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Abstract. This paper investigates the functional equation of the Riemann
zeta function ζ (s). The functional equation is useful for a few reasons. It allows
us to immediately conclude that the function has zeros at the negative even
integers. In the process of a proof we shall follow, the analytic continuation
of the zeta function also falls out as a consequence. Furthermore, having
established the functional equation, we can find formulas for the derivatives
of the zeta function. The functional equation has close ties with the Riemann
hypothesis, playing a role in empirically searching for zeros on the critical line.

1. Deriving the Functional Equation

The aim of the first paper we shall review is to present a short proof of Riemann’s
functional equation, [3]

(1.1) ζ (1− s) =
Γ (s)

(2π)
s 2 cos

πs

2
ζ (s) .

In fact, the method the paper undertakes is to prove the slightly more general
functional equation on the Hurwitz zeta function. Riemann’s functional equation
follows directly from this relation. The proof is based upon the Lipschitz summation
formula, which itself is proved using Poisson summation, a technique from Fourier
analysis. The meromorphic continuation of both the periodized zeta function (an-
other component of the proofs) and the Hurwitz zeta function to the whole complex
plane is a corollary of the results in this paper. Riemann’s original proofs for the
relation, on the other hand, use either the theta function and its Mellin transform
or contour integration. Comparatively, the proof we shall follow mostly gets away
with manipulating infinite series and reasoning about the analytic functions that
pop out. In the words of the authors, the paper is intended to provide guidance to
readers “unfamiliar with the circle of ideas” related to ζ (s).

Now let us set the stage for establishing the functional equation. Recall that the
Riemann zeta function is defined as the continuation of ζ (s) =

∑∞
n=1 n

−s, initially
defined on < (s) > 1, where the series converges absolutely by comparison to

∑
n−p

for p > 1. The Hurwitz zeta function is an extension of the Riemann zeta function,
1
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similarly defined as

ζ (s, a) =

∞∑
n=0

1

(n+ a)
s .

Here we take 0 < a ≤ 1 and < (s) > 1. We have ζ (s, 1) = ζ (s). Another relevant
extension of the Riemann zeta function is what we call the periodized zeta function

F (s, a) =

∞∑
n=1

e2πina

ns
,

again defined initially for < (s) > 1, a ∈ R. We also define the Fourier transform
f̂ of f to be f̂ (m) =

∫∞
−∞ f (x) e2πixmdx, so that we can use Poisson summation,

which says ∑
n∈Z

f (n) =
∑
m∈Z

f̂ (m)

for “sufficiently nice” f . The specifics of this are not terribly important to the result
we want. Poisson summation is the main tool in the first theorem we state, the
Lipschitz summation formula.

Theorem 1.

(1.2)
∞∑
n=1

(n− α)
s−1

e2πiτ(n−α) =
Γ (s)

(−2πi)
s

∑
m∈Z

e2πiαm

(τ +m)
s ,

where < (s) > 1, = (τ) > 0, and 0 ≤ α < 1.

The proof is to use the Poisson summation formula on the left-hand side of (1.2),
defining the summand function f (x) = (x− α)

s−1
e2πiτ(x−α) to be 0 for x ≤ α.

This function is nice enough to use Poisson summation on, and we end up with∑
m∈Z

e2πimα

∫ ∞
0

xs−1e2πi(τ+m)xdx =
1

(−2πi)
s

∑
m∈Z

e2πimα

(τ +m)
s

∫
R

ys−1e−ydy,

where R is the complex ray {y : y = −2πi (m+ τ)x and x ≥ 0}. Then we employ
a familiar integration technique using Cauchy’s integral theorem. Consider the
integral along a piece of pie formed by going along the real axis for some radius,
then following a circular arc counterclockwise about the origin, then coming back
to the origin along R. Since ys−1e−y is analytic, this integral is 0, and as the radius
grows, the integral along the arc decays to 0. Therefore, the improper integral may
be taken along the real axis, and so the theorem follows by the definition of Γ (s).

The next steps involve some results that are mostly bookkeeping to justify the
steps we will take in proving the relation on the Hurwitz zeta function. The results
are not terribly illuminating, but we state them for use in that proof. They are
mainly about being able to interchange limiting operations.
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Lemma. (a) Suppose 0 ≤ a < 1 and < (s) < 0. Then

lim
τ→0

∞∑
n=1

(n− a)
s−1

e2πinτ =

∞∑
n=1

(n− a)
s−1

= ζ (1− s, 1− a) .

