216

5.2

Interpolation and approximation

—5 = x = 5 in steps of .1; note that p(x) does not reproduce f(x) well between the
knots. Repeat this problem for the same function f(x), but use knots x;, = k£, 0 = k =
10; note that interpolation over [0, 10] is better behaved than over [—5, 5]. (Interpo-
lation errors are discussed in Section 5.2.3.)

11. Suppose that P and Q are both sets of & + 1 points where P N Q has k points.
Suppose that p(x) in ®, interpolates f(x) at the points of P, and g(x) in @, interpolates
f(x) at the points of Q. Let a denote the only point in P — (P N Q); and 3, the only
point in Q — (P N Q). Show that r(x) in ®, ., interpolates f(x) on P U Q where

(x — B)p(x) — (x — a)gqx)
a—fB ’

rix) =

.2. Interpolation at Equally Spaced
Points

In applications in which functions are given in tabular form, the tabular points
are frequently equally spaced (for example, in tables of experimental data or in
trigonometric and logarithmic tables). For problems of interpolating functions
or data at equally spaced points there are several simplifications in the Newton
form of the interpolating polynomial. As clarification, suppose that the interpo-
lation points x,, X, . . . , X, are equally spaced in [a, b] with x, = @ and x,, = b.
In this case, we have

X = %y + ik, h=(®b-aln, 0=i=n (5.13)

(equivalently, x; = x;_{ + h, 1 =i = n).

For equally spaced data, divided differences simplify somewhat. For
example since x;., — x; = h, X;y» — x; = 2h, and x; .3 — x; = 3h, after some
calculation we have

flirq) — flx)

Flxe 21l = h
S0 Xis1s Xig2] = TACES) A 2;5;1“) + fxi) : (5.14)
FLXis Xt 1s Xisas X1 5] :f(xi+3) il 3f(xi+26)h';‘ 3f(xiv1) _f(xi)'

The idea of forward differences can be used to exploit the simplications af-
forded by equally spaced data. For any function f(x) and for a fixed step-size &,
we define the forward difference operator A by

Af(x) = flx + h) = fx). (5.15)

In (5.15) the operator A associates a new function f(x + h) — f(x) with a given
function f(x). Thus for example if f(x) = cos(x) and 2 = 0.1, then Af(x) is the

5.2 Polynomial interpolation 217

function Af(x) = cos(x + 0.1) — cos(x). Higher-order forward differences are
defined recursively by

A*f(x) = AAF~ (%)), k=1,20 (5.16)
where we set A’ (x) = f(x). For example,
A% (x) = AQAfx) = A(f(x + h) — f(x))
= (fx +2h) = flx + h) — (f(x + h) — f(x))
= fx + 2h) — 2f(x + h) + f(x).
Similarly we can easily verify that
A3f(x) = f(x + 3h) — 3f(x + 2h) + 3f(x + h) — f(x).

A pattern soon emerges for higher-order forward differences, and we can
easily prove that

A¥f(x) = i </1(> =Dif(x + (k = Dh) (5.17)

where (¥) is the usual symbol for bino'mial coefficients,

(k) K
i/ ik — i)
and where (§) = (§) = 1.

The connection between forward differences and divided differences is
fairly direct. We observe that since Af(x) = f(x + h) — f(x), then Af(x;) =
Sf&iv) — fx) or

Sflxis xi04] = % (5.18)

It is easy to establish the general formula

ARf(x,
f[xi’ Xigas « v oy xH—k] = k{;(;l) (5.19)

by induction. Specifically, (5.19) is true for k = 1 by (5.18). Assuming (5.19) is
true for k = j — 1, consider

Fls i % v e g i) — 10 5 0 19 3 15 ORpE]
f[xi: Xit1s « = ,xi+j] = il —ih : I;Jl-ﬂ-kx,-” e SRR i
> (5.20)

But x;,; — x; = jh and, given the validity of (5.19) for k = j — 1, (5.20) reduces to

A-Yoe) A Y
P Ji—1 ;= 1Ykt~
f[-xi: Xig1s =+ s Xi+j] = (L)k Jjh (J DL . (5:21)

218

Interpolation and approximation

From (5.21), it follows that
AN o) — A7) _ AT+ h) — A7),

Flxe Xigis » « o 0 Tpagl = U G ’

and the definition (5.16) shows that (5.19) is valid for k& = J.

