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2. Divide [a, b] into several subintervals of small length, use a simple quadra-
ture of fairly low precision on each, and add the results to obtain an approx-
imation for I(f).

The methods generated by (2) above are called composite quadratures, and
we shall study them in this section. First we consider (N + 1) points {x;}}'_,
such that ¢ = x, < x; < --- < xy = b. From calculus we know that

b N—=1 [Tj+1
10 = [ fewew ac =3 [ foow ax.

Thus approximating /(f) by composite quadrature amounts to approximating
each [fi+1 f(x)w(x) dx by a low order quadrature, 0§(f), and adding the
resulting approximations. The three rules (trapezoidal, Simpson, and corrected
trapezoidal) specifically studied in Section 6.2.2 are very well suited for our
purposes here, and we shall concentrate on their use. We shall see that their
form is especially simple if we take the points {x;}¥_, to be equally spaced; that
is,x;=a + jhfor h = (b — a)/Nand 0 = j = N.[Using these rules, of course, we
take w(x) = 1in I(f).]

First we consider the composite trapezoidal rule. From (6.5) and the error
formula (6.9), we see that for any j

[ 7w ax =5 () + fwey -, < <

)

Thus we define the composite trapezoidal rule, Ty(f), as

Is) = E (f(x,) +fx40)) = h 2 f) + 5 (f(xo) + fxy).  (6.12a)

i=0
The error, I(f) — Ty(f) = €%, is the sum of the errors on each interval and so

N—1
=3 f'm)-12).
i=0
We pause here to give a lemma that will significantly simplify ¢} above, and
can also be used when investigating the errors of other composite rules.

Lemma 6.1

Let g(x) € Cla, b]; and let {a;})=! be any set of constants, all of which have the
same sign. If ¢; € [a, b] for 0 = j = N — 1, then for some 1 € [a, b]

S ag) = s Y. a

i=o0
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P"O(Zf. Let m = minusrsb (g(x)) = g(ym) and M = maxns.x‘sh (g(x)) = g(y‘ll)
Then if the a;’s are nonnegative,

N-—-1 Ni=1 N—1
my =7 aglt)=M Y a;
i=0 i=0 i=0
Define r by r = Z}¥-§ a;e(r;) and let G(x) = g(x) Y=} a;. Then G(x) € Cla,
b]; and by the above inequalities, G(y,) = r = G(y,). By the intermediate-
value theorem, there exists an n € [a, b] such that G(n) = r, or

N=1 N—1
gm) Y a; = >, aglty.
i=0 i=0

The case in which the a;’s are all negative is similar and left to the reader. m

If f"(x) = g(x) and a; = —h*/12 are used in Lemma 6.1, the expression for
e} becomes

e , Nh? f"h*(b — a)
)T, = t S = —f = —
&=rm's (T5)=-rm b9 (6.120)

Continuing in the same fashion, from Simpson’s rule, (6.6), and its error,
we see that for any j

[ 00 dx = G () + 410 + 5012 + ) - LG (Y,

J

X <My < Xjtae

Summing the approximations for each interval, we have the composite
Simpson’s rule:

N—1 N—
S0 = ¢ { e+ s+ 25 iy + 4 S e + 5D} 615
i=1 i=0

Summing the individual errors for 0 = j = N — 1 and using Lemma 6.1, we
obtain the error, e¥ = I(f) — Sy(f):

5 _A'V—l f'(il‘)(nj) ﬁ 5 - _‘f'(il,‘)(n) _Il 5
N=-2 g <2> 9 <2> _—

i=0

(iv) 4
= —fls(o’?) <§> b - a).

