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TABLE 6.2
TO, i Tl, i TZ, i T3, i

0.92073549

0.93979328 0.94614588

0.94451352 0.94608693 0.94608300

0.94569086 0.94608331 0.94608307 0.94608307

PROBLEMS, SECTION 6.4.1

1. Repeat Example 6.7 for f(x) = \/x: estimate f'(2) with 4 = .8 and r = 1/2.

2. Use Richardson extrapolation to estimate f’(x) at x = 1 where f(x) = In(x). In Table
6.1, use n = 4 and h = 0.4 and r = . Try both forms of A(/): the form given in
Example 6.6 and that given in Example 6.7.

3. Show that formula (6.28) is valid by writing down the Taylor’s series expansion for
f(x + h) and f(x — h) and expanding about x = « in both cases.

4. Verify the expansion in (6.29).

5. Write a computer program to carry out Romberg integration; test your program on

the Fresnel integral given in Problem 3, Section 6.3. To determine (in a rough
fashion) the accuracy of your answers, print out the ratios defined in (6.33).

6. The fundamental assumption of Richardson extrapolation can be seen from (6.21).
We are assuming that a, — A(h) = a,h* + a,. h**' + - - - and that eliminating a,h*
will lead to a better approximation. That is, we are assuming that a,h* is the
dominant term in the error a, — A (h).

a) Show that the assumption above means that the ratio
[A(), m AU. m— 1]/[A(). m+1 AO. m]

should be approximately r*.

b) Use part (a) to establish that the ratios R;, ,, defined in (6.33) should be approxi-
mately 4+ if Romberg integration is proceeding without a substantial error.

7. Calculate the appropriate ratios, as defined in Problem 6, for the tables in Examples
6.7 and 6.8.

8. Show that T, , defined in (6.32) corresponds to the composite Simpson’s rule.
(However, there is no relation between 7). ,, and Newton-Cotes rules for k > 2.)

6.5 GAUSSIAN QUADRATURE

As we previously remarked in Section 6.2, if we let the quadrature weights,
{A;}*_,, and the quadrature nodes, {x;}/_,, be treated as unknown variables,
then the equations of (6.3),

b n
f xEw(x) dx = 2 AxF, O0<k=2n+1, (6.34)

i=0
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represent a nonlinear system of (2n + 2) equations in 2n + 2) unknowns. In
1814, Gauss was able to show that this system of equations has a unique
solution for the unknowns {A;}’_, and {x;}_, when w(x) = 1 and [a, b] =
(=1, 1].
Once again we return to the notation of Section 5.3, in which we let(f, g) =
b f()gw(x) dx, and ||f|| = (f, )2 We let {g;(x)}i=, denote the monic
orthogonal polynomials and {p;(x)}7~, the orthonormal polynomials with re-
spect to this inner product where degree (¢;(x)) = degree (p;(x)) = j for each j.
We first prove the following theorem, which localizes the zeros of each p;(x).
[Recall that for each j, p;(x) is a constant multiple of g;(x); and thus they have
the same zeros. ]

Theorem 6.3
Let {p;(x)};=, be given as above. Then for each n = 1, the zeros of p,(x) are real
and distinct and lie in the interval (a, b).

Proof. Letn =1 be fixed and suppdse that none of the zeros of p,(x) are in (a,
b) so that p,(x) is of constant sign on (a, b) [say p(x) > 0 for x € (a, b)]. By the
orthogonality of p,(x) and gy(x), (g,(x) = 1), we would then have

b
0 =Ll Pud = f pa@)w(x) dx > 0

a

since we assume w(x) is nonnegative and strictly positive for some subinterval
of (a, b). Thus our initial assumption is contradicted, and p,(x) must have at
least one zero, x,, in (a, b).

If any zero, say x,, is a multiple zero of p,(x), then (x — x,)? factors p,(x)
and so r(x) = p,(x)/(x — xo)*is in @, _,. By Corollary kof Theorem 5.9,(p,, n =
0; and so we can write

b
0={pp = f PaOLPa@Ix — X, Iw(x) d

a

b 2
= *(xpil_(xioy w(x) dx > 0,

which is again a contradiction. Hence we can infer i’hat any zero of p,(x) lying in
(a, b) is simple.