Having shown how divided differences simplify when the interpolation
points are equally spaced, we now turn our attention to the Newton form of the
polynomial interpolating f(x) at x,, x;, . .. , x,. From the last section, this
polynomial p(x) is given by

p(x) = flxy) + flxo, x:1(x — x0) + fTx05 X315 Xl — x)x — %) + -
4= Flags Lo s 0 2 2 2000 = Xl = B w - = (8= Xp_g)s (5.22)
In order to incorporate equally spaced knots into (5.22) we make the change of
variable
X = x5+ rh.

Here r is any number (not necessarily an integer), and in this regard r is a
dimensionless variable and measures the directed distance from x, to x in units
of the step size h. (For example with r = 1.5, x = x, + rh is halfway between x,
and x,.) If we consider a typical term in the Newton form for p(x) in (5.22),

Flxg, Biy « o« o Bl — G)E — 23} . . — 25 5),

we see that we can use (5.19) and the substitution x = x, + rh to simplify this
term. In particular, x — x, =rh,x —x; = (¢ — Dh,x — x, = (r — 2)h, . . ., and
X — xj_, = (r — (j — 1))h; and therefore we can write

Fleg, X1y~ -+« X‘;](X — X0 — X) « . (X — Xjg) =
Wr(r = Dr —2) . s« lr —f — 1)),
In this expression the factor r(r — D(r —2) . . . (r — (j — 1))/j! is to be regarded

as a polynomial of degree j in the variable r. It is conventional to denote this
polynomial by the following binomial coefficient notation:

(;) _rr =D -2 = C-G=1) ., <,> -1

For example,

(;) o (;) - r(rz— 1)’ (;) _ Hr= lg(r — 2).

5.2 Polynomial interpolation 219

Using this notation in the expression above, we can write the Newton form of
p(x)in (5.22) as

N e (,1> e <;> £ AT) (f’q)

or more briefly as

pxy + rh) = i A¥f(xy) <;> . (5.23)

i=0

The representation (5.23) is known as Newton's forward formula for the inter-
polating polynomial.

There are efficient ways to evaluate the Newton forward formula, given the
numbers A'f(x,) (see Problem 10). In addition, the required differences, A'f(x,),
are easily generated from a table (see Table 5.2).

Note that the table of forward differences is generated one column at a
time, from left to right. For example, Af(x,) = f(x,) — f(x,) and A%*f(x,) =
Af(x,) — Af(x,). Note also that in order to compute A" *'f(x,), we need not start
over. Instead, we merely compute one more entry in each column, thatis, x, + ,
flee), Af(x,), A% (x,), - . ., A" (x;) and A" *'f(x,). The subroutine DIFINT
shown in Fig. 5.2 implements the ideas outlined above. This subroutine first
calculates the forward difference table, as in Table 5.2, for the interpolation
points x;, xs, . . . , x,. When these differences are obtained, the interpolating
polynomial is evaluated at x = x, + rh; and the nested multiplication algorithm
given in Problem 10 is used. For ease of programming, the range on the sub-
scriptiis 1 =i =< ninstead of 0 =i = n.

