Newton's Method

October 25, 2010

This note will explain Newton's method and quadratic convergence.
Newton's method for the solution of a non-linear equation $f(x)=0$ is the iteration

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

This iteration looks for a fixed point of the function $x-\frac{f(x)}{f^{\prime}(x)}$. Let s be a fixed point of g and assume that $f^{\prime}(s)=\neq 0$. Then $s-\frac{f(s)}{f^{\prime}(s)}=s$ implies that $f(s)=0$. Conversely if $f(s)=0$ and $f^{\prime}(s) \neq 0$ then $g(s)=s-\frac{f(s)}{f^{\prime}(s)}=s$. Computing $g^{\prime}(s)$ we find that $g^{\prime}(s)=\frac{f(s) f^{\prime \prime}(s)}{f^{\prime}(s)^{2}}=0$. Taylor's theorem at the point s is

$$
\begin{equation*}
g(x)=g(s)+g^{\prime}(s)(x-s)+\frac{g^{\prime \prime}(\xi)}{2}(x-s)^{2}=s+\frac{g^{\prime \prime}(\xi)}{2}(x-s)^{2} \tag{1}
\end{equation*}
$$

where ξ is between x and s. Suppose that x_{0} is an initial guess and the errors are denoted by $e_{n}=x_{n}-s$. Suppose that $\left|\frac{g^{\prime \prime}(\xi)}{2}\right| \leq K$. Then

$$
\begin{equation*}
\left|e_{n+1}\right| \leq K\left|e_{n}\right|^{2} \tag{2}
\end{equation*}
$$

This follows easily from (1). Now we have a good general result:
Theorem 1. The errors in Newton's method satisfy

$$
\begin{equation*}
\left|e_{n}\right| \leq \frac{1}{K}\left(K\left|e_{0}\right|\right)^{2^{n}} \tag{3}
\end{equation*}
$$

Proof. The proof is by induction. It is true for $n=0$. Assume (3). Then by (2).

$$
\begin{align*}
\left|e_{n+1}\right| & \leq K\left(\frac{1}{K}\left(K\left|e_{0}\right|\right)^{2^{n}}\right)^{2} \tag{4}\\
& =\frac{1}{K}\left(K\left|e_{0}\right|\right)^{2^{n+1}} \tag{5}
\end{align*}
$$

We will apply this to Newton's method for finding square roots. Let $c>1$. Newton's method for solving $x^{2}-c=0$ is to find a fixed point of $g(x)=\frac{x}{2}-\frac{c}{2 x}$. Then $g^{\prime \prime}(x)=\frac{c}{x^{3}}$. Suppose $x \geq \sqrt{c}$. Then $\left|\frac{g^{\prime \prime}(x)}{2}\right| \leq K=\frac{\sqrt{c}}{2}$. Now suppose we choose x_{0} so that $x_{0} \geq \sqrt{c}$ and $K\left|e_{0}\right| \leq .1$. Then by (3)

$$
\left|e_{n}\right| \leq \frac{2}{\sqrt{c}} 10^{-2^{n}} \leq 2(10)^{-2^{n}}
$$

So after 4 steps we have better than double precision (16 decimal digits) of precision.