‘Now let {xy, x;, . . . , x;} be the zeros of p,(x) lying in (a, b); and suppose
that j < n — 1; that is, p,(x) has other zeros elsewhere. Since the zeros
{x;}; -, are simple, we can form the polynomial p,(x)[(x — xo)(x — x;) -+ (x —



|
[ 326 Numerical integration and differentiation
|
\

x;)]. We write this polynomial as r(x) - [(x — x,)*(x — x;)** - (x — x;)*] where r(x)
€ ®,_;_;, and we note that r(x) is of constant sign (say >0) on (a, b). Again

£ Pl [(x — )l — %) - (x — xj)]) =10

by the corollary mentioned above. So

b
i = f B0 — 2% — %} -~ 1x — KU o

b
- f LG — Xo)P(x — X+ (x — x2]w(x) dx > 0,

which contradicts the assumption that j < n — 1. Thus all the zeros of p,(x) are
in (a, b) and are simple. |

Recall that the Eqs. (6.34) are satisfied for 0 = & = 2n + 1 if and only if
0.(f) = 21—, A;f(x)) has precision 2n + 1; that is, if f(x) is any polynomial of
degree (2n + 1) or less, then I(f) = Q,(f). (Any interpolatory quadrature
formula with this property is called Gaussian.) With this point in mind we are
able to prove the basic theorem of Gaussian quadrature.

Theorem 6.4

The formula [% p(x)w(x) dx = 2, A;p(x;) holds for all p(x) in ®@,,,, if and only
if {x;}'_, are the zeros of p, ,,(x) (as given in Theorem 6.3) and {A;}/_, are given
in (6.2).

Proof. 1. Letp(x) € ®, ., and let p, . (x;) = 0,0 =j = n. By the Euclidean
division algorithm, p(x) can be written as p(x) = p, .+ (x)S(x) + R(x) where S(x)
and R(x) are in @, [Note that since p,, ,,(x;) = 0,0 =j = n, then p(x;) = R(x;), 0
= j = n.] In addition, since the weights are given by (6.2), I(R) = Q,(R) = 2},
A;R(x;) (since the quadrature formula has precision at least n). If one uses
Corollary 1 of Theorem 5.9,{(p, ., S) = 0; so

b b b
I(p) = j plEwle) ds = f B EISTEIOLE) oy + f ROw() dx
= (Puiis ) T IR) =0+ 3 ARG

= > Ap) = 0p).

2. Now we assume that {x;}’_, is any distinct set of points and [% p(x)w(x)
dx = 2", A;p(x;) for all p(x) € @,, .. Given any integer k, 0 = k =< n, let r(x) be
any polynomial of degree k or less. Let W(x) = II*_, (x — x;) and define p(x) =



6.5 Gaussian quadrature 327

re(x)W(x). Then p(x) € @,, ., ,: and by our hypothesis, I(p) = Q,(p). Using this
equality, we have

b b
(ris W) f RWCEE) i = f Bl de

a

I

2 Aip(xy) = 2 Ajri(x)W(x;) = 0

i=0 i=0

since W(x;) = 0, 0 = j = n. Hence we have just shown that W(x), a monic
polynomial of degree (n + 1), is orthogonal to any polynomial of degree n or
less. By Corollary 2, Theorem 5.9, W(x) = g, , ,(x); and thus x;’s are the zeros
of p,+i(x). Now that the nodes x; are known, we are nearly done. That the
weights A; are as in (6.2) follows immediately since the first (n + 1) equations
on the right-hand side of (6.34) constitute a linear system where the coefficient
matrix is Vandermonde. Hence there is one and only one choice for the

weights, and (6.2) gives the solution explicitly. u
Gaussian quadratures are powerful numerical integration methods as the
following corollary illustrates. .
Corollary

Let 0,(f) = 2}, A;f (x;) be Gaussian; then lim,,_, ., Q,(f) = I(f) for all f(x) €
Cla, b].

Proof. By the definition of ¢,(x) [(5.2) in Chapter 5], for each &, (£,(x))? € ®,,;
and so I(¢}) = Q,(¢%). Thus

b n
0< [ G de = 3 Af6)r = 4,
a i=0
since (€,(x;))* = 8;,. Thus the Gaussian quadrature weights are positive for each
n; so by the remarks following Theorem 6.1 this corollary is proved. ]

We should also note that since this corollary shows that the weights are all
positive, the formulas have nice rounding properties. In the literature there
exist extensive tables for the weights and nodes of many common Gaussian
quadratures. [For example, see Stroud and Secrest (1966).] We shall now con-
sider efficient methods for calculating the weights and nodes of any Gaussian
formula.

