Math 336 Sample $\mathfrak{P r o b l e m s ~}$

One notebook sized page of notes will be allowed on the test. The test will cover up to $\S \mathrm{VI} .2$ in the text (excluding those sections for which there was no homework). The midterm will be on Monday, May 15.

1. Let f be analytic on the connected open set W. Suppose $\{z:|z-a| \leq d\} \subset W$ and suppose f is real on $\{z:|z-a|=d\}$. Prove that f is constant in W.
2. Gamelin, §VI.2, \# 13.
3. Let f be an analytic function on an open connected set W. Suppose $0 \in W$ and suppose $\left|f\left(\frac{1}{n}\right)\right|<e^{-n}$ for all $n>0$. Prove that $f(z)=0$ for all $z \in W$.
4. Suppose $f(z)$ is an entire function and $|f(z)|<1+|z|^{1 / 2}$. Prove that f is constant.
5. Suppose that f is analytic and non-constant on the disk $\left\{\left|z-z_{0}\right|<R\right\}$. Suppose $\operatorname{Re}\left(f\left(z_{0}\right)\right)=0$, Prove that on every circle $\left\{\left|z-z_{0}\right|=r\right\}$, with $0<r<R$, $\operatorname{Re}(f)$ assumes both positive and negative values.
6. Compute

$$
\int_{0}^{2 \pi} e^{e^{i \theta}} d \theta
$$

7. Suppose f is continuous on a connected open set W. Suppose also that f^{2} and f^{3} are analytic on W. Prove that f is analytic.
8. Suppose f has an isolated singularity at a and $\operatorname{Re}(f(z))$ is bounded on $0<|z-a|<\epsilon$. Prove that the singularity is removable.
9. Let u and v be harmonic on an open connected set W. Suppose that $u(z) v(z)=0$ on an open subset of W. Prove that either u or v is identically 0 on W.
10. Suppose $f(z)=u(z)+i v(z)$ is entire and $|u(z)|>|v(z)|$ for all z. Prove that f is constant.
11. Where does

$$
\sum_{n=0}^{\infty} e^{-z^{2} \sqrt{n}}
$$

converge? Where is it analytic?
12. Suppose f is analytic in $\{0<|z|<r\}$ for some $r>0$. Suppose also that $|f(z)|<|z|^{-1+\epsilon}$ in $\{0<|z|<\delta\}$, where $\epsilon>0$. Prove that f has a removable singularity at 0 .
13. Let $D=\{z:|z|<1\}$. Let f be analytic and non-constant on W, and suppose $\bar{D} \subset W$. Suppose $|f|$ is constant on ∂D. Prove that f has at least one zero in D.
14. Suppose $\operatorname{Re}\left(z_{1}\right)<0, \operatorname{Re}\left(z_{2}\right)<0$. Prove that

$$
\left|e^{z_{1}}-e^{z_{2}}\right|<\left|z_{1}-z_{2}\right| .
$$

15. Suppose f is entire and $|f(z)| \leq\left|K e^{z}\right|$ for some K. Prove that $f(z)=C e^{z}$ for some C.
16. Let $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ of Laurent series of $\frac{1}{\sin (z)}$ in $|z|<\pi$. Prove that $a_{n}=0$ if $n<-1$ and $a_{n}=0$ if n is even. Compute a_{-1} and a_{1}.
17. There may be homework problems, example problems from the text, or requests for statements of theorems on the midterm.
