Least Squares

October 22, 2010

This note will explain the method of least squares applied to polynomial approximation. Suppose we have $m+1$ data points $\left(x_{j}, y_{j}\right), j=0, \ldots, m$ and want to find a polynomial fit to the data. One way is to use method of least squares. Let the polynomial be expressed as $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. We consider the equations

$$
\begin{gathered}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2}+\cdots+a_{n} x_{0}^{n}=y_{0} \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{n} x_{1}^{n}=y_{1} \\
\cdots \\
a_{0}+a_{1} x_{m}+a_{2} x_{m}^{2}+\cdots+a_{n} x_{m}^{n}=y_{m} .
\end{gathered}
$$

Rewrite these equations as

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] .
$$

Let X denote

$$
X=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right]
$$

and

$$
a=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], y=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] .
$$

Then the normal equations are

$$
X^{T} X a=X^{T} y
$$

This can be written symbolically as

$$
\left[\begin{array}{cccc}
m+1 & \sum x & \ldots & \sum x^{n} \\
\sum x & \sum x^{2} & \ldots & \sum x^{n+1} \\
\vdots & \vdots & \vdots & \vdots \\
\sum x^{n} & \sum x^{n+1} & \ldots & \sum x^{2 n}
\end{array}\right] a=\left[\begin{array}{c}
\sum y \\
\sum x y \\
\ldots \\
\sum x^{n} y
\end{array}\right]
$$

If all x_{i} are distinct and $m \geq n$ then X is nonsingular. The proof is as follows. Suppose there is a vector a so that $X a=0$. Then the polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}$ vanishes at $m+1$ distinct points $x_{0}, x_{1}, x_{2}, \ldots, x_{m}$. Since $m \geq n$, the polynomial is the zero polynomial, i.e. $a=0$.

This implies that $X^{T} X$ is a square nonsingular matrix. For if $X^{T} X a=0$ then then $a^{T} X^{T} X a=$ $\|X a\|^{2}=0$. Hence $X a=0$, so $a=0$.

