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This note will explain the method of least squares applied to polynomial approximation. Suppose we
have m + 1 data points (xj , yj), j = 0, . . . ,m and want to find a polynomial fit to the data. One way is to
use method of least squares. Let the polynomial be expressed as a0 +a1x+a2x

2 + · · ·+anxn. We consider
the equations
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Let X denote
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Then the normal equations are
XT Xa = XT y.

This can be written symbolically as
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If all xi are distinct and m ≥ n then X is nonsingular. The proof is as follows. Suppose there is a vector
a so that Xa = 0. Then the polynomial a0 + a1x + a2x

2 + . . . anxn vanishes at m + 1 distinct points
x0, x1, x2, . . . , xm. Since m ≥ n, the polynomial is the zero polynomial, i.e. a = 0.

This implies that XT X is a square nonsingular matrix. For if XT Xa = 0 then then aT XT Xa =
||Xa||2 = 0. Hence Xa = 0, so a = 0.


