Math 336 Sample Problems

One notebook sized page of notes (both sides) will be allowed on the test. The test will be comprehensive. The final exam is at 8:30 am, Monday, June 5, in the regular classroom.

1. Let $p(z)$ be a polynomial of degree n. Let $M(r)=\max \{|p(z)|:|z|=r\}$. Let $r>s>0$. Prove that

$$
\frac{M(s)}{s^{n}} \geq \frac{M(r)}{r^{n}}
$$

2. Is there an analytic function f that maps $|z|<1$ into $|z|<1$ such that $f\left(\frac{1}{2}\right)=\frac{2}{3}, f\left(\frac{1}{4}\right)=\frac{1}{3}$?
3. Suppose u_{n} is a sequence of harmonic functions on a domain W and suppose the sequence converges uniformly on compact sets to a function u. Prove that u is harmonic.
4. Let $f(z)=\frac{z-a}{1-\bar{a} z}$, where $|a|<1$. Let $D=\{z:|z|<1\}$. Prove that
(a)

$$
\frac{1}{\pi} \int_{D}\left|f^{\prime}(z)\right|^{2} d x d y=1
$$

$$
\begin{equation*}
\frac{1}{\pi} \int_{D}\left|f^{\prime}(z)\right| d x d y=\frac{1-|a|^{2}}{|a|^{2}} \log \left(\frac{1}{1-|a|^{2}}\right) . \tag{b}
\end{equation*}
$$

Hint: Use the Poisson integral formula.
5. Let $u(x, y), v(x, y)$ be continuously differentiable as functions of (x, y) in a domain Ω. Let $f(z)=$ $u(z)+i v(z)$. Suppose that for every $z_{0} \in \Omega$ there is an r_{0} (depending on z_{0}) such that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=0,
$$

for all r with $r<r_{0}$. Prove that f is analytic in Ω. Hint: Show that f satisfies the Cauchy-Riemann equations in Ω.
6. Compute

$$
\int_{|z|=4} \frac{\sin z}{z^{2}} d z
$$

7. Let $D_{2}=\{z:|z|<2\}$ and $I=\{x \in \mathbf{R}:-1 \leq x \leq 1\}$. Find a bounded harmonic function u, defined in $D_{2}-I$ such that u does not extend to a harmonic function defined in all of D_{2}.
8. Suppose f is analytic on $D=\{|z|<1\}$ and $f(0)=0$. Prove that

$$
\sum f\left(z^{n}\right)
$$

converges uniformly on compact subsets of D.
9. Let a_{k} be a sequence of distinct complex numbers such that $\sum_{k=1}^{\infty} \frac{1}{\left|a_{k}\right|}$ converges. Let $A=\left\{a_{k}: k=1, \ldots, \infty\right\}$. Prove that

$$
\sum_{k=1}^{\infty} \frac{1}{z-a_{k}}
$$

converges to an analytic function on $\mathbb{C}-A$.
10. Let f and g be entire functions so that satisfy $f^{2}+g^{2}=1$. Prove that there is an entire function h so that $f=\cos (h), g=\sin (h)$.
11. Find a function, $h(x, y)$, harmonic in $\{x>0, y>0\}$, such that

$$
h(x, y)= \begin{cases}0 & \text { if } 0<x<2, y=0 \\ 1 & \text { if } x>2, y=0 \\ 2 & \text { if } x=0, y>0\end{cases}
$$

12. Suppose that u is harmonic on all of \mathbb{C} and $u \geq 0$. Prove that u is constant.
13. Suppose f is analytic on $H=\{z=x+i y: y>0\}$ and suppose $|f(z)| \leq 1$ on H and $f(i)=0$. Prove

$$
|f(z)| \leq\left|\frac{z-i}{z+i}\right|
$$

14. Compute

$$
\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x
$$

15. Let f be a non-constant analytic function on the connected open set W. Let $Z=\{z: f(z)=0\}$. Prove that $W-Z$ is connected.
16. Find the radius of convergence of

$$
\sum \frac{n^{n}}{n!} z^{2 n}
$$

17. Suppose $f \in \mathcal{O}(0<|z-a|<\epsilon)$ and that $\operatorname{Re}(f)$ is bounded. Prove that a is a removable singularity.
18. Let f be a non-constant analytic function defined on $\{|z|<1\}$ such that $\operatorname{Re}(f(z)) \geq 0$.
(a) Prove that $\operatorname{Re}(f(z))>0$.
(b) Suppose $f(0)=1$. Prove that

$$
\frac{1-|z|}{1+|z|} \leq|f(z)| \leq \frac{1+|z|}{1-|z|}
$$

19. Suppose f is analytic on the connected open set W. Let $\left\{\left|z-z_{0}\right| \leq a\right\} \subset W$.
(a) Prove that

$$
f\left(z_{0}\right)=\frac{1}{\pi a^{2}} \int_{\left|z-z_{0}\right| \leq a} f(z) d A
$$

(b) Suppose f is not constant on W. Prove that

$$
\left|f\left(z_{0}\right)\right|<\frac{1}{\pi a^{2}} \int_{\left|z-z_{0}\right| \leq a}|f(z)| d A \text { (strict inequality). }
$$

20. Suppose f and g are analytic on a connected open set Ω. You might want to use the previous problem on this problem.
(a) If $|f(z)|+|g(z)|$ is constant, then both f and g are constant.
(b) If $|f(z)|+|g(z)|$ assumes a local maximum in Ω, then f and g are constant.
21. Prove that $\sum_{1}^{\infty} \frac{\sin n z}{2^{n}}$ represents an analytic function on $|\operatorname{Im}(z)|<\log 2$.
22. (a) Prove that the series

$$
\sum_{1}^{\infty} 2^{-n^{2}} z^{2^{n}}
$$

converges uniformly on $|z| \leq 1$.
(b) Prove that the radius of convergence of the series is 1 .
23. There may be homework problems or example problems from the text on the final. Don't forget previous sample problems.