To compute the nodes we take the obvious course of generating ¢, ; ,(x) by
the three-term recurrence formula, (5.65). Since the zeros of g, . ;(x) are simple
and lie in (a, b), Newton’s method is ideally suited for computing these nodes.

Efficient computation of the weights is not so straightforward. We could
use the computed values for the nodes and solve for the weights by formula
(6.3) or we could use the formula A; = [% ¢,(x)w(x) dx, 0 =j < n. There is a more
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efficient procedure, however, which uses the same recurrence relation as for
gn+1(x), but has different starting values (otherwise we would be just generat-
ing the g;(x)’s again).

We first define a new sequence of polynomials, {¢, ¢, ¢, . . . , b, 41}, by
bo(x) = 0, ¢4(x) = [} w(x) dx, and
bi(x) = (x — ap)py—1(x) = by _o(x)  for k = 2. (6.35)

The constants {a,};*} and {b,}it} are the same as in (5.65), the three-term
recurrence that we have just used to find g, , ;(x) in order to compute the nodes.
[The reader should note that ¢,(x) and ¢,(x) differ from g,(x) and ¢,(x), respec-
tively. One should also note that the degree of ¢;(x) is j — 1.] We have intro-
duced (6.35) so that we can calculate each A; by

Aj = b i) gniaxy),  0=j=n. (6.36)

The validity of (6.36) is an immediate consequence of the following theorem.

Theorem 6.5

Let ¢, . ,(x) and g, +,(x) be generated by (6.35) and (5.65), respectively. Then
¢, +1(x) can alternatively be written as

b o
d)n+1(-x) = f (ln+1(t) = CIn+1(X) W(t) dl. (6.37)
4 (t = x)
Proof. The proof is by induction and we leave to the reader to verify (6.37) for
n= —1land n = 0. Then for n = 1, assume (6.37) is valid for all positive integers

up to n. By the three-term recurrence, (5.65),

b —
J Qn+1(8 = ;1;:+1(x) w(t) dt

— fb [(t — an+1)(In(t) — bn+1Qn—1(t) - (.X . an+1)Qn(x) i bn+1Qn—l(x)]w(t) dt
" (& —.x) :

Adding and subtracting xq,(t) from the numerator of the integrand and recalling
that [% g,.()w(¢) dt = 0 reduce this expression to

b - b -
(.X _ an+1)f QTL(,; — jn(x) W(t) dt - b"+1 f CIn,—1(t3 = ;Illfl(x) VV(t) dt

b
+ f qn(t)w(t) dt = (X E an+1)¢n(-x) - bn+1¢n—1(x) = ¢n+1(x)~ Bl

To see that (6.36) follows from this theorem, note that ¢;(x) can alterna-



6.5 Gaussian quadrature 329

tively be written as ¢(x) = ¢,+,(0)/[(x — x;)¢;+:(x)], 0 = j < n. Thus since
dn+1(x;) = 0 and g, ,(x;) # 0 (by Theorem 6.3), (6.37) yields

; b . b
it [ iy [ amnaen

EXAMPLE 6.9. We pause here to present a particularly nice type of Gaussian quad-
rature since we can derive closed-form formulas for its weights and nodes for any n. If
we let (f, @ = J1, f(x)g(x)(1 — x*)~'2 dx, then the orthogonal polynomials are the
Chebyshev polynomials of the first kind, T)(x) = cos[k cos™!(x)]. Thus we immediately
have the nodes since the zeros of 7, , ,(x) are x; = cos((2j + D)a/2n + 2)), 0 =j=mn.To
find the weights, we must introduce the Chebyshev polynomials of the second kind,
Ui(x) = sin[(k + 1) cos™'(x)]/sin[cos™'(x)], or U(cos(®)) = sin[(k + 1)8]/sin(8) for x =
cos(f). Now obviously U,(x) = 1 and U,(x) = U,(cos(f)) = sin(20)/sin(8) = 2 cos () =
2x. By elementary trigonometric identities we can show that

sin[(k + 2)8] = 2 cos(f) sin[(k + 1)8] — sin(k6);
and so for k£ = 1,
Ui +1(x) = Uy 4 4(cos(0)) = sin[(k + 2)6]/sin(6)
2 cos(#) sin[(k + 1)8]/sin(f) — sin(kO)/sin(6)
=2 cos(0)U;(cos(0)) — U (cos(8)) = 2xU,(x) — U,_,(x). (6.38a)

