

This document will discuss general divided differences. A formula for Herite interpolation will be derived.

Let values of a function f be given: $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$, or generally pairs $\left(x_{j}, y_{j}\right)$. First assume that $x_{i} \neq x_{j}$ if $i \neq j$. Define by induction,

$$
\begin{aligned}
f\left[x_{j}\right] & =f\left(x_{j}\right) \\
{\left[y_{j}\right] } & =y_{j} \\
f\left[x_{j}, \ldots, x_{j+k+1}\right] & =\frac{f\left[x_{j+1}, \ldots, x_{j+k+1}\right]-f\left[x_{j}, \ldots, x_{j+k}\right]}{x_{j+k+1}-x_{j}} \\
{\left[y_{j}, \ldots, y_{j+k+1}\right] } & =\frac{\left[y_{j+1}, \ldots, y_{j+k+1}\right]-\left[y_{j}, \ldots, y_{j+k}\right]}{x_{j+k+1}-x_{j}} .
\end{aligned}
$$

Proposition 1. Let

$$
p_{n}(x)=\left[y_{0}\right]+\left[y_{0}, y_{1}\right]\left(x-x_{0}\right)+\cdots+\left[y_{0}, \ldots, y_{n}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
$$

Then p_{n} is the unique polynomial of degree n such that $p\left(x_{j}\right)=y_{j}, j=0, \ldots, n$.
Proof. The proof is by induction. It is true when $n=0$. It is clear, by induction, that

$$
p_{n-1}\left(x_{j}\right)=y_{j}, j=0, \ldots, n-1
$$

Let P be the interpolating polynomial. Then $P\left(x_{j}\right)-p_{n-1}\left(x_{j}\right)=0, j=0, \ldots, n-1$, so $P-p_{n-1}=$ $\left.c\left(x-x_{0}\right) \ldots\right)\left(x-x_{n-1}\right)$. Hence c is the coefficient of x^{n} in $P . P$ is unique and can be represented in another way. Let u, v be the polynomials of degree $n-1$ that interpolate at x_{0}, \ldots, x_{n-1} and x_{1}, \ldots, x_{n} respectively. By uniqueness

$$
P=\frac{\left(x-x_{0}\right) v+\left(x_{n}-x\right) u}{x_{n}-x_{0}}
$$

hence the coefficient of x^{n} in P is

$$
\frac{\left[y_{1}, \ldots, y_{n}\right]-\left[y_{0}, \ldots, y_{n-1}\right]}{x_{n}-x_{0}}
$$

Remark 1. If σ is a permutation,

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\left[x_{\sigma(0)}, x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right] .
$$

Proof. The coefficients in the interpolating polynomial are unique. No matter how we order the points, the leading term $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)=\left(x-x_{\sigma(0)}\right) \ldots\left(x-x_{n}\right)$. The result follows.

Remark 2.

$$
\begin{aligned}
{\left[x_{0}, x_{1}, \ldots, x_{n}\right]=} & \frac{y_{0}}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)}+\frac{y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}+\ldots \\
& +\frac{y_{n}}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)}
\end{aligned}
$$

Proof. The proposition implies that the coefficient of x^{n} in the interpolating polynomial is $\left[y_{0}, y_{1}, \ldots, y_{n}\right]$. The result follows by computing the coefficient of x^{n} in the Lagrange form of the interpolating polynomial

$$
\frac{y_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)}+\cdots+\frac{y_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)}
$$

Now we consider the problem of finding the polynomial that interpolates derivative data. To simplify notation consider the special case of finding the polynomial p of degree 7 that satisfies

$$
p\left(x_{0}\right)=y_{00}, p^{(k)}\left(x_{1}\right)=y_{1 k}, k=0 \ldots, 3, p^{j}\left(x_{2}\right)=y_{2 j}, j=0 \ldots 2 .
$$

By using linear independence of the terms in this expression we see that every polynomial of degree 8 is uniquely expressible in the form

$$
\begin{aligned}
p(x)= & a_{0}+b_{0}\left(x-x_{0}\right)+b_{1}\left(x-x_{0}\right)\left(x-x_{1}\right)+b_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)^{2} \\
& +b_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)^{3}+b_{4}\left(x-x_{0}\right)\left(x-x_{1}\right)^{4}+c_{0}\left(x-x_{0}\right)\left(x-x_{1}\right)^{4}\left(x-x_{2}\right) \\
& +c_{1}\left(x-x_{0}\right)\left(x-x_{1}\right)^{4}\left(x-x_{2}\right)^{2}
\end{aligned}
$$