TABLE 5.2 The forward-difference table for f(x,), f(x1), - . . ,f(xyn).

x f(x) Af(x) A%f(x) A%f(x) e A (x)
Xo Sfxo)
Af(xy)
Xy S(xy) A%f(x,)
Af(xy) A3f(x,)
X Sxz) A%f(x,)
Af(xy) s
X3 Sflxy) A"f(xo)
-\‘n =l .f‘(xn = 1) &
Af (-Xn = l)

Xy S)

220

Interpolation and approximation
SUBROUTINE DIFINT(X,Y,R,PXPRH,N)
DIMENSION X(20),Y(20),P(20),Q(20)
€
C SUBROUTINE DIFINT CONSTRUCTS AND EVALUATES THE NEWTON FORWARD FORM OF
C THE INTERPOLATING POLYNOMIAL, P(X), AT X=X(l)#R*H, WHERE P(X{1))=Y(I)
C AND WHERE X(I)=X(L)#{I-1)%Hs [=142seeeyN. THE CALLING PROGRAM MUST
C SUPPLY THE ARRAYS X(I) AND Y(I), THE NUMBER R AND THE INTEGER N.
C THE SUBROUTINE RETURNS P(X(1)+R*¥H) AS PXPRH.
¢
DO 1 I=1,N
1 PUL)=Y(I)
¢
C SET UP THE FORWARD DIFFERENCE TABLE
(&
D0 3 J=2,N
DO 2 K=J,N
2 QUK)I=P(K)-P(K-1
DO 3 K=J,N
3 P(K)=Q(K)
&
C EVALUATE THE FORWARD FORM OF THE INTERPOLATING
C POLYNOMIAL BY NESTED MULTIPLICATION
C
C=P(N)
DO 4 J=2,N
I[=N-J
4 C=P(I+L)+(R=-1)%C/(1+1)
PXPRH=C
RETURN
END
Figure 5.2

EXAMPLE 5.5. We consider the function f(x) = cos(x). Following Table 5.2, we
construct this table.

x f(x) Af(x) A%f(x) A3f(x)

0.3 0.955336
—0.034275
0.4 0.921061 —0.009203
—0.043478 0.000434
0:5 0.877583 —0.008769
—0.052247
0.6 0.825336

Therefore p(x) = 0.955336 — 0.034275()) — 0.009203(3) + 0.000434(%). To find p(0.44),
since 0.44 = 0.3 + (1.4)h, we set r = 1.4 in the expression above and obtain p(0.44) =
0.904750.

In many applications, such as those involving numerical solutions of differ-
ential equations, we are interested in interpolating at points labeled x,,, x,, 1,
., Xn+n instead of at points labeled x,, x;, . .. , x,. Although we could

5.2 Polynomial interpolation 221

rename the points x,,, x,, 1, . . ., x,, +nand then use (5.23) to find the interpolat-
ing polynomial, this procedure is both inconvenient and unnecessary. Instead,
we can use the formula

n

P = e+ i) = 3 (1) Ac) (5.24)

i=0

where now r = (x — x,,)/h. Clearly, (5.24) is a valid formula for the interpolating
polynomial since the formula can be gotten from (5.23) by relabeling points.
[For example, set z, = x,,, % = Zo + jh and (5.24) reduces directly to (5.23).]

A somewhat different labeling problem occurs when, as often happens, we
wish to interpolate at the points Xms Xm—15 + - « 5 Xp—y. This is a problem of
“‘backwards interpolation’” where we again want a formula in which we can add
an additional point x,,_, _, without losing the effort we expended to interpolate
at Xps Xp—15 « . ., Xy, The formula needed is known as Newton’s backward
Sformula for the interpolating polynomial:

X) = plm — rh) = (’) —1)7 Af). 5.25

p@x) = p(x, — rh) jgo P (=1 Alf(x,,) (5.25)

Note that each difference A’f(x,,—;) used in (5.25) can be obtained from a

difference table like that displayed in Table 5.2. In fact, when m = n, each
difference A'f(x,_,) is found as the last entry of the jth column of Table 5.2.

To show how formula (5.25) is derived, let us rename the points {x,,, x,,_;,

~ 3 an—n} as {t)ns bnt1s o o o s tm+n}~ Then bn+1 = I + ih” where h’ = —h and
where therefore ¢, ,; = x,,_;, i = 0, 1, ..., n. Using (5.24) with x,, = t,, We
obtain
n
P = p+ i) = 3% () &g, (5.26)
izo

To translate A’f(z,,) in terms of our original labeling, note by (5.17)

86D = 3 (1) 10 s)

i=0

- z ({) (— 1)t si).