Formula (6.38a) shows that U(x) is a polynomial of degree k with leading coefficient 2%
[since Uy(x) = 1 and U,(x) = 2x]. Thus V,(x) = 2-*U,(x) is monic in ®, and by (6.38a)
satisfies the recurrence formula Vy(x) = 1, V,(x) = x,

Vi(x) = xVi_1(x) — 41 Vie—alx)s k=2, (6.38b)

Similarly the monic Chebyshev polynomial of the first kind, g,(x) = T,.(x)/2~ !, k = 1,
satisfies (Problem 4)

() = xqj—1(x) — bpqi—o(x), k 222

where b, = 1/2 and b, = 1/4 for k = 3. [This result follows from T,(x) = 1, T,(x) = x, and
Ti(x) = 2xTy_1(x) — Tie—s(x), k = 2.]

Now to use (6.36), we must find ¢,, . ,(x) from (6.35). We have ¢,(x) =0, ¢,(x) = [1,
(1 = x)2dx =, and ¢p(x) = xd_1(x) — bpdr_o(x), k = 2. If k = 2, ¢(x) = x(m) —
by(0) = wx. If k = 3, ¢3(x) = mx? — /4 = wV,(x). Since ¢o(x) = 7V, (x) and for k > 3
(6.35) is dy(x) = xbi—1(x) — Py _,(x)/4, we see by (6.38b) that ¢, (x) = 7V,(x), k = 0.
Hence ¢, ,(x) = 7V,(x) = 727U, (x). Now

d _ d(cos[(n + 1)6]) db _ sinf(g + 1)0]
d—x(Tn+1(x)) - —de—. dx - (n e 1) Sln(e) = (" £ I)U,,(X).

Thus (6.36) becomes

by 1(xy) 27U, (x;) T .
A = = b = =
gy it 20 D 0Si=n
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This equation yields the Gaussian formula

T 3 f). (6.39)

J=0

1
f FO — xB)™ dg ==
o n
This particular Gaussian quadrature is called a Gauss-Chebyshev quadrature and has
especially nice rounding characteristics since the weights are all equal.

Perhaps the most commonly used Gaussian quadrature is obtained from
w(x)=1land(f, g = [, f(x)g(x) dx. The orthogonal polynomials for this case
are the Legendre polynomials. There are no nice closed-form formulas for the
nodes and the weights in this case. However, with the use of extensive previ-
ously tabulated results and our ability to translate easily the integral of integra-
tion from [—1, 1] to [a, b], this quadrature (called a Gauss-Legendre quadrature
or sometimes even simply a Gauss quadrature) is a very practical tool.

If f(x) € C*"*?[a, b], then it is possible to derive an error formula for
Gaussian quadrature of this form (see Ralston, 1965):

(2n+2) b
Rn(f) — I(f) . Qn(f) b ﬁfu (q:; +1(X))2W(X) dX. (6403)

We shall take a slightly different approach that emphasizes the benefits of
having precision (2n + 1). Once again, we define the uniform degree of approx-
imation as
E,(f) = min {r{lax | f(x) — p(x)| } = min {||f - pll} = ||f — Pl
px)e @, | asx=bh p(x) € @,

Since I(1) = Q,(1) for any Gaussian formula, we have [% w(x) dx = 27—, A;.
Since the formula is Gaussian, A; = 0, 0 = j = n, and I(p) = Q,(p) for all
p(x) € @, . Thus if p§, . ;(x) € ®@,,,, is the best uniform polynomial approxi-
mation to f(x),

Rn(f) = I(f) - Qn(f) = (I(f) . I(p;<n+l)) - (Qn(f) - Qn(pékn-fl))
b n
= [ 0 = ph 0w dx = 3 AL = Pl
a i=0

Therefore

b

n b
R = Eoni(f) (f W) dy + 3] A,-) = 2E51(f) [ w0 dr. (6.400)

1 i=0

Obviously if any interpolatory quadrature, Q,(f) = 2_, B;f (x;), has preci-
sion m and B; = 0, 0 = j = n, the argument above could be repeated to yield
|R,(f)]| = 2E,(f) J% w(x) dx. Since the precision is maximized when the quad-
rature is Gaussian, that is, m = 2n + 1, and since E,, . (f) = E,(f) for m <2n
+ 1, then (6.40b) represents an optimal error bound of this type. For practical
use of (6.40b) we can call on any Jackson theorem [for instance, (5.69a) or
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(5.69b)] to yield a fairly simple bound on |R.(f)|. We also note (Problem 6) that
no formula of the type (6.34) can have precision equal to 2 + 2. Thus Gaussian
formulas are the outside limits in increasing precision.

