said to be
partitioned into submatrices if

Ay Ao Ay
Aoy Aoy .. Ay
where A;; are submatrices of A. [ |

Among the possible partitions of A, we recall in particular the partition by
columns

A =(aj, ag, ...,a,),

a; being the i-th column vector of A. In a similar way the partition by rows
of A can be defined. To fix the notations, if A is a matrix m X n, we shall
denote by

A(iy 2o, gu: Jo) = (aiz) i1 <0 <ia, j1 <j < jo

the submatrix of A of size (iz — i1 + 1) X (j2 — j1 + 1) that lies between the
rows 71 and i3 and the columns j; and js. Likewise, if v is a vector of size n,
we shall denote by v(i; : i2) the vector of size io —i1 + 1 made up by the i;-th
to the i5-th components of v.

These notations are convenient in view of programming the algorithms
that will be presented throughout the volume in the MATLAB language.

1.3 Operations with Matrices

Let A = (a;5) and B = (b;;) be two matrices m x n over K. We say that A is
equal to B, if a;; = b for i =1,...,m, j = 1,...,n. Moreover, we define the
following operations:

— matriz sum: the matrix sum is the matrix A +B = (a;; + b;;). The neutral
element in a matrix sum is the null matriz, still denoted by 0 and made
up only by null entries;

— matriz multiplication by a scalar: the multiplication of A by A € K, is a
matrix AA = (Aai;);

— matriz product: the product of two matrices A and B of sizes (m,p) and
p

(p,n) respectively, is a matrix C(m, n) whose entries are ¢;; = Zaikbkj,
k=1
fore=1,...,m,j=1,...,n.
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The matrix product is associative and distributive with respect to the matrix
sum, but it is not in general commutative. The square matrices for which the
property AB = BA holds, will be called commutative.

In the case of square matrices, the neutral element in the matrix product is
a square matrix of order n called the unit matriz of order n or, more frequently,
the identity matriz given by I,, = (J;;). The identity matrix is, by definition,
the only matrix n x n such that Al, = I,A = A for all square matrices A.
In the following we shall omit the subscript n unless it is strictly necessary.
The identity matrix is a special instance of a diagonal matriz of order n, that
is, a square matrix of the type D = (d;;d;;). We will use in the following the
notation D = diag(dy1,daa, - . ., dnn)-
Finally, if A is a square matrix of order n and p is an integer, we define AP as
the product of A with itself iterated p times. We let A® = 1.
Let us now address the so-called elementary row operations that can be per-
formed on a matrix. They consist of:

— multiplying the i-th row of a matrix by a scalar «; this operation is equiv-
alent to pre-multiplying A by the matrix D = diag(1,...,1,a, 1,...,1),
where a occupies the i-th position;

— exchanging the i-th and j-th rows of a matrix; this can be done by pre-
multiplying A by the matrix P(»7) of elements

1 ifr=s=1,...,i—1i4+1,....5—1,j+1,...n,

pld) =<1 ifr=j,s=iorr=i,s=j (1.2)

s
0 otherwise.

Matrices like (1.2) are called elementary permutation matrices. The prod-
uct of elementary permutation matrices is called a permutation matriz,
and it performs the row exchanges associated with each elementary per-
mutation matrix. In practice, a permutation matrix is a reordering by rows
of the identity matrix;

— adding « times the j-th row of a matrix to its i-th row. This operation
can also be performed by pre-multiplying A by the matrix I+NY ), where

N(()f ) is a matrix having null entries except the one in position ¢, 7 whose

value is a.

1.3.1 Inverse of a Matrix

Definition 1.6 A square matrix A of order n is called invertible (or regular
or nonsingular) if there exists a square matrix B of order n such that A B =
B A = 1. B is called the inverse matriz of A and is denoted by A=1. A matrix
which is not invertible is called singular. |

If A is invertible its inverse is also invertible, with (A=!)~! = A. Moreover,
if A and B are two invertible matrices of order n, their product AB is also
invertible, with (A B)~! = B"A~!. The following property holds.
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Property 1.2 A square matrix is invertible iff its column vectors are linearly
independent.

Definition 1.7 We call the transpose of a matrix Ae R™*"™ the matrix nxm,
denoted by AT, that is obtained by exchanging the rows of A with the columns
of A. |

Clearly, (AT)T = A, (A+B)T = AT+B7T, (AB)T = BTAT and (aA)T = aAT
Va € R. If A is invertible, then also (AT)™t = (A~H)T = AT,

Definition 1.8 Let A € C™*"; the matrix B = A# ¢ C™ ™ is called the
conjugate transpose (or adjoint) of A if b;; = aj;, where aj; is the complex
conjugate of aj;. |

In analogy with the case of the real matrices, it turns out that (A +B)¥ =
AT 4+ BH (AB)Y = BHAH and (aA)H = aAf Va € C.