We note that Simpson’s rule in the form (6.13a) actually requires the evaluation
of f(x) at (2N + 1) equally spaced points, {x;})_, and {(x; + x; ,)/2}}=. For a fair
comparison with the accuracy of the composite trapezoidal rule, we should
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actually display a form of the composite Simpson’s rule using only (N + 1)
points, {x;})_,. From above we see immediately that we must restrict N to be
even and investigate the formulas

J. ) dx = 2 (£ ) + A + fxed)

&L

f(ll)(,nj)
90 h°s X; <M < Xjtg,
forj=10,2,4,..., N — 2. Doing this and summing, we obtain
, h (N—=2)/2 (N—2)/2
SH) =7 <f(xo) LRI TR f(xm1)> (6.14a)
and
o = L 18((;’) (b — a). (6.14b)

We leave to the reader to verify in the manner above that from the cor-
rected trapezoidal rule, (6.7), and its error, (6.10), the composite corrected
trapezoidal rule and its error are given by

=1

CIVN = h 3 ) + 5 (5 + S + 5 (@) = £8)
=Ty(f) + = (f (a) — f'(b)) (6.15a)
o =L “7'2((;’) Wb - a). (6.15b)

The reader will note in the derivation of (6.15a) that the derivative evaluations
of f(x) at the interior nodes cancel out, and the only two required derivative
evaluations are f'(a) and f'(b). This observation, plus the fact that the method
has precision 3 and has an /* term in the error, makes this rule computationally
attractive.

Since the precision of a composite quadrature formula is not increased by
taking N larger and larger, we cannot use Theorem 6.1 to guarantee con-
vergence. However, it is fairly easy to show that limy_. Ty(f) = limy_.
Sy(f) = I(f) for any f € C[a, b]. To see this, we merely recall that Ty(f) =
SN0 [f(xy) + f(x4)](A[2). Since [ f(x;) + f(x;4,)]/2 is just an average, we have
by the intermediate-value theorem that there is a point z; € [x;, x; ] such that
f(z) = [f(x;) + f(x; 4 )]/2. Thus Ty(f) = =)= f(z;)h is a Riemann sum; so from
the definition of the definite integral it follows that Ty(f) — I(f) as N — <. A
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similar analysis can be carried out for Simpson’s rule. (See Problem 11 for a
general result on the convergence of composite quadratures.)

Because Simpson’s rule is derived from quadratic interpolation on the
subintervals whereas the trapezoidal rule comes from linear interpolation, we
might jump to the conclusion that Simpson’s rule is always preferable. This is
often true, but in certain instances the trapezoidal rule yields surprisingly good
results. For example if f(x) has the property that f'(a) = f'(b), then the
trapezoidal rule is equivalent to the corrected trapezoidal rule. [See (6.15a) and
compare the error (6.15b) to the Simpson error (6.14b) for application of both
rules to (N + 1) points.] Davis and Rabinowitz (1975) is rich with comparative
numerical examples from the literature using both rules.

EXAMPLE 6.4. As an example showing how the error bounds of this section can be
used, we consider again (as in Example 6.3), the problem of computing Si(1). Suppose
we want accuracy on the order of 107%. How large must N be in order that |I(f) =
Ty(f)| = 107* and how large must N be in order that |[I(f) — Sx(f)| = 10 where

I = $i1) = fl —Sir;(’) dr?
0

Using the information derived in Example 6.3, we know that | /(x)| = %and | fi(x)| = é
for 0 = x = 1. From (6.12b) and (6.14b) with » — @ = 1 and h = 1/N, we have

| : |
ene V| = gon

|eX] =

A quick computation then shows that N = 1667 is required to make |e}| = 10, and N =
19 is necessary to ensure that |ey'| = 1075

PROBLEMS, SECTION 6.2.4

1. Write a subroutine that uses the composite trapezoid rule 7. Test your routine on
2 1 1 1 2
a) — dx b) — dx c) cos(x)dx
1 X -1 1+ % 0

with N =25 k= 3,4,...,10. Print all your estimates and compare them with the
exact result.

2. Apply (6.12b) to each of the integrals in Problem 1 and determine a value of N so
that [¢§| = 1072, Compare this value with the actual errors.

3. Repeat Problem 1 with the Simpson’s rule Sy and the@corrected trapezoid rule CT).
Also repeat the analysis in Problem 2 for the integrals (1a) and (1c).

4. This problem and Problem 5 describe how one might construct an elementary
‘*adaptive quadrature’’, using Ty. The idea is to design a subroutine that accepts an
interval [a, b], a function f(x), and an input tolerance TOL. The routine should
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return an estimate EST to the integral, and there should be a reasonable expectation
that

b
‘ fx)dx — EST| = TOL.

a

The estimate EST is given by Ty(f): so the subroutine somehow has to select an
appropriate value for N so that T\(f) meets the input accuracy request. The sub-
routine will select N by using an error monitor that is based on the theoretical form
of the error in (6.12b); however, the subroutine will not calculate f”(x).