EXAMPLE 6.10. As an illustration of the power of Gauss-Legendre quadrature, we

consider again
o
Si(1) = f &,
0 !

From a table, we obtain the weights and nodes for the five-point Gauss-Legendre for-
mula for [—1, 1]:

Xo = —0.9061798459 Ay = 0.2369268851
—0.5384693101 A, = 0.4786286705
Xp 0.0 A, = 0.5688888889
X3 0.5384693101 Ay = 0.4786286705
Xy = 0.9061798459 Ay = 0.2369268851.

Il

Xy

Il
Il

[The symmetric character of the weights and the nodes should be expected since the nth
degree Legendre polynomials is an even function when r is even and an odd function
when 7 is odd.] Since our problem is to estimate an integral on [0, 1] rather than on [—1,
1], we must use (6.4) where ¢ = 0 and b = 1. With this change, the Gauss-Legendre
five-point formula provides the estimate of 0.94608307, which is correct to eight places.

6.5.1. Interpolation at the Zeros of
Orthogonal Polynomials

Gaussian quadrature provides a valuable link between the integral inner prod-
uct, ( f, & = [% f(0)g(x)w(x) dx, and the discrete inner product,

fr@a=3 Af)gy),
i=o

where A; and x;, 0 < j < n, are the weights and the nodes respectively of the
Gaussian quadrature Q,(f) ~ 5 f(X)w(x) dx. [Note that since the quadrature is
Gaussian, then A;. > 0 and X; € (a, b),0 = j =< n, so that (f, g),is a well-defined
discrete inner product.]

Theorem 6.6

Given ( f, g) and ( f, g), as above, let {Po(x), pi(x), po(x), . . .} be orthonormal
polynomials [with degree (p;(x)) = J] with respect to (f, g). Then {po(x),
P1(x), . . ., p,(x)} is an orthonormal set with respect to ( f, @) ,.

Proof. Let p(x) = p(x)pn(x), k + m < 2n. Then singe I(p) = Q,(p), we have

b
6m=mmm:jpmmmmmm:um=gw

a

= Z Ajpk(xj)pm(xj) = <Pk, pm>11' u

i=0
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We can use Theorem 6.6 to give an easily computable formula for the
polynomial, P (x) € @,, that interpolates a function, f(x), at the zeros of p,, , ;(x).

Theorem 6.7
Let {x;}'_, be the zeros of p, fl(x) (as in Theorem 6.6), and let P(x) = Z}_,
app(x). If oy = 2y Ajpr(x)) f(x;), then P(x;) = f(x;) for 0 = j = n.

Proof. From Chapter 5 we know that the interpolating polynomial exists, is
unique, and thus can be written in the form P (x) = 2} _, a;p.(x). If P(x;) = f(x;),
then =} _, aypi(x;) = f(x;), 0 = j = n. Now for m fixed, multiplying both sides by
A;p,(x;) and summing from j = 0 to j = n yield

n

i Apm(x)flx;) = 2 <Ajpm(-x.i) i akPk(~"j)>
i=0 k=0

i=o

n

Z Qe <E Aj[)m(xj)plr(xj)> = 2 ak(pm’ pk)d = Q.
k=0 ji=0

k=0

This equality holds for each m, 0 = m = n, and so the proof is complete. ®

We next turn our attention to an estimate of the error that is made when
interpolating at the zeros of orthogonal polynomials. Suppose p(x) € @, inter-
polates f(x), f **Y(x) € Cla, b], at any set of (n + 1) distinct points, {z;}{_,, in
[a, b]. Then we recall from formula (5.27) that for any x € [a, b]