Definition 1.9 A matrix A € R"*" is called symmetricif A = AT, while it is
antisymmetric if A = —AT. Finally, it is called orthogonal if ATA = AAT =1,
that is A=! = AT, [ |

Permutation matrices are orthogonal and the same is true for their products.

Definition 1.10 A matrix A € C"*" is called hermitian or self-adjoint if
AT = A, that is, if A” = A, while it is called unitary if ATA = AAT = 1.
Finally, if AA” = ATA, A is called normal. |

As a consequence, a unitary matrix is one such that A=! = A,

Of course, a unitary matrix is also normal, but it is not in general hermitian.
For instance, the matrix of the Example 1.4 is unitary, although not symmetric
(if s # 0). We finally notice that the diagonal entries of an hermitian matrix
must necessarily be real (see also Exercise 5).

1.3.2 Matrices and Linear Mappings

Definition 1.11 A linear map from C" into C™ is a function f : C" — C™
such that f(ax + fy) = af(x) + 8f(y), Vo, 8 € K and Vx,y € C". [ |

The following result links matrices and linear maps.

Property 1.3 Let f : C* — C™ be a linear map. Then, there exists a
unique matric Ay € C™*™ such that

f(x)=Arx Vx e C". (1.3)

Conversely, if Ay € C™*" then the function defined in (1.3) is a linear map
from C™ into C™.
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Example 1.4 An important example of a linear map is the counterclockwise rota-
tion by an angle ¥ in the plane (z1,z2). The matrix associated with such a map is
given by

and it is called a rotation matriz. °

1.3.3 Operations with Block-Partitioned Matrices

All the operations that have been previously introduced can be extended to
the case of a block-partitioned matrix A, provided that the size of each single
block is such that any single matrix operation is well-defined.

Indeed, the following result can be shown (see, e.g., [SteT3]).

Property 1.4 Let A and B be the block matrices

Ay --~A1l Bi1 ... Bip
A= R
A .. Ay B ... B
where A;; and By are matrices (k; x 1;) and (m; x nj). Then we have

1.

My .o 0 MAy AT L A{l
AA = o . AeC; AT = S ;
M o AAy Afl Agl

2. ifk=m,l=n, my =Fk; and nj =1;, then

Ay +Bii ... Ay + By
A+B= : : ;

Api+Bpi .o A+ B

3. ifl=m, l; =m; and k; = n,, then, letting C;; = ZA“‘BSJ"

s=1
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1.4 Trace and Determinant of a Matrix

Let us consider a square matrix A of order n. The trace of a matrix is the sum
n
of the diagonal entries of A, that is tr(A) = Za“'

i=1
We call the determinant of A the scalar defined through the following formula

det(A) = z:sign(ﬂ)almag,r2 el

TEP
where P = {m = (my,...,m,)" } is the set of the n! vectors that are obtained
by permuting the index vector i = (1,...,n)7 and sign(m) equal to 1 (respec-

tively, —1) if an even (respectively, odd) number of exchanges is needed to
obtain 7 from i.
The following properties hold

det(A) = det(AT), det(AB) = det(A)det(B), det(A~!) = 1/det(A),

det(Af) = det(A), det(aA) = a™det(A), YVa € K.

Moreover, if two rows or columns of a matrix coincide, the determinant van-
ishes, while exchanging two rows (or two columns) produces a change of sign
in the determinant. Of course, the determinant of a diagonal matrix is the
product of the diagonal entries.

Denoting by A;; the matrix of order n — 1 obtained from A by eliminating
the i-th row and the j-th column, we call the complementary minor associated
with the entry a;; the determinant of the matrix A;;. We call the k-th principal
(dominating) minor of A, dj, the determinant of the principal submatrix of
order k, Ay, = A(1 : k,1 : k). If we denote by Aj; = (—=1)""/det(A,;) the
cofactor of the entry a;j;, the actual computation of the determinant of A can
be performed using the following recursive relation

a1 if n= 1,

det(A) = n (1.4)
ZAijaij, forn > 1,
j=1

which is known as the Laplace rule. If A is a square invertible matrix of order
n, then

1

1 _
A= det(A)C’

where C is the matrix having entries Aj;, 4,7 =1,...,n.
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As a consequence, a square matrix is invertible iff its determinant is non-
vanishing. In the case of nonsingular diagonal matrices the inverse is still a
diagonal matrix having entries given by the reciprocals of the diagonal entries
of the matrix.

