
Fast Fourier Transform

March 26, 2011

1 Definitions

1.1 The basic FFT

This note will discuss the fast Fourier transform (FFT). It is extracted from Henrici’s paper. I will switch
to his notation. Let wn = exp(2πin ). Also suppose that all sequences are n-periodic, so xj = xj+n, and are
defined for all n. We will denote the discrete Fourier transform by Fn.

ym = (Fnx)m =
1

n

n−1∑
k=0

w−mk
n xk.

Now suppose n = pq. Then we divide the numbers components of x into p sets of q-vectors

x(j) = (xj , xj+p, . . . , xj+p(q−1)),

j = 0, 1, . . . p− 1. Assume we know Fqx
(j) for j = 0, 1, . . . p− 1. Then we rewrite the formula for ym, using

n = pq.

ym =
1

p

p−1∑
j=0

1

q

q−1∑
k=0

w−m(j+ph)
n xj+ph.

Next notice w−mj−mph
n = w−mj

n w−mh
q , since wpn = exp(2pπipq ) = exp(2πiq ) = wq. So

ym =
1

p

p−1∑
j=0

w−mj
n (

1

q

q−1∑
h=0

w−mh
q xj+ph).

Let

y(j)m =
1

q

q−1∑
h=0

w−mh
q xj+ph.

Then
y(j) = Fqx

(j),

and

ym =
1

p

p−1∑
j=0

w−mj
n y(j)m .

If we know the p q-vectors y(j), j = 0, 1, . . . , p− 1, then the cost of computing each component ym is p− 1
ops (we don’t count multiplication by 1). There are n components of y so the cost is n(p−1). If we stop at
this point the cost of computing each y(j) is (q− 1)2 so the total is n(p− 1) + p(q− 1)2. We over estimate

1



the last term with pq(q − 1) = n(q − 1) and the cost is n(p− 1 + q − 1). Suppose we have a factorization
n = n1n2 . . . n`. We continue this argument to find the cost is

n
∑̀
i=1

(ni − 1).

If n = 2` each ni = 2 and the cost is
n` = n log2(n).

We can reduce this even further, if p = 2 in the initial discussion. The computation in equation (1) can
be rewritten. Let m = k + `q, k = 0, 1, . . . , q − 1, ` = 0, 1, . . . , p − 1 in equation (1) and in case p = 2,
p− 1 = 1 Then

w−(k+`q)j
n = w−`j

2 w−kj
n = (−1)−`jw−kj

n ,

so

ym = yk+`q =
1

2
(y

(0)
k + (−1)−`w−k

n y
(1)
k ), k = 0, 1, . . . , q − 1, ` = 0, 1.

and the only products that must be computed are w−k
n y

(1)
k , k = 0, 1, . . . , q−1. (There are only two vectors

y(0), y(1).) There are q − 1 of these and they only need to be computed once. Before the cost of this stage
was n(p − 1) = n if p = 2. Now it is q − 1 which we overestimate with q = n

2 , half as many ops. This
continues, to result in a cost of

n

2
log2 n.

Here’s another, recursive, way to describe the fft in the case n = 2`. First let’s assume that n = 2m.
Then let y = Fnx so

nyk =x0 + w−2k
n x2 + . . . w−(2m−2)k

n x2m−2 (1)

+ w−k
n x1 + w−3k

n x3 + . . . w−(2m−1)k
n x2m−1. (2)

Suppose k is even, k = 2q. Then w−jk
n = w−j2q

n = w−jq
m . To simplify the notation, let’s replace wn with w

and let µ = w2 and µm = 1. Now we can write

nyk =(x0 + xmw
−mk) + (x1w

−k + xm+1w
−(m+1)k) + . . . (3)

=(x0 + xmµ
−mq) + (x1µ

−q + xm+1µ
−(m+1)q) + . . . (4)

=(x0 + xm) + (x1 + xm+1)µ
−q + (x2 + xm+2)µ

−2q + . . . (5)