(b) Let 0 ≤ a < 1 and y > 0. Write

Sy (s) =
∑
m 6=0

e2πiam
(

(m+ iy)
−s −m−s + siym−s−1

)
,

where the sum is taken over all nonzero integers and for the complex powers we use
the principle branch of the argument, with range (−π, π]. Then:

(i) Sy (s) converges absolutely for < (s) > −1;
(ii) Sy (s) is holomorphic in s for < (s) > −1;
(iii) if < (s) > −1, then limy→0+ Sy (s) = 0.

With these in hand, we can prove the Hurwitz relation, from which Riemann’s
functional equation will follow.

Theorem 2.
e−πis/2F (s, a) + eπis/2F (s,−a)

can be continued analytically into < (s) > −1. When −1 < < (s) < 0 and 0 < a ≤ 1,
we have the Hurwitz relation

(1.3) ζ (1− s, a) =
Γ (s)

(2π)
s

(
e−πis/2F (s, a) + eπis/2F (s,−a)

)
.

Proof. In (1.2), there is a (τ +m)
−s factor. The idea is to subtract the first

two terms of the binomial expansion of this factor, m−s + τsm−s−1. Moving the
Γ (s) / (−2πi)

s factor in (1.2) to the other side and then subtracting from (τ +m)
−s

for nonzero indices of the sum, we get

1

τs
+
∑
m 6=0

e2πiαm
(

(τ +m)
−s −m−s + τsm−s−1

)

=
(−2πi)

s

Γ (s)

∞∑
n=1

(n− α)
s−1

e2πiτ(n−α) −
∑
m 6=0

e2πiαm

ms
+ τs

∑
m 6=0

e2πiαm

ms+1
.

for 0 ≤ α < 1 and < (s) > 1. We note that∑
m6=0

e2πiαm

ms
=

∞∑
m=1

e2πiαm

ms
+

∞∑
m=1

e2πiα(−m)

(−m)
s

= F (s, α) + (−1)
−s

∞∑
m=1

e−2πiαm

ms

= F (s, α) + e−πisF (s,−α)
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and take τ = iy, y > 0 to rewrite what we have as

(1.4)
1

(iy)
s +

∑
m6=0

e2πiαm
(

(m+ iy)
−s −m−s + siym−s−1

)

=
(−2πi)

s

Γ (s)

∞∑
n=1

(n− α)
s−1

e−2πy(n−α)

−
(
F (s, α) + e−πisF (s,−α)

)
+ iys

(
F (s+ 1, α)− e−πisF (s+ 1,−α)

)
.

The sum
∑∞
n=1 (n− α)

s−1
e−2πy(n−α) is entire in s the exponential term causes

the series to converge normally on C. If we move the (−2πi)
s
/Γ (s) factor back to

the left-hand side, the Lemma tells us that the left-hand side is meromorphic in
< (s) > −1 with at most a simple pole at s = 0 from Γ (s). This tells us that the
remaining terms

− Γ (s)

(−2πi)
s

(
F (s, α) + e−πisF (s,−α)

)
+
iysΓ (s)

(−2πi)
s

(
F (s+ 1, α)− e−πisF (s+ 1,−α)

)
are meromorphic in < (s) > −1 with at most a simple pole at s = 0. Since y > 0 is
arbitrary, we find that

− Γ (s)

(−2πi)
s

(
F (s, α) + e−πisF (s,−α)

)
is meromorphic in < (s) > −1 with at most a simple pole at s = 0 by letting
y → 0+, since the other term vanishes uniformly on compact sets. This establishes
the first part of the theorem.

Now for −1 < < (s) < 0, let y → 0+ in (1.4). The left-hand side vanishes by
the Lemma and the restriction of < (s) and the sum on the right-hand side tends
to ζ (1− s, 1− α). Hence, for 0 ≤ α < 1 we have

ζ (1− s, 1− a)− Γ (s)

(−2πi)
s

(
F (s, α) + e−πisF (s,−α)

)
= 0.

in −1 < < (s) < 0. Letting a = 1− α gives (1.3) since F (s, 1− a) = F (s,−a) and
F (s,−1 + a) = F (s, a). �

Since F (s, 1) = F (s,−1) = ζ (s), 1.3 yields

ζ (1− s) =
Γ (s)

(2π)
s

(
e−πis/2 + eπis/2

)
ζ (s) =

Γ (s)

(2π)
s 2 cos

πs

2
ζ (s) ,

which is the functional equation (1.1) that we want.