Every orthogonal matriz is invertible, its inverse is given by AT, moreover
det(A) = £1.

1.5 Rank and Kernel of a Matrix

Let A be a rectangular matrix m x n. We call the determinant of order q
(with ¢ > 1) extracted from matriz A, the determinant of any square matrix
of order ¢ obtained from A by eliminating m — ¢ rows and n — ¢ columns.

Definition 1.12 The rank of A (denoted by rank(A)) is the maximum order
of the nonvanishing determinants extracted from A. A matrix has complete
or full rank if rank(A) = min(m,n). [ |

Notice that the rank of A represents the maximum number of linearly in-
dependent column vectors of A that is, the dimension of the range of A,
defined as

range(A) = {y e R™: y = Ax for x € R"}. (1.5)

Rigorously speaking, one should distinguish between the column rank of A
and the row rank of A, the latter being the maximum number of linearly
independent row vectors of A. Nevertheless, it can be shown that the row
rank and column rank do actually coincide.

The kernel of A is defined as the subspace

ker(A) = {x € R": Ax=0}.
The following relations hold:

1. rank(A) = rank(A") (if A € C™*", rank(A) = rank(A™));
2. rank(A) + dim(ker(A)) = n.

In general, dim(ker(A)) # dim(ker(AT)). If A is a nonsingular square matrix,
then rank(A) = n and dim(ker(A)) = 0.

Example 1.5 Let
1 1 0
a=t LY

Then, rank(A) = 2, dim(ker(A)) = 1 and dim(ker(A”)) = 0. .
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We finally notice that for a matrix A € C™"*" the following properties are
equivalent:

1. A is nonsingular;

det(A) # 0;

ker(A) = {0};

rank(A) = n;

A has linearly independent rows and columns.

A e

1.6 Special Matrices

1.6.1 Block Diagonal Matrices

These are matrices of the form D = diag(D,...,D,,), where D, are square
matrices with ¢ = 1,...,n. Clearly, each single diagonal block can be of dif-
ferent size. We shall say that a block diagonal matrix has size n if n is the
number of its diagonal blocks. The determinant of a block diagonal matrix is
given by the product of the determinants of the single diagonal blocks.

1.6.2 Trapezoidal and Triangular Matrices

A matrix A(m x n) is called upper trapezoidal if a;; = 0 for ¢ > j, while it is
lower trapezoidal if a;; = 0 for 7 < j. The name is due to the fact that, in the
case of upper trapezoidal matrices, with m < n, the nonzero entries of the
matrix form a trapezoid.

A triangular matriz is a square trapezoidal matrix of order n of the form

lu 0 ... 0 Uil U12 ... Uip
121 l22 ... 0 0 U292 ... Ugp
L= . . . |or U= .
lnllng...lnn 0 0 )

The matrix L is called lower triangular while U is upper triangular.
Let us recall some algebraic properties of triangular matrices that are easy to
check.

— The determinant of a triangular matrix is the product of the diagonal
entries;

— the inverse of a lower (respectively, upper) triangular matrix is still lower
(respectively, upper) triangular;

— the product of two lower triangular (respectively, upper trapezoidal) ma-
trices is still lower triangular (respectively, upper trapezoidal);

— if we call unit triangular matriz a triangular matrix that has diagonal
entries equal to 1, then, the product of lower (respectively, upper) unit
triangular matrices is still lower (respectively, upper) unit triangular.
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1.6.3 Banded Matrices

The matrices introduced in the previous section are a special instance of
banded matrices. Indeed, we say that a matrix A € R™*"™ (or in C™*")
has lower band p if a;; = 0 when ¢ > j + p and upper band ¢ if a;; = 0
when j > i + ¢q. Diagonal matrices are banded matrices for which p = ¢ = 0,
while trapezoidal matrices have p = m — 1, ¢ = 0 (lower trapezoidal), p = 0,
g =n — 1 (upper trapezoidal).

Other banded matrices of relevant interest are the tridiagonal matrices for
which p = ¢ = 1 and the upper bidiagonal (p = 0, ¢ = 1) or lower bidiagonal
(p =1, ¢ =0). In the following, tridiag, (b, d,c) will denote the triadiagonal
matrix of size n having respectively on the lower and upper principal diagonals
the vectors b = (by,...,b,_1)T and ¢ = (c1,...,¢,-1)T, and on the principal
diagonal the vector d = (dy,...,d,)". If b; = 3, d; = 6 and ¢; = 7, 3, § and
~ being given constants, the matrix will be denoted by tridiag,, (3, J, 7).

