Fast Fourier Transform

March 26, 2011

1 Definitions

1.1 The basic FFT

This note will discuss the fast Fourier transform (FFT). It is extracted from Henrici’s paper. I will switch
to his notation. Let w, = exp(Qm) Also suppose that all sequences are n-periodic, so x; = x4y, and are
defined for all n. We will denote the discrete Fourier transform by .
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Now suppose n = pg. Then we divide the numbers components of x into p sets of ¢g-vectors

2 = (Tj, Tjtps -+ s Tjgp(g—1))s

j=0,1,...p—1. Assume we know ffqa:(j) for j =0,1,...p— 1. Then we rewrite the formula for y,,, using
n = pq.
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Next notice wy, =wp Jw, ™", since wp = exp = exp(%) = wgq. So
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If we know the p g-vectors y), j = 0,1,...,p — 1, then the cost of computing each component y,, is p — 1
ops (we don’t count multiplication by 1). There are n components of y so the cost is n(p—1). If we stop at
this point the cost of computing each 39) is (¢ — 1)? so the total is n(p — 1) + p(q — 1)2. We over estimate



the last term with pg(q — 1) = n(q — 1) and the cost is n(p — 1 + ¢ — 1). Suppose we have a factorization
n =mning...ny. We continue this argument to find the cost is

l

nZ(nz —1).

=1

If n = 2% each n; = 2 and the cost is
nl = nlogy(n).

We can reduce this even further, if p = 2 in the initial discussion. The computation in equation (1) can
be rewritten. Let m = k+¥¢q, k=0,1,...,¢—1, £=10,1,...,p — 1 in equation (1) and in case p = 2,
p—1=1 Then
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and the only products that must be computed are w,; ky,(cl), k=0,1,...,g—1. (There are only two vectors

y0), y(l).) There are ¢ — 1 of these and they only need to be computed once. Before the cost of this stage
was n(p — 1) = n if p = 2. Now it is ¢ — 1 which we overestimate with ¢ = %, half as many ops. This
continues, to result in a cost of
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Here’s another, recursive, way to describe the fft in the case n = 2¢. First let’s assume that n = 2m.
Then let y = F,x so

nyr =xo + w;%xg + ... w;(2m72)k1‘2m_2 (1)
+ w;kxl + w;?’kxg + .. .w;@m*l)kxgm_l. (2)

Suppose k is even, k = 2¢q. Then wy, ik = Wnp, 920 — wfnj 1. To simplify the notation, let’s replace w, with w

and let p = w? and p™ = 1. Now we can write

nyk =(xo + Tmw ™) 4+ (210" 4+ 2w VR £
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Let’s denote ™+ by xj =2j+Tj4m and 2~ by z; = wI(xj —j1m). Let’s also write y° = [yo, Y2, - - - Yn—2]
and y° = [y1,Y3,-..,Yn—1]. Then all of this can be written



If we don’t count the divisions by 2, the cost is just the cost of two computations of F,, and the cost of
computing y~ which involves multiplying by m powers of w. Let M (n) be the cost of computing F,,. Then

we have proved M (2m) = 2M (m) + m. Let’s rewrite this as

M(n) =2M(3) + 5
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=21 M(2) + (£ - 1)2!
=(1+¢-1)21
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1.2 Reversion Operator

We will find the reversion operator useful when we discuss convolutions.
Definition 1. The reversion operator R is defined by
(RX)m = T—m

We have the following useful identities

(RFpz)m =

Hence

and thus

2 Applications

2.1 Convolutions
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(16)

First we define a useful product that Henrici calls the Hadamard product and we denote it by a dot e,
(zoy)r = zryr. Another multiplication, convolution, is denoted by * is defined by (z*y); = Z?;ol TjYh—j =

Z?:_& YiTr—j = (Y * ).



Theorem 1.

Fn(xxy) =nTF,x e Fpy (17)
Fn(xey) =F,xxFpy (18)
Proof. Let
u=%,z, v=7F,y.
Now
1 n—1
(Fn(zoy))n=— Z wimkxkyk-
k=0
By the inversion formula
n—1
yp = (Fpv)p = Zw Tvj
=0
So
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n—1
= Ujum,j (21)
=0
=(Fpy * Fnx)m (22)
:(‘(fnx * g:ny)m (23)

The first statement of the theorem will be proved using the reversion operator. In this last formula, let
r =3, u, y=F, . Then we get

wxv =F,(F, ue T, ) (24)

=n’F,(RF,u e RF,v) (25)

=n?F, R(Fpu e F,v) (26)

=n’RF,(Fpu e Fpv) (27)

=nF,u e F,v, (28)

since
nF,R=nRF, =F '
O

Corollary 1.
UKV = nQREFn(ffnu e F,0)

Corollary 2. If n = 2¢ the convolution of two sequences can be computed by taking three discrete Fourier
transforms via the fft and one Hadamard product. The cost is mo more than
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En logy(n) +n = En logy(n) 4+ nlogy(2) < g log,(2n)

complex multiplications.



2.2 Multiplying Polynomials and Large Integers