Next we change the index of the summation by setting k = j — i, and observe
that (/) = (;7 ;) and that (- 1)' = (—1)’(—1)*. With these changes, we find

M) = 1S (1) Do) = (1 M)

o=

222 Interpolation and approximation

where the last equality comes from using (5.17) again. When inserted into
(5.26), this identity gives the Newton backward formula of (5.25).

EXAMPLE 5.6. As an illustration of how the backward and forward formulas can be
set up, we consider interpolating f(x) = ¢3" at five points with x,= —1and /1 = 0.5. Asin
Table 5.2, we obtain the following difference table:

x f(x) Af(x) A%f(x) Af(x) A¥f(x)
=1 0.049787
0.173343
—=0.5 0.223130 0.603527
0.776870 2.10129
0. 1. 2.70482 7.31599
3.48169 9.41728
0.5 4.48169 12.1221
15.6038
1. 20.0855 |

Using the backward formula (5.25) with m = 4 and n = 2, the second-degree polynomial
interpolating f(x) at x,, x;, amd x, is

p() = pl =) = fx) = (1) A + (3) A%,

For example for x = 0.8, we have r = 0.4 and p(0.8) = 20.0855 — (0.4)(15.6038) +
(—0.12)(12.1221) = 12.3893. The forward formula (5.24), using the same three points,
has m = 2 and n = 2, and gives

px) = plxy, + sh) = flx,) + (;) Af(xy) + (;) A2f(x,).

In this case, for x = 0.8 we have s = 1.6 and p(0.8) = 1.0 + (1.6)(3.48169) +
(0.48)(12.1221) = 12.3893.

To include the tabulated information at x, and x, in our approximation to f(0.8), we
merely have to add the appropriate terms to the backward form of the interpolating
polynomial. Thus the third-degree polynomial p(x, — rh) — (§) A%f(x,) and the fourth-
degree polynomial p(x, — rh) — (5) A%f(x,) + (}) A*f(x,) interpolate f(x) at {x3, Xy Xgy X1}
and {x,, X3, Xa, X1, Xo}, respectively. The respective estimates for f(0.8) are 12.3893 —
(0.064)(9.41728) = 11.7866 and 11.7866 + (—0.0416)(7.31599) = 11.4823 whereas the i
correct value of f(0.8) is 11.0232.

PROBLEMS, SECTION 5.2.2

|
1/ For f(x) = x* and h arbitrary, calculate Af(x), A%f(x), A3f(x), and A*f(x). Repeat this
" calculation for the function f(x) = x?.

5.2 Polynomial interpolation 223

[2./Forf(x) = x* + 1 and x;, = 2k, 0 = k = 3, construct the forward difference table and
~ the interpolating polynomial p(x) as in (5.23). Evaluate p(x) at x = —1, 1, 3. [Note:
Since the four data points come from a cubic polynomial, p(x) is just a different
representation for f(x).]
3. Use the functions f(x) = sin(x) and f(x) = ¢n(x), and rework Example 5.5.

4. For x = x, + rh and p(x) given by (5.23), we have

dp _dpdr _ 1dp
dx ~ drdx hdr

Thus (5.23) can be used to approximate the derivative of f(x); f(x) = p'(x). For
n = 3, derive such a “‘numerical differentiation” formula for use at the point a=
X + 1.5h by differentiating the right-hand side of (5.23). Check calculations by
testing the formula on f(x) = 1, f(x) = x, f(x) = x2, and f(x) = x® with x, = 0 and h =
1. [The formula should give the correct value for f* (1.5)]. Use the data in Example
5.5 to estimate f’(.45) when f(x) = cos(x), and compare your estimate with the
actual value.
5./ If p(x) interpolates f(x), then we can use [/ p(x)dx as an approximation for [f(x)dx.
- Use (5.23) to construct a ‘‘numerical integration’’ formula by choosing n = 2, x, =
a,and h = (b — a)/2. That is, verify that