We also mention the so-called lower Hessenberg matrices (p = m — 1,
g = 1) and upper Hessenberg matrices (p = 1, ¢ = n — 1) that have the
following structure

hi1 hio 0 hir hiz ... hin
. ha1 h haonp,
H h21 h22 . or 1 — 21 1422 2
. . hm—ln
hml ...... hmn O hmn—l hmn

Matrices of similar shape can obviously be set up in the block-like format.

1.7 Eigenvalues and Eigenvectors

Let A be a square matrix of order n with real or complex entries; the number
A € C is called an eigenvalue of A if there exists a nonnull vector x € C™ such
that Ax = Ax. The vector x is the eigenvector associated with the eigenvalue
A and the set of the eigenvalues of A is called the spectrum of A, denoted
by o(A). We say that x and y are respectively a right eigenvector and a left
eigenvector of A, associated with the eigenvalue A, if

Ax = Xx, y7TA = \yH.

The eigenvalue A corresponding to the eigenvector x can be determined by
computing the Rayleigh quotient A = x Ax/(xx). The number \ is the
solution of the characteristic equation

py(A) =det(A — AI) =0,

where p, (A) is the characteristic polynomial. Since this latter is a polynomial
of degree n with respect to A, there certainly exist n eigenvalues of A not
necessarily distinct. The following properties can be proved
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=1

and since det(AT — AI) = det((A — AI)T) = det(A — AI) one concludes that
o(A) = o(AT) and, in an analogous way, that o(A") = o(A).

From the first relation in (1.6) it can be concluded that a matrix is singular
iff it has at least one null eigenvalue, since pa (0) = det(A) = II7 | \;.

Secondly, if A has real entries, p, (A) turns out to be a real-coefficient
polynomial so that complex eigenvalues of A shall necessarily occur in complex
conjugate pairs.

Finally, due to the Cayley-Hamilton Theorem if p, () is the characteristic
polynomial of A, then p, (A) = 0, where p, (A) denotes a matrix polynomial
(for the proof see, e.g., [Axe94], p. 51).

The maximum module of the eigenvalues of A is called the spectral radius
of A and is denoted by

p(A) = e [N (1.7
Characterizing the eigenvalues of a matrix as the roots of a polynomial implies
in particular that X is an eigenvalue of A € C**™ iff ) is an eigenvalue of A,
An immediate consequence is that p(A) = p(Af). Moreover, YA € C"*",
Va € C, p(aA) = |a|p(A), and p(A¥) = [p(A)])* Vk € N.
Finally, assume that A is a block triangular matrix

A11 A12 Alk
0 A22...A2k
A= . L

As p(A) = pa,, (AP, (A) - py,, (A), the spectrum of A is given by the
union of the spectra of each single diagonal block. As a consequence, if A is
triangular, the eigenvalues of A are its diagonal entries.

For each eigenvalue A of a matrix A the set of the eigenvectors associated with
A, together with the null vector, identifies a subspace of C™ which is called
the eigenspace associated with A and corresponds by definition to ker(A-AI).
The dimension of the eigenspace is

dim [ker(A — AI)] = n — rank(A — AI),

and is called geometric multiplicity of the eigenvalue A. It can never be greater
than the algebraic multiplicity of A, which is the multiplicity of A as a root
of the characteristic polynomial. Eigenvalues having geometric multiplicity
strictly less than the algebraic one are called defective. A matrix having at
least one defective eigenvalue is called defective.

The eigenspace associated with an eigenvalue of a matrix A is invariant
with respect to A in the sense of the following definition.
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Definition 1.13 A subspace S in C" is called invariant with respect to a
square matrix A if AS C S, where AS is the transformed of S through A.

1.8 Similarity Transformations

Definition 1.14 Let C be a square nonsingular matrix having the same or-
der as the matrix A. We say that the matrices A and C~'AC are similar,
and the transformation from A to C™'AC is called a similarity transforma-
tion. Moreover, we say that the two matrices are unitarily similar if C is
unitary. |

Two similar matrices share the same spectrum and the same characteris-
tic polynomial. Indeed, it is easy to check that if (A, x) is an eigenvalue-
eigenvector pair of A, (A, C7!x) is the same for the matrix C~'AC since

(CT'AC)CIx =C'Ax = AC'x.