- _ [MTRE)
fx) = plx) = TR W(x) (6.41a)
where ¢ € Spr{x, zy, 21, - - - , 2»} and where W(x) = II'_, (x — z;). We have

already seen the merits of interpolating at the zeros of the shifted Chebyshev
polynomials, T, ,(x), in that this minimizes ||W|l. = max,-,-, |W(x)| [see
formula (5.35)]. There are similar advantages in the interpolation given in
Theorem 6.7. Recall, as in (5.31), if we square both sides of (6.41a), multiply by
w(x), integrate from a to b, and take the square root, we have

b 1/2
If—pll = ( (f(x) — p(x)?w(x) dx) /

(6.41b)

o If.(n+1)(x)‘ B 1/2

(151'5(;)1 oy < ' (W(x))2w (x) dx>
||f‘(n+l)HOc

= Wi

Now let W(x) be any monic polynomial of degree (n + 1) as above, and let
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qn+1(x) be the monic orthogonal polynomial as before. Then r(x) = (W(x) —
4n+1x)) € @,, so(r, g,.1) = 0. Now we have

w

«

b b
2 =f (WH)*w(x) dx = f (Gn+1(x) + r(x))?w(x) dx

b b b
= | (@u+1()Pw(x) dx + 2 f dn+1(XO)r (0w (x) dx + f (r(0))*w (x) dx

a

= an+1H2 + EApas, 1) + ||”

2

=l + I

Therefore ||g, ;|| = ||W|| for all such W(x); and so the error bound, (6.41b), is
minimized for W(x) = ¢, . ,(x), that is to say, for interpolation at the zeros of the
orthogonal polynomial. In the special case in which [a, b] = [—1, 1]and w(x) =
1, the minimum bound is achieved by interpolating at the zeros of the (n +
1)st-degree Legendre polynomial.

Another indication of the power of interpolating at the zeros of orthogonal
polynomials is provided by the following theorem, which guarantees least-
squares convergence of the interpolating polynomials.

Theorem 6.8 Erdos-Turan

Let P,(x) € @, interpolate f(x) at the zeros of p, . ,(x) (as in Theorem 6.7). Then

b 2
If = Pl = U (f(x) = P, (x))*w(x) dx)l/ -0, asn—> oo,

Proof.  Again for each n, let pji(x) € @, be the best uniform approximation to
f(x): and let

E(f) = max |f(x) = pi)| = [|f = pill-

Then by the triangle inequality, ||/ — P,|| = ||f — pj|| + ||p¥ — P.|. Now

b b
1= pile= | (0 = preyw( dr = ELF)P f wix) dr.

(0 a

Also since (pji(x) — P,(x))* € ®@,, and the nth Gaussian quadrature is exact in
®,, 1+, and has positive weights with [% w(x) dx = 2/_; A;, we see that

b
pi — PJf = f (PEQ) — Pu)Pw () dx

@

= 3 AE) — P = S ApE@) — fo)?

i=0 i=0

n b
= (E"()(‘))Z E Aj = (En(.f))zj H’(.\') d.X.

=0 @
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Since [ w(x) dx is a constant and E,(f) — 0 as n — =, then both || f — pj| and
Pk — Pi|| = 0as n— .

Gaussian quadratures are particularly effective in approximating Fourier
coefficients, ( f, pi) = [% f(X)p.(x)w(x) dx, but provide the following result,
which may be somewhat surprising at first reading. Let f(x) be approximated by
the truncated Fourier expansion f(x) = F,(x) = Zi_, (f, prypr(x). Using the
Gaussian quadrature to approximate (f, p,), we get (f, pp) = a = 2,
A;f(x)pr(x;). Then F,(x) = Z}_, a;pi(x), but we notice this expression is pre-
cisely the interpolating polynomial, P,(x), as in Theorem 6.7.

6.5.2. Interpolation Using Chebyshev
Polynomials

In this section, we will consider some of the practical aspects of interpolation at
the zeros of T, ,(x). We have already seen from (5.36) that there are advan-
tages in using these interpolation points. The example given below establishes a
useful discrete orthogonality property determined by the zeros of T, . ;(x). This
relation [and a companion result given in (6.43)] can be used in a variety of
ways.