b 2
f pX)dx = hf p(xy + rh)dr;
a 0

and integrate the right-hand side of (5.23). Check your calculations by testing the
formula on f(x) = I, f(x) = x, and f(x) = x> with @ = 0 and b = 2. [The formula
should give the correct value for these integrals.) Use the data in Example 5.5 to
estimate [-3cos(x)dx.
6. Use n = 3 and repeat Problem 5. Use the formula derived to estimate [-cos(x)dx.
7. For f(x) = x*, 1 = k = 3, calculate Aif(x) for | =i < 4; and note that Ai* If(x) = 0 for

1G) = .

8. Show that A”p(x) = 0 when p(x) € ®, and m = n + 1. [Hint: If p(x) € @,, show that
/ Ap(x) is a polynomial in ®,_,; thus conclude that A"~ !p(x) is a linear polynomial,
A”p(x) is a constant, and A" p(x) = 0.]

9. Continue Example 5.6, by adding the interpolation point x; = 1.5 and forming
Alf(xy), A% (xy), . . ., A%f(x,). Knowing the value of the fourth-degree interpolating
polynomial at x = 0.8 (see Example 5.6), use the forward form to evaluate the
fifth-degree polynomial interpolating f(x) at x,, x,, . . . , x5 for x = 0.8. Next add the
point x_;, = —1.5 and use the backwards form to evaluate (at x = 0.8) the sixth-
degree polynomial interpolating f(x) at x_,, x,, . . . , x5. Compare all these results

f"\\yvith the estimates provided by the truncated Taylor’s series of degrees 4, 5, and 6.

10. For n = 1,2, and 3, verify that the following version of mrested multiplication can be
(Y, ‘used to evaluate Newton’s forward formula for the interpolating polynomial (5.23):
g Given any number r, form the numbers C,, C,_,, . . ., C, and C, by

Crn = A (%)
Ci = Aif(xy) + (r — DCi4 /(i + 1), f=m= lanm=2uus 51,0

224 Interpolation and approximation

Then C, = p(x, + rh). Use this iteration to evaluate p(0.44) in Example 5.5. (Note:
This form of nested multiplication is valid for all n: but, in general, verification is a
somewhat difficult exercise.)

5.2.3. Error of Polynomial Interpolation

We know that given a function, f(x), and (n + 1) distinct points {x;}}/_, in [a, b],
we can construct in @, a polynomial, p(x), which passes through the points (x;,
f(x;)), 0 = j = n. The question still remains as to how well p(x) approximates
f(x) for other values of x in [a, b]. (See Fig. 5.3.) For example, as in Fig. 5.3,
f(x) may be very ill-behaved at one or more points, a; and p(x) may not be a
good approximation to f(x) in a neighborhood of a. Thus if e(x) = f(x) — p(x) is
defined to be the error function, a natural question is this: How large can e(x) be
for any x in [a, b]? If f“*P(x) is continuous on [a, b], then the following
theorem provides an answer to this question. Before this theorem is presented,
it is convenient to give some notation. We let C"*'[a, b] denote the set of
functions defined on [a, b] that have a continuous (n + 1)st derivative on [a, b],
and use Spr{y;, Vs, . . . , v,} to denote the smallest interval containing y;, y,,
., y, (thus Spr{l, -3, 2} = [-3, 2]).

Theorem 5.5
If p(x) € @, interpolates f(x) € C"*'[a, b] at (n + 1) distinct points {x;}}_, in
[a, b], then

n+1)
) = f) = p) = L8 W (5.27)

y = f(x)

y =p(x)

r | |1 | |
L

a Xg X o X, X5 X4

o 3 9]

Figure 5.3 Graphs of f(x) and its interpolating polynomial, p(x).