We notice in particular that the product matrices AB and BA, with A € C**™
and B € C™*™ are not similar but satisfy the following property (see [Hac94],
p.18, Theorem 2.4.6)

o(AB)\ {0} = o(BA)\ {0},

that is, AB and BA share the same spectrum apart from null eigenvalues so
that p(AB) = p(BA).

The use of similarity transformations aims at reducing the complexity of
the problem of evaluating the eigenvalues of a matrix. Indeed, if a given matrix
could be transformed into a similar matrix in diagonal or triangular form, the
computation of the eigenvalues would be immediate. The main result in this
direction is the following theorem (for the proof, see [Dem97], Theorem 4.2).

Property 1.5 (Schur decomposition) Given A€ C"*", there exists U
unitary such that

A big ... by,

. i 0 A2 ban
UlAU=UHAU= | . 0 T =,

0 ... 0 N,

where \; are the eigenvalues of A.

It thus turns out that every matrix A is unitarily similar to an upper triangular
matrix. The matrices T and U are not necessarily unique [Hac94]. The Schur
decomposition theorem gives rise to several important results; among them,
we recall:
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1. every hermitian matrix is unitarily similar to a diagonal real matrix, that
is, when A is hermitian every Schur decomposition of A is diagonal. In
such an event, since

U'AU = A = diag(\1, ..., \n),

it turns out that AU = UA, that is, Au; = \ju; for i = 1,...,n so that
the column vectors of U are the eigenvectors of A. Moreover, since the
eigenvectors are orthogonal two by two, it turns out that an hermitian
matrix has a system of orthonormal eigenvectors that generates the whole
space C". Finally, it can be shown that a matrix A of order n is similar to
a diagonal matrix D iff the eigenvectors of A form a basis for C" [Axe94];

2. a matrix A € C"*™ is normal iff it is unitarily similar to a diagonal
matrix. As a consequence, a normal matrix A € C"*" admits the following
spectral decomposition: A = UAUH = Oy Aiw;ul? being U unitary and
A diagonal [SS90];

3. let A and B be two normal and commutative matrices; then, the generic
eigenvalue p; of A+B is given by the sum \; +&;, where \; and §; are the
eigenvalues of A and B associated with the same eigenvector.

There are, of course, nonsymmetric matrices that are similar to diagonal ma-
trices, but these are not unitarily similar (see, e.g., Exercise 7).

The Schur decomposition can be improved as follows (for the proof see, e.g.,
[Str80], [God66]).

Property 1.6 (Canonical Jordan Form) Let A be any square matriz.
Then, there exists a monsingular matriz X which transforms A into a block
diagonal matriz J such that

XTAX = J = diag (Jr, (A1), Tey (A2)s o T, (N))

which is called canonical Jordan form, A; being the eigenvalues of A and
Jr(\) € C*** a Jordan block of the form J1(\) = X if k =1 and

A1 0 ...0]
00X 1 :
TN =1 " 10l for k> 1.
: P
0. ... 0 A

If an eigenvalue is defective, the size of the corresponding Jordan block is
greater than one. Therefore, the canonical Jordan form tells us that a matrix
can be diagonalized by a similarity transformation iff it is nondefective. For
this reason, the nondefective matrices are called diagonalizable. In particular,
normal matrices are diagonalizable.
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Partitioning X by columns, X = (x1,...,Xy,), it can be seen that the k; vectors
associated with the Jordan block Ji, (\;) satisfy the following recursive relation

1—1
Ax; = \iXy, 1= m;+1,
= (1.8)

AXj :>\in+Xj_1,j:l+1,...,lf].+ki, if kl 7£ 1.
The vectors x; are called principal vectors or generalized eigenvectors of A.

Example 1.6 Let us consider the following matrix

7/4  3/4  —1/4 —1/4 —1/4 1/4
0 2 0 0 0 0
—-1/2 -1/2  5/2 1/2 —1/2 1/2
—-1/2 -1/2 —1/2 5/2 12 1/2
~1/4 —1/4 —1/4 —1/4 11/4 1/4
—3/2 —1/2 —1/2 1/2 12 7/2

A=

The Jordan canonical form of A and its associated matrix X are given by

2 1 0 0 0 O 1 0 0 0 0 1
0 2 0 0 0 O 0 1 0 0 0 1
J— 0o 0 3 1 0 O X — 0O 0 1 0 0 1
0 o 0o 3 1 0] 0O 0 0 1 0 1
0 0 0 0 3 O 0 0 0 0 1 1
0 0 0 0 0 2 11 1 1 1 1

Notice that two different Jordan blocks are related to the same eigenvalue (A = 2).
It is easy to check property (1.8). Consider, for example, the Jordan block associated
with the eigenvalue Ao = 3; we have

Ax3=1[003003"=3[001001]" = X\oxs,
Axs=1[001304"=3000101"+[00100 1" = \ox4 + x3,
Ax; =[000134"=3000011"+[000101]" = X\ox5 + x4.