This can be proved, starting with a_{0}, by differentiating and evaluating. We want to find a formula for the coefficients. We consider the following matrix

$$
\begin{array}{cccccccc}
x_{0} & x_{1} & x_{1} & x_{1} & x_{1} & x_{2} & x_{2} & x_{2} \\
y_{00} & y_{10} & y_{10} & y_{10} & y_{10} & y_{20} & y_{20} & y_{20}
\end{array}
$$

We define

$$
\left[p\left(x_{0}\right)\right]=y_{10}=p\left(x_{0}\right)=y_{0},\left[p\left(x_{1}\right)\right]=y_{10}=p\left(x_{1}\right)=y_{1},\left[p\left(x_{2}\right)\right]=y_{20}=p\left(x_{2}\right)=y_{2}
$$

Next

$$
\begin{aligned}
& {\left[y_{0}, y_{1}\right]=\left[p\left(x_{0}\right), p\left(x_{1}\right)\right]=\frac{\left[p\left(x_{1}\right)\right]-\left[p\left(x_{0}\right)\right]}{x_{1}-x_{0}},\left[y_{1}, y_{1}\right]=\left[p\left(x_{1}\right), p\left(x_{1}\right)\right]=y_{11}} \\
& {\left[y_{1}, y_{2}\right]=\left[p\left(x_{2}\right), p\left(x_{1}\right)\right]=\frac{\left[p\left(x_{2}\right)\right]-\left[p\left(x_{1}\right)\right]}{x_{2}-x_{1}},\left[y_{2}, y_{2}\right]=\left[p\left(x_{2}\right), p\left(x_{2}\right]=y_{21}\right.}
\end{aligned}
$$

Continuing,

$$
\begin{aligned}
& {\left[y_{0}, y_{1}, y_{1}\right]=\frac{\left[y_{1}, y_{1}\right]-\left[y_{0}, y_{1}\right]}{x_{1}-x_{0}},\left[y_{1}, y_{1}, y_{1}\right]=y_{12}} \\
& {\left[y_{1}, y_{1}, y_{2}\right]=\frac{\left[y_{1}, y_{2}\right]-\left[y_{1}, y_{1}\right]}{x_{2}-x_{1}},\left[y_{1}, y_{2}, y_{2}\right]=\frac{\left[y_{2}, y_{2}\right]-\left[y_{1}, y_{2}\right]}{x_{2}-x_{2}}} \\
& {\left[y_{2}, y_{2}, y_{2}\right]=y_{22}}
\end{aligned}
$$

This pattern continues, in particular

$$
\left[y_{1}, y_{1}, y_{1}, y_{1}\right]=y_{13}
$$

Theorem 1. The coefficients of terms of the form

$$
\left(x-x_{0}\right)^{j}\left(x-x_{1}\right)^{k}\left(x-x_{2}\right)^{\ell}
$$

are

$$
\left[y_{0}, y_{1}, y_{1}, \ldots, y_{2}, y_{2}, \ldots, y_{2}\right] .
$$

Explicitly

$$
\begin{aligned}
a_{0} & =\left[y_{0}\right], b_{0}=\left[y_{0}, y_{1}\right], b_{1}=\left[y_{0}, y_{1}, y_{1}\right], b_{2}=\left[y_{0}, y_{1}, y_{1}, y_{1}\right] \\
b_{3} & =\left[y_{0}, y_{1}, y_{1}, y_{1}, y_{1}\right], c_{0}=\left[y_{0}, y_{1}, y_{1}, y_{1}, y_{1}, y_{2}\right], c_{1}=\left[y_{0}, y_{1}, y_{1}, y_{1}, y_{1}, y_{2}, y_{2}\right], \\
c_{2} & =\left[y_{0}, y_{1}, y_{1}, y_{1}, y_{1}, y_{2}, y_{2}, y_{2}\right] .
\end{aligned}
$$