5.2 Polynomial interpolation 225

where W(x) = (x — x)(x — x;) . . . (x — x,) and where ¢ is some point lying in
Spr{x, X5, Xiy = « « 5 Bk

Proof. Let x be arbitrary but fixed in [a, b]. If x = x; for 0 < j < n, then the
theorem is trivially true. Thus we assume that x # x; for any j, and define the
function F (1) = f(r) — p(t) — CW(¢) where the constant C is given by C =
(f(x) = p(x))/W(x). Now F"* V() is continuous on [a, b], and furthermore
F(x) = F(x)) = F(x;) =--- = F(x,) = 0. By Rolle’s theorem, F'(f) has at least
one zero between each distinct zero of F (), and thus F'(r) has at least (n + 1)
distinct zeros in Spr{x, xy, x;, . . . , x,}. Using Rolle’s theorem for F'(¢), we can
reason that F"'(7) has at least n distinct zeros. Rolle’s theorem applied to F”(¢)
shows that F"’(7) has at least (n — 1) distinct zeros, etc. Finally we conclude
that F* "(¢) has at least one zero, £, and ¢ € Spr{x, x,, x,, . . . , x,}. From the
definition of F(7) we see that F"* () = f**9(f) — 0 — C(n + 1)!. Thus, 0 =
FMHD(E) = fm+0(¢€) — C(n + 1)!. Substituting (f(x) — p(x))/W(x) for C in this
expression, we obtain (5.27). u

The reader should note that the value ¢ in (5.27) changes as x changes; so ¢
can be regarded as a function of x. Here is one of the drawbacks in using (5.27);
since ¢ is an unknown function of x, it is impossible to evalute £+ D(€) exactly.

However, we have assumed in Theorem 5.5 that £ * V(x) is continuous; so
there is a number K, such that |f"* ()| < K, for any ¢ in [a, b]. Conse-
quently, a more useful form of (5.27), which we can use to bound the error for
any x in [a, b], is

KN
|€(X)| = |f(\’) = [)(X)| = m |W(X)I (528)

For any particular value of x, the number | W(x)] can be calculated and thus
(5.28) yields an upper bound on the error. If we wish to bound |e(x)| for all
possible x in [a, b], however, we must undertake the more formidable task of
calculating

o, (WG| = [|W].
If n and the interpolating points, {x;}’_,, are prescribed beforehand, then this
task can be performed numerically by the methods of Chapter 4, simply by
finding the zeros of W'(x) and checking them (and the endpoints a and b) to find
the maxima of | W (x)|. Most often, however, one would like the choice of n and
the x;’s to be flexible in using (5.28) so that they can be selected to satisfy

Kﬂ

et DVl <e
for some predetermined tolerance, & > 0. This is a fairly difficult problem and
we shall examine one approach to it after the following simple example of the
use of (5.28).

226 Interpolation and approximation

EXAMPLE 5.7. We shall use two previous examples involving interpolation that will
show that sometimes (5.28) is a very good bound, but on other occasions it may be
overly pessimistic. In Example 5.5, f(x) = cos(x) was interpolated at four points, with
W) = (x — 0.3)(x — 0.4)(x — 0.5)(x — 0.6). In this case n = 3 and f‘?(x) = cos(x). In the
notation of (5.28), we have

Ky = max ~ |cos(x)| = |cos(0.3)] = 0.955336

0.3=020.6
and
|W(0.44)| = 0.5376 x 10~ *.
Thus
e(0.44)| = K;|W(0.44)|/4! = 0.214 x 10°?

whereas, in fact, [¢(0.44)] = 0.2 x 1072,
In Example 5.6, f(x) = ¢*" was interpolated at five points, with

W) = (x + D(x + 0.5)x(x — 0.5)(x —).

Thus n = 4 and fP(x) = 243¢%". Since the interpolation points are in [—1, 1], K, =
243¢* < 4880.79 and |W(0.8)| = 0.11232. Thus,

|e(0.8)] = K,|W(0.8)|/5! = 4.57

whereas, in fact, e(0.8)| = 0.4591. In this second case, the error bound has overesti-
mated the true error by a factor of about 10.