1.9 The Singular Value Decomposition (SVD)

Any matrix can be reduced in diagonal form by a suitable pre and post-
multiplication by unitary matrices. Precisely, the following result holds.

Property 1.7 Let Ae C™*". There exist two unitary matrices Ue C™*™
and V€ C™™" such that

UHAV = ¥ = diag(oy,...,0,) € R™*" with p = min(m,n) (1.9)

and o1 > ... > 0, > 0. Formula (1.9) is called Singular Value Decomposi-
tion or (SVD) of A and the numbers o; (or o;(A)) are called singular values
of A.
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If A is a real-valued matrix, U and V will also be real-valued and in (1.9) U7
must be written instead of U, The following characterization of the singular

values holds
UZ(A> == \/)\i(AHA)7 1= 17...,p. (110)

Indeed, from (1.9) it follows that A = UXVH AH = VYHUH g0 that, U
and V being unitary, ATA = VXHXVH that is, \;(ATA) = \(ZHY) =
(i(A))2. Since AA" and AT A are hermitian matrices, the columns of U,
called the left singular vectors of A, turn out to be the eigenvectors of AAH
(see Section 1.8) and, therefore, they are not uniquely defined. The same holds
for the columns of V, which are the right singular vectors of A.

Relation (1.10) implies that if A € C"*" is hermitian with eigenvalues given
by A1, Ag,..., A, then the singular values of A coincide with the modules
of the eigenvalues of A. Indeed because AAY = A% o; = /N2 = |\ for
i=1,...,n. As far as the rank is concerned, if

012...20.>0,41=...=0,=0,

then the rank of A is r, the kernel of A is the span of the column vectors of
V, {vy41,-..,Vn}, and the range of A is the span of the column vectors of U,
{uy,...,u,}.

Definition 1.15 Suppose that A€ C™*™ has rank equal to r and that it
admits a SVD of the type UPAV = X. The matrix AT = VITUH is called
the Moore-Penrose pseudo-inverse matrix, being

1 1
ZT:diag<,...,,o,...,0). (1.11)

g1 Or
|

The matrix A is also called the generalized inverse of A (see Exercise 13).
Indeed, if rank(A) = n < m, then AT = (ATA)71AT while if n = m =
rank(A), AT = A~L. For further properties of AT, see also Exercise 12.

1.10 Scalar Product and Norms in Vector Spaces

Very often, to quantify errors or measure distances one needs to compute the
magnitude of a vector or a matrix. For that purpose we introduce in this
section the concept of a vector norm and, in the following one, of a matrix
norm. We refer the reader to [Ste73], [SS90] and [Axe94] for the proofs of the
properties that are reported hereafter.

Definition 1.16 A scalar product on a vector space V' defined over K is any
map (-,-) acting from V' x V into K which enjoys the following properties:
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1. it is linear with respect to the vectors of V| that is
(vx+ Az, y) =v(x,y) + Mz,y), Vx,y,2€V, Vy,A € K;

2. it is hermitian, that is, (y,x) = (x,y), Vx,y € V;
3. it is positive definite, that is, (x,x) > 0, Vx # 0 (in other words, (x,x) >
0, and (x,x) = 0 if and only if x = 0).

In the case V' = C™ (or R™), an example is provided by the classical Euclidean
scalar product given by

n
(x,y) =y"'x= ingia
i=1
where z denotes the complex conjugate of z.

Moreover, for any given square matrix A of order n and for any x, ye C™
the following relation holds

(Ax,y) = (x,Ay). (1.12)
In particular, since for any matrix Q € C™*", (Qx, Qy) = (x, Q7 Qy), one gets

Property 1.8 Unitary matrices preserve the Fuclidean scalar product, that
is, (Qx,Qy) = (x,y) for any unitary matriz Q and for any pair of vectors x
andy.