EXAMPLE 6.11. Let(f, 2 = ', f(0)g)(1 — x*) 2 dx and x; = cos[(2j + )m/2(n +
1)], 0 =j = n. For this inner product, the orthonormal polynomials are p,(x) = 1/7/7 and
pr(x) = V2/mT(x) for k = 1 (see Example 5.15b, Chapter 5). By Example 6.9, A; =

w/(n+ 1),0 <j < n. Thus by Theorem 6.6, the following relationship holds for k + m =
2n:

) . 0, k# m
| 2 Tilx)Tulx) =11, k=m i 0 (6.42)
i=o 2, k=m=0.
Formula (6.42) very closely resembles another discrete orthogonality rela-
tion for the Chebyshev polynomials (displayed in Example 5.15¢), which we
can express for k + m = 2n as

0, k# m
—E T(t)Tut) =31, k=m, 1=k=n-—1 (6.43)
i=0 2, k=m, k=20 or k = n.

In (6.43), the points ¢; are given by t; = cos[jmw/n], 0 = j = n; and the double
prime denotes halving the first and the last terms. Since the validity of (6.42)
rests upon the fact that (6.39) is a Gaussian quadrature for I(f) = [1, f(x)
(1 — x?)~ 2 dx, the similarity of (6.42) and (6.43) leads us to suspect that (6.43)
also represents a quadrature for I(f) = [1, f(x)(1 — x*)72 dx of the form

0N =T 3" f). (6.44)

i=0



6.5 Gaussian quadrature 335

In investigating the quadrature Q,(f), we note first that /(1) = Q (1) = =
and I(T,) = Q(T) = O0for 1 = k =2n — 1. However, I(T,,) = 0 but Q(T,,) =
m, and so the precision of this quadrature is (2n — 1). To verify these results, we
note that I(T,) = (1, T;) = 0 for k = 1. To determine Q.,(T}), we first suppose
I = k = nand use (6.43) with m = 0 to find Q(T}) = 0. For n < k < 2n, we let k
= n + m and observe that T(t;) = T,(;)T,.(t;). Thus, using (6.43), we see that
Q.(Ty) = 0 for n < k < 2n and that Q,(7,,) = =. We note that Q,(f) is not
Gaussian since its precision is (2n — 1) instead of (2n + 1); but it is a powerful
formula as we can see from the remarks following (6.40b). The nodes ¢; are
often called the *‘practical’’Chebyshev nodes. Also observe that if we make the
transformation x = cos 6, then I(f) = [7 f(cos 0) df. From (6.44), we see that
Q,(f) is the composite trapezoidal rule for appoximating [7 f(cos 6) d6.

From Theorem 6.7 and formula (6.39) we easily find that the polynomial of
degree n or less that interpolates f(x) at x; = cos[(2j + D@/2(n + 1)],0 <j < n,
is given by

PO = B2+ 3 BT, = o 3 Tof(). (6450

k=1 =0

A similar formula can be devel(;ped for interpolation at the points 7; =
cos(jm/n). However since (6.44) is not a Gaussian formula, we cannot directly
apply Theorem 6.7. However, we can use (6.43) and mimic the proof of
Theorem 6.7 to show that the polynomial of degree n or less that interpolates
f(x) at t; = cos(jm/n), 0 = j =, is (see Problem 8)

PO = 3" wT0  where 3, == 3" L)) (6.45b)
k=0 i=0

We pause to mention that the interpolating polynomials constructed via

(6.45a) and (6.45b) can be easily evaluated at a point x = « since they have the

form p(x) = 2} _, byr(x) where {b,}} _, are known constants and each r,(x) is a

constant multiple of p,(x). We leave to the reader to verify that the efficient

algorithm of formula (5.66) can be modified to accomplish this task with (2n —

1) multiplications, once the three-term recursion is known for the r,.(x)’s.For

example (see Problem 9), if r,.(x) = T}.(x), then we have T(x) = 1, T,(x) = x, and

Ty(x) = 2xT;._ (x) — T)_»(x) for k = 2. The modification of (5.66) yields in this
case

3 biTi@) = se) — as,(@) (6.45¢)
k=0

where s,.(«) is defined by s, , (@) = 5, 4»(a) =0;and fork=n,n—1,...,0,by
si(@) — 208y 4 4(@) + Sp4a(@) = by.

[Note in this particular example that since the coefficient of s, ,(a) equals 1,
only (n + 1) multiplications are required. ]
We turn now to the infinite Chebyshev expansion for f(x). Recall that
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pox) = 1N7Ty(x) and pp(x) = \V2[aT(x) for k = 1; so (f, po) = 1N7(f, To)
and (f, px) = \V2/mw{f, Ty), k = 1. Thus the Fourier-Chebyshev expansion for
fx)for =1 =x=1is

S&) ~(fs po)Pox) + i fs PPk (X). (6.46a)

k=1

Often, for the sake of convenience, the normalizing constants of the p,(x)’s are
multiplied together and (6.46a) is written in the equivalent form

0~ 3 Gl a= = f ST = 227 dx  (6.46b)
k=0 —1

where the prime denotes that the first term is halved.