To begin, consider the form of the error for (6.12a):

: e L =l
1) = T =7 X [ (P.1)

i=0

where x; = m; = x;; ;. Now, T,y(f) uses knots vy, ¥, . . . , yoy Where y,; = x; and
Vois1 = (x; + x;,,)/2. Assume that /i is small enough so that f”'(x) is approximately
constant in [x;, x;,,]. Write the expression for /(f) — T,\(f) and show that

1) = T ) = 5 UG = TP, (P.2)

[Note: In (P.1), & is replaced by //2 to obtain (P.2).] Next, show that the approxima-
tion (P.2) is the same as

1) = TN = 3 [Tu) = TW(N) P3)

5. By Problem 4 (to the extent that / is small enough so that f”(x) is nearly constant

over intervals of length /1) we see that the error /() — T,y(f) can be estimated by a
quantity we can monitor; [T,y(f) — T(/f)]/3. Write a subroutine that calculates
Tu( ), Tox(f), Ty(f), . . . and that accepts T,,(f) as an estimate to the integral
when

|Tos(f) — To(f)] = TOL (P.4)

where TOL is an input accuracy request. [Note that the termination test (P.4) is
three times more severe than is required by (P.3); this excess severity is a safety
factor.] To ensure that the smoothness assumption on f”(x) has a chance of holding,
also insist that K be chosen so that K = 8 and & = .125. If (P.4) cannot be satisfied
with N = 1024, set an error flag to signal failure of the method, and return. Code the
subroutine so that only M evaluations of f(x) are necessary in going from 7,,(f) to
T,u(f). (Note: This formulation of an adaptive quadrature based on T, is quite
inefficient but is simple enough to serve as an introduction to Section 6.3.) Test
your routine on the integrals in Problem 1; use TOL = 102, TOL = 1073,
TOL = 107*. Also test your routine on [} f(x) dx where f(x) = 1/(x — \/2); the
integral does not exist and the routine should signal a failure.

. Once the construction of any adaptive quadrature is known, it is easy to devise a

function that will fool the routine. Try to estimate [} cos(64mx)dx with the routine in
Problem 5: use TOL = 10-2. Why did the routine fail to get a good estimate?
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{ 7.)Given x,and £ > 0, let x, = x; + h, x, = x5 + 2h. Suppose f'€ C'[x,, x,]. Using the
— method of undetermined coefficients, show that there is a cubic polynomial p(x)
such that p(x;) = f(x), i = 0, 1, 2 and p’(x,) = f'(x,).
8. Verify the error formula (6.15b) for the corrected trapezoidal rule.
9. How small must / be in order that |I(f) — Sy(f)] = 1076 for f(x) = sin(10x) and [«a,
b] = [0, ]? How small must / be in order that [1(f) — TA\v(f)} < 1077
(10, Show that lim, .., Su(f) = I(f) for any f € Cl[a, b] where S,(f) denotes the
~— composite Simpson’s rule for [a, b].
‘v'll;J Suppose Q(f) = 2/_, A; f(x)) is a quadrature formula to approximate /(f) = [',
/) f(x)dx where 2!'_, A; = 2. Let Oy be the composite formula corresponding to Q
applied to [a, b] and suppose that ¢ € C[a, b]. Using upper and lower Riemann
sums, show that Q\(g) — [ ¢(2) dz.
12. Discuss how the composite Simpson'’s rule given in (6.13a) can be modified slightly
so as to integrate cubic splines exactly.

6.2.5. Multiple Integrals

A fairly common problem is that of evaluating the multiple integral

L f .f(.\‘, V)dA

where f(x, y) is real valued and defined on a region Q of the xy-plane. An
elementary but useful approach to this important problem is based on tech-
niques familiar from calculus: if the region is simple enough and if the integrand
satisfies mild continuity conditions, then we can express the multiple integral as
an iterated integral. Specifically, suppose that Q is a region in the xy-plane and
has the form pictured in Fig. 6.1. In Fig. 6.1, Q is bounded on the left and right

Figure 6.1 A region in the xy-plane