Definition 1.17 Let V be a vector space over K. We say that the map || - ||
from V into R is a norm on V if the following axioms are satisfied:

1. (i) ||v]| > 0 ¥v € V and (i7) ||v]| = 0 if and only if v = 0;
2. [lav]| = |a||v]] Ya € K, Vv € V (homogeneity property);
3. [[v+wl| < ||v]+ ||w] Vv,w €V (triangular inequality),

where || denotes the absolute value of « if K = R, the module of « if
K =C. |

The pair (V, || - ||) is called a normed space. We shall distinguish among
norms by a suitable subscript at the margin of the double bar symbol. In the
case the map |-| from V into R enjoys only the properties 1(4), 2 and 3 we shall
call such a map a seminorm. Finally, we shall call a unit vector any vector of
V' having unit norm.

An example of a normed space is R™, equipped for instance by the p-norm
(or Hélder norm); this latter is defined for a vector x of components {z;} as

n 1/p
%[l = (ZI%ﬂ) . for1<p<occ. (1.13)
=1
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Notice that the limit as p goes to infinity of ||x||, exists, is finite, and equals
the maximum module of the components of x. Such a limit defines in turn a
norm, called the infinity norm (or mazimum norm), given by

e = ma [z

When p = 2, from (1.13) the standard definition of Fuclidean norm is
recovered

" 1/2
2 = (x,%)1/2 = (Z'”’Q) = (x"x)""?,
=1

for which the following property holds.

Property 1.9 (Cauchy-Schwarz inequality) For any pair x,y € R",
(x,¥)] = [x"y| < [Ix]2 [Iyll2, (1.14)
where strict equality holds iff y = ax for some o € R.

We recall that the scalar product in R™ can be related to the p-norms intro-
duced over R™ in (1.13) by the Hélder inequality

S
Gyl < Ixllpllyllg, with -+ 2= 1.

In the case where V is a finite-dimensional space the following property holds
(for a sketch of the proof, see Exercise 14).

Property 1.10 Any vector norm || - || defined on V' is a continuous function
of its argument, namely, Ye > 0, 3C > 0 such that if ||x — X|| < e then
| x| = IIX]| | < Ce, for any x, X € V.

New norms can be easily built using the following result.

Property 1.11 Let || - || be a norm of R"* and A € R™*™ be a matriz with n
linearly independent columns. Then, the function || - ||a2 acting from R™ into

R defined as
Ix|laz = [|AX]| vx € R",
is a norm of R™.

Two vectors x, y in V are said to be orthogonal if (x,y) = 0. This statement
has an immediate geometric interpretation when V = R? since in such a case

(6, y) = [Ix[l2]ly 2 cos(?),
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Table 1.1. Equivalence constants for the main norms of R™

g q=1qg=2qg=0 Cpg g=1g=2qg=c
p=1 1 1 1 p=1 1 n'/? n
p=2 n1? 1 1 p=2 1 1 a'/?
p=oo nt | p=oco 1 1 1

where ¥ is the angle between the vectors x and y. As a consequence, if (x,y) =
0 then ¥ is a right angle and the two vectors are orthogonal in the geometric
sense.

Definition 1.18 Two norms || -||, and |- || on V' are equivalent if there exist
two positive constants ¢, and Cp, such that

CpallXllq < [[x[lp < Cpgllxllq Yx € V-

In a finite-dimensional normed space all norms are equivalent. In particular,
if V"= R" it can be shown that for the p-norms, with p = 1, 2, and oo, the
constants ¢, and Cj,, take the value reported in Table 1.1.

In this book we shall often deal with sequences of vectors and with their
convergence. For this purpose, we recall that a sequence of vectors {x(k)} in
a vector space V having finite dimension n, converges to a vector x, and we
write lim x®) = x if

k—oo
. k .
klilgoxg ):xi,zzl,...7n, (1.15)
where xgk) and z; are the components of the corresponding vectors with re-

spect to a basis of V. If V' = R™, due to the uniqueness of the limit of a
sequence of real numbers, (1.15) implies also the uniqueness of the limit, if
existing, of a sequence of vectors.

We further notice that in a finite-dimensional space all the norms are topo-
logically equivalent in the sense of convergence, namely, given a sequence of
vectors x(%) we have that

[x®]]| =0 < [|xF| = 0if k — oo,

where ||| - ||| and || - || are any two vector norms. As a consequence, we can
establish the following link between norms and limits.