Using the Gauss-Chebyshev quadrature (6.39) to approximate a; for 0 =
k = n, we obtain the interpolating polynomial P(x) of formula (6.45a) as an
approximation for f(x) where each B, = 2/(n + 1)) 2%, Ti(x;) f(x;) is our
approximation to a,. An alternate approach is to use P (x) of formula (6.45b) as
our approximation to f(x) where vy, = (2/n) 2/_# T,(t;) f(¢;) is our approximation
to.ag, 0=k < n.

To assess further the accuracy of these interpolations, let us assume that
the expansion (6.46b) is absolutely and uniformly convergent to f(x) (which is
the case, for example, if f € C?2[—1, 1]). We first consider P (x) in (6.45b); and
for a fixed value of m, 0 = m = n, we consider the approximation of vy, for a,,.
We can easily verify by trigonometric identities that if k = 2rn + a, r = 0, 1,
2,..., |a| =B = n;then Ty(t)) = Tp(t)), 0 = j = n. Making use of (6.43), we
obtain for any m

2 n w !
Ym = ; 2 <z aka‘(Ij)> Tm(’j)
i=0 k=0

i’ Ay <2 i” Tk(tj)Tm(tj)> (6.47a)
k=0 n =

=ay t (a2n*m 3t aZrH—m) “+ ((14",,,, + a4n+m) e

and the resulting approximation of (6.45b)

f(X) S ! 'Yme(X). (647b)
m=0
Similarly if we write k = 2r(n + 1) + «, we can easily establish the identity
To(x;)) = (= 1)'Tyrn+1+a(x;), 0 = j = n. Using this and (6.42) in the same manner
as above, we obtain for any m

:Bm = dpy — (a2n+2—m Ea a2n+2+m) = (a4n+4*m s a4n+4+m) — -+ (6.482)
which yields the approximation
Jx) = 3" BuTw(x). (6.48b)

m=0
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We leave (Problem 10) for the reader to verify that | T =37 yme(x)| and
| f(x) = =,,- BuTu(x)| are both bounded by 2 3% _,,, |an|. Thus, by Section
5.3.2, the error of (6.47b) and (6.48b) can never exceed twice the error of the
truncated series, | f(x) — =, _ ame(x)|. We thus note that if the magnitudes of
the Fourier coefficients are rapidly decreasing, then both (6.47b) and (6.48b)
are good approximations. We also note from (6.47a) and (6.48a) that both y,,
and 3, are most likely to agree closely with a,, when m is small. We expect the
most discrepancy in (6.47a) when m = n — 1 and in (6.48a) when m = n; in
those cases we see thaty, _; = a,_, + a,,, and B, = a, — a, .., respectively.
However if n is sufficiently large, then the coefficients a,_,, a,,,, and a,,,
should be relatively small and should not significantly affect the accuracy.

6.5.3. Clenshaw-Curtis Quadrature

We note that any time we have an approximation for f(x) of the form f(x) =
p(x) = Zji_, b, Ty(x), then we can easily construct a numerical integration for-
mula from the approximation. This fact follows from the simple observation
that indefinite integration of 7).(x) yields

j Ti(x) dx

—f cos(k0) sin(0) d6

—%j@dw+nm—gqm—n@de (6.492)

_ l Ty 4 1(x) _ T — (%) 2
_2<k+1 k—1>’ =2y

and
f To(x) dx = T,(x), f T,(x) dx = % (Ty(x) + Ty(x)). (6.49b)

Given p(x) as above, then the result of the indefinite integration of p(¢) is an
expression of the form

@ n & n+1
f p(t) dt = Y bkf Ty dt = AT(x) = P(x). (6.50)
=] k=0 -1 k=0
Using the integral formulas (6.49a) and (6.49b) and equating like coefficients of
each T(x), we have the following equations for each A,:

bll B bn—l

_ by
_2(n+l)a An— 2’1’

Al = bO — 7, (6513.)

An+l

and

Ak:ﬁ(bk—l_bk”rl)s ler2=k=n=1