When the error bound given by (5.28) is used, it is apparent that the func-
tion |W(x)] plays an important role in determining the size of the bound.
Clearly, | W(x)| will be small when x is near an interpolation point x;, but more
can be said about the location of values x that make W(x)| small (or large). For
instance, in the second case of Example 5.7 above, W(x) = (x + D)(x + 0.5)x
(x — 0.5 — 1) and |W(0.8)\ = (.11232. Note that x = 0.2 is no nearer
an interpolation point than is x = 0.8, but a simple calculation shows that
|W(0.2)| = 0.04032. Intuitively, this statement makes sense since W(0.2) has
more ‘‘small’’ factors than W(0.8) has. For equally spaced interpolation points
in an interval [a, b], it can be shown that the relative maxima of | W(x)| decrease
as x approaches the midpoint (a + b)/2 of [a, b] (see Problems 5, 6, and 8). As a
general rule, (5.28) shows that interpolation at equally spaced points is more
accurate near the center of the interval than near the endpoints. [However, the
error is also influenced by £+ (¢); and while | W (x)| is small, | ™ 2(€)| |W (x)|
can be large.] Figure 5.4 shows the graph of W(x) as given in the second case of
Example 5.7.

Examination of the derivation of (5.28) reveals that we can do nothing to
improve the value of K, since we do not know the location of the mean-value
point £. However, for |W|.. = max, = ,=, | W(x)|, (5.28) tells us that the inequal-
ity |e(x)| = K,||W||./(n + 1)! holds for all x in [a, b]. Thus if we wish to make the
error bound as small as possible for all x in [a, b], we should concentrate on the

5.2 Polynomial interpolation 227

Figure 5.4 Graph of W(x) = (x + D(x + 0.5x(x — 0.5)(x — 1).

problem of choosing the interpolating points, {x;}’_,, so that ||W||m is minimized.
On the surface this choice seems to be a very difficult task. This problem was
investigated by P. L. Chebyshev in the 19th century for the interval [—1,1],and
the solution involves polynomials that were named after him. The solution is
not too hard to obtain, and by a simple change of variable can even be extended
to an arbitrary interval, [a, b].

Before giving the result, we must introduce and investigate the Chebyshev
polynomials of the first kind, T,(x) = cos(k cos '(x)), k =0, 1,2, At first
glance it probably seems difficult to believe that each T,(x) is actually an alge-
braic polynomial. However, we easily see that T,(x) = 1 and T,(x) = x. Now we
make the variable substitution, x = cos(f), 0 < 6 < 7. Then T,.(x) = T)(cos(®))
= cos(k9). By elementary trigonometric identities, we can easily verify that

Ty 1(x) = cos((k + 1)0) = 2 cos(f) cos(kh) — cos((k — 1))
2wfio) — Bila), fork=1

Therefore T,(x) = 2xTy(x) — To(x) = 2x% — 1, and T5(x) = 2xT5(x) — T1(x) = 4x3 —
3x, etc. We can easily verify inductively that T,(x) is & kth-degree polynomial

(5.29)

for k = 0,1, 2,.... Furthermore, we see that the leading coefficient of 7(x)
equals 28~1 and that T(x;) = 0,0 =</ < k — 1, when
X; = COS 1% + L I)W.

2k

228 Interpolation and approximation

[Note: cos(kf) = 0 whenever ¢t is an odd multiple of 77/(2k).] Last we see that
|T)(x)| is never larger than 1 for x in [—1, 1]; that is, ||T)|l. = 1. Moreover, for
yi = cos(im/k), we have Ti(y;) = cos(im) = (—1)!, s0||Ty||. = |Tx(y))| = 1 at each
of the (k + 1) distinct points y,, y;, . . . , vx. Chebyshev polynomials are very
important in many types of numerical approximations as we shall see in sub-
sequent sections. The graphs of the first five Chebyshev polynomials are given
in Fig. 5.5.
Now we are ready to prove the famous result for minimizing

max | (W) = W

Theorem 5.6
Let W(x) = (x — xo)(x — x) . . . (x — x,) € ®,.,. Among all possible choices for
distinct {x}{_, in [~ 1, 1], ||W||. = max_, -, -, |W()| is minimized if W(x) =
(1/29T, . 1(x) [i.e., the x;’s are the zeros of T, , (x)].