Property 1.12 Let || - || be a norm in a finite dimensional space V.. Then
lim x® =x < lim ||x —x®| =0,
k—o0 k—o00

where x € V' and {X(k)} is a sequence of elements of V.
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1.11 Matrix Norms

Definition 1.19 A matriz norm is a mapping || - || : R™*™ — R such that:

1. JJA] > 0 VA € R™*™ and ||A|| = 0 if and only if A = 0;
2. [[aAll = |aof||A|| Ya € R, VA € R™*" (homogeneity);
3. JA+BJ| < JJA|| + |B]| YA,B € R™*" (triangular inequality).

Unless otherwise specified we shall employ the same symbol || - ||, to denote
matrix norms and vector norms.

We can better characterize the matrix norms by introducing the concepts
of compatible norm and norm induced by a vector norm.

Definition 1.20 We say that a matrix norm || - || is compatible or consistent
with a vector norm || - || if

[Ax[| < [[A]l [lx]l,  vx eR™ (1.16)
More generally, given three norms, all denoted by || - ||, albeit defined on
R™, R™ and R™*", respectively, we say that they are consistent if Vx € R",
Ax =y e R™ A € R™*" we have that |ly| < [[A] ||x]|. [

In order to single out matrix norms of practical interest, the following property
is in general required

Definition 1.21 We say that a matrix norm || || is sub-multiplicative if VA €
RnXm’ VB € RmX4

[AB[| < [[A]l [[BI]. (1.17)
|
This property is not satisfied by any matrix norm. For example (taken from
[GL89]), the norm ||A||a = max|a;j| for i =1,...,n, j =1,...,m does not
satisfy (1.17) if applied to the matrices
11
A=B- [1 J ,

since 2 = ||ABJ|a > ||Al|alIB|la = 1.

Notice that, given a certain sub-multiplicative matrix norm |||, there always
exists a consistent vector norm. For instance, given any fixed vector y # 0 in
C™, it suffices to define the consistent vector norm as

x|l = [lxy ™l x€C"

As a consequence, in the case of sub-multiplicative matrix norms it is no
longer necessary to explicitly specify the vector norm with respect to the
matrix norm is consistent.
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Example 1.7 The norm

n

D ay | = V/tr(AAR) (1.18)

i,j=1

[AllF =

. . . . . 2 .
is a matrix norm called the Frobenius norm (or Euclidean norm in C™ ) and is

compatible with the Euclidean vector norm || - ||2. Indeed,
n
1Ax|3 = Z Za”x; < Z (me?Zmﬁ) = [|A ]I [Ix]3-
i=1 | j=1 j=1
Notice that for such a norm ||L,||r = v/n. °

In view of the definition of a natural norm, we recall the following theorem.

Theorem 1.1 Let ||-|| be a vector norm. The function
[ Ax||
JA] = sup (1.19)
x#£0 ||[x]|
18 a matriz norm called induced matriz norm or natural matriz norm.
Proof. We start by noticing that (1.19) is equivalent to
[All = sup [[Ax]. (1.20)

[x[[=1
Indeed, one can define for any x # 0 the unit vector u = x/||x||, so that (1.19)
becomes
Al = Sup [Aul = [[Aw]  with [jw]] = 1.
This being taken as given, let us check that (1.19) (or, equivalently, (1.20)) is actually
a norm, making direct use of Definition 1.19.

1. If ||[Ax]|| > 0, then it follows that ||A|| = sup ||Ax|| > 0. Moreover

[Ix[[=1

Ax
IA] = sup”H ‘“ — 0 [Ax] = 0Vx £0,

and Ax = 0 Vx # 0 if and only if A=0; therefore ||A|| =0< A =0.
2. Given a scalar «,
oAl = sup laAx]| = || Sup [Ax[| = |af [|A]l.

3. Finally, triangular inequality holds. Indeed, by definition of supremum, if x # 0
then

A
1]
so that, taking x with unit norm, one gets
(A +B)x|| < [[Ax]| + [[Bx]|| < [[A]l + B,
from which it follows that ||A + B|| = sup A+ B)x| < ||All + |IB]l-

lIxIl=

<Al = [[Ax]l < [[A[lllxll,
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Relevant instances of induced matrix norms are the so-called p-norms de-
fined as

p 1Al

[All, =
o IXllp

The 1-norm and the infinity norm are easily computable since
m n

1Al = max Y agl, [|All = max Y Jagl,
g:l,...,nizl 1:1,...,'rnj:1

and they are called the column sum norm and the row sum norm, respectively.
Moreover, we have ||[A|; = ||AT || and, if A is self-adjoint or real sym-
metric, [|All1 = [|A|co-
A special discussion is deserved by the 2-norm or spectral norm for which
the following theorem holds.

Theor