(6)

Or also

y2q =
1

m
[
(x0 + xm)

2
+

(x1 + xm+1)

2
µ−q +

(x2 + xm+2)

2
µ−2q + . . . ]

Similarly

y2q+1 =
1

m
[
(x0 − xm)

2
+ w−1 (x1 − xm+1)

2
µ−q + w−2 (x2 − xm+2)

2
µ−2q + . . . ]

Let’s denote x+ by x+j = xj +xj+m and x− by x−j = w−j(xj−xj+m). Let’s also write ye = [y0, y2, . . . yn−2]
and yo = [y1, y3, . . . , yn−1]. Then all of this can be written

ye =
1

2
Fm(x+), 2yo =

1

2
Fm(x−).

2



If we don’t count the divisions by 2, the cost is just the cost of two computations of Fm and the cost of
computing y− which involves multiplying by m powers of w. Let M(n) be the cost of computing Fn. Then
we have proved M(2m) = 2M(m) +m. Let’s rewrite this as

M(n) =2M(
n

2
) +

n

2
(7)

=2(2M(
n

22
) +

n

22
) +

n

2
(8)

=22M(
n

22
) + 2

n

2
(9)

=23M(
n

23
) + 3

n

2
(10)

=2`−1M(2) + (`− 1)2`−1 (11)

=(1 + `− 1)2`−1 (12)

=
n

2
log2 n. (13)

1.2 Reversion Operator

We will find the reversion operator useful when we discuss convolutions.

Definition 1. The reversion operator R is defined by

(Rx)m = x−m

We have the following useful identities

(RFnx)m =
1

n

n−1∑
k=0

wmkn xk (14)

(FnRx)m =
1

n

n−1∑
k=0

w−mk
n x−k (15)

=
1

n

n−1∑
k=0

wmkn xk. (16)

Hence
FnR = RFn

and thus
nFnR = nRFn = F−1.

2 Applications

2.1 Convolutions

First we define a useful product that Henrici calls the Hadamard product and we denote it by a dot •,
(x•y)k = xkyk. Another multiplication, convolution, is denoted by ∗ is defined by (x∗y)k =

∑n−1
j=0 xjyk−j =∑n−1

j=0 yjxk−j = (y ∗ x)k.

3



Theorem 1.

Fn(x ∗ y) =nFnx • Fny (17)

Fn(x • y) =Fnx ∗ Fny (18)

Proof. Let
u = Fnx, v = Fny.

Now

(Fn(x • y))n =
1

n

n−1∑
k=0

w−mkxkyk.

By the inversion formula

yk = (Fnv)k =

n−1∑
j=0

wkjvj .

So

(Fn(x • y))m =
1

n

n−1∑
k=0

w−mkxk(
n−1∑
j=0

wkjvj) (19)

=
n−1∑
j=0

vj(
1

n

n−1∑
k=0

w−(m−j)kxk) (20)

=
n−1∑
j=0

vjum−j (21)

=(Fny ∗ Fnx)m (22)

=(Fnx ∗ Fny)m (23)

The first statement of the theorem will be proved using the reversion operator. In this last formula, let
x = F−1

n u, y = F−1
n v. Then we get

u ∗ v =Fn(F−1
n u • F−1

n v) (24)

=n2Fn(RFnu •RFnv) (25)

=n2FnR(Fnu • Fnv) (26)

=n2RFn(Fnu • Fnv) (27)

=nFnu • Fnv, (28)

since
nFnR = nRFn = F−1.

Corollary 1.
u ∗ v = n2RFn(Fnu • Fnv)

Corollary 2. If n = 2` the convolution of two sequences can be computed by taking three discrete Fourier
transforms via the fft and one Hadamard product. The cost is no more than

3n

2
log2(n) + n =

3n

2
log2(n) + n log2(2) <

3n

2
log2(2n)

complex multiplications.

4



2.2 Multiplying Polynomials and Large Integers

5