Proof. By the remarks above on Chebyshev polynomials, the leading coeffi-
cient of the (n + 1)st-degree polynomial, (1/2")T,.,(x), is 1. Therefore,
(A29T, 1(x) = (x — x0)(x — x1) . . . (x — x), x; = cos[2i +)7 /2(n + 1)]; and
hence W(x) = (1/2")T, +(x) is a candidate for the minimum W. Also from the

Figure 5.5 The Chebyshev polynomials, {T,(x)}—,.

5.2 Polynomial interpolation 229

remarks above, ||W||. = |[(1/2))T, 4 || = 1/2", W(y) = (1/2"(=1),0 = i=n + 1,
and W(y) = —W(y;+1), 0 =i = n, where

i
n+1’

y; = COS V=i=n+ 1.

Now assume there exists a polynomial, V(x) € ®,,,, where V(x) is monic
(leading coefficient equals 1) and ||V||.. < ||W]|... If i is even, then V(y) <
W(y) = 1/2", or else ||V||.. = ||W]|... If i is odd, then V(y;)) > W(y) = —1/2", or
again ”V”x = ||W”ac Thus V(y)) < W(y)), V(y) > W(yy), V(¥ < W(yy),
V(ys) > W(y,), etc.; and so H(x) = V(x) — W(x) has a zero in each interval
(¥i» Yiz1), 0 = i = n. Moreover, H(x) is in ®, since both V(x) and W(x) are
monic. Therefore H(x) € @, and has at least (n + 1) zeros; so we may conclude
that no such V(x) exists. |

Thus if [a, b] = [—1, 1] with f € C"*[—1, 1], and if the interpolating points
are the zeros of T, ,(x), the error bound on the interpolation given by (5.28)
yields

K" Kll
()(.‘()I = |f(/\’) = p(x)| = (" n 1)' HWH‘” = m (5.30)

EXAMPLE 5.8. Again consider the function f(x) = ¢ for x in [—1, 1]. In Example
5.7, we computed the error bound at x = 0.8 for interpolation at five equally spaced
points (n = 4), and obtained a bound of 4.57. Finding this bound required us to compute
W(0.8) where W(x) = (x + I)(x + 0.5)x(x — 0.5)(x — 1). For interpolation at the zeros of
T,(x), we can bound the error at any point x (including x = 0.8) by the constant K,/(2*5!)
= 4880.79/(2*5!) = 2.54. In fact, the polynomial interpolating at the zeros of 7,(x) gives a
value of 11.2776 as an estimate to f(0.8) = 11.0232, which is an error of 0.2544 (roughly
half the error of equally spaced interpolation).

To determine how many interpolation points are required to obtain a desired accu-
racy when interpolating f(x) at the zeros of 7, ,,(x), we note that f**V(x) = 3"+ 1¢3; 50
K, = 3"*1¢3. Using (5.30), we have

3 n 3(’3
’ et)| = (E) nt+ D
which can be shown to go to zero as n — «. For example with n = 10, ¢'(x)| = 0.000087;

and with n = 20, e(x)‘ =0.39 x 10~ '%, Using 11 equally spaced interpolation points (n =
10) and evaluating the error bound of formula (5.28) at x = 0.9 (a noninterpolation point),
we find |W(0.9)] = 0.0065: and hence the error bound for the equally spaced case is
0.00058, which is more than six times as large as the Chebyshev interpolation error
bound with n = 10. -

Obviously we do not expect the error of Chebyshev interpolation, er,'(x)|,
to be smaller than the error for equally spaced interpolation, |e,,(x)| , for every x