2. Using the Functional Equation

[3] goes on to show that we can analytically continue ζ (s, a) and F (s, a) using the
work done so far. The first supplementary result is that F (0,−a) + F (0, a) = −1,
which we obtain by taking s→ 0− in 1.4 and using the Lemma. We also note that
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lims→0− F (s, a) is finite for this to work, because a bit of manipulation shows that
lims→0−

(
eπis − e−πis

)
F (s, a) = 0. Since eπis − e−πis has a simple zero at s = 0,

the order of F (s, a) at s = 0 cannot be negative (because the order of the product
is the sum of the orders); i.e. it is finite at s = 0. We use this to prove the following.

Corollary. (a) For 0 < a ≤ 1, the Hurwitz zeta function ζ (s, a) is holomorphic in
C except for a simple pole of residue 1 at s = 1.

(b) The relation 1.3 holds in all of C and has the alternative form

F (s, a) =
(2π)

s
e−πis/2

2iΓ (s) sin (πs)

(
ζ (1− s, a)− eπisζ (1− s, 1− a)

)
.

(c) For a /∈ Z, the periodized zeta function F (s, a) is entire in s.

We get (a) by looking at 1.3 and seeing that the left-hand side is holomorphic
for < (s) < 0 by the initial definition of ζ (s, a) and using Theorem 2 to see that
the right-hand side is holomorphic for < (s) > −1, except for a possible simple pole
at s = 0 due to Γ (s). Since these functions agree on the strip −1 < < (s) < 0,
we can use each side to extend the other side analytically to the whole plane. By
the identity theorem, these functions are the same. Using the previous result that
F (0,−a) + F (0, a) = −1 and the fact that Γ (s) has a simple pole of residue −1

at s = 0, the pole of ζ (s, a) follows. Now that the relation holds for all of C, (b)
follows from a simple manipulation of the relation by looking at ζ (1− s, a) and
ζ (1− s, 1− a) and solving for F (s, a). This alternative form shows that F (s, a) is
holomorphic in C except possibly at {0, 1}, where it might have simple poles. Why?
We already know by the original definition that it is holomorphic for < (s) > 1, so
the only problems at integers s ≤ 1 due to the sine term in the denominator of the
relation and the poles of the ζ (1− s, a) and ζ (1− s, 1− a) terms. At nonnegative
integers, the denominator is not an issue because the simple zero of sin (πs) and
the simple pole of Γ (s) cancel each other out. However, the Hurwitz zeta function
terms have poles at s = 0. For s = 1, the sine term creates a pole. Hence, {0, 1}
are the possible singularities. For a /∈ Z, we can directly confirm that these poles
do not exist by seeing that F (0, a) and F (1, a) are finite, which establishes (c).

We now look to [1] for further applications of the functional equation. This
paper gives formulas for ζ(k) (s) (in terms of integrals) and closed form evaluations
of ζ(k) (0), the latter of which we shall overview. The first result is the following.1

Theorem 3. For each integer k ≥ 1 and s ∈ C we have

(2.1) (−1)
k
ζ(k) (1− s) =

k∑
m=0

(
k

m

)(
eszzk−m + esz (z)

k−m
)

(Γ (s) ζ (s))
(m)

1This paper uses z = − log 2π − iπ/2 more or less for its entirety, so anywhere we use z without
prior notice, this is what it refers to. It is a bit unusual, so there are some reminders in the
theorem statements.
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where z = − log 2π − iπ/2.

The proof is to rewrite (1.1) as

(2.2) ζ (1− s) = Γ (s) ζ (s)
(
esz + esz

)
,

and then differentiate both sides k times. The summation comes from applying
Leibniz’s rule (the extension of the product rule) to the right-hand side. With
some manipulation, the right-hand side of (2.1) can be rewritten in the following
way.

Theorem 4. For each integer k ≥ 1 and s ∈ C we have

(−1)
k
ζ(k) (1− s)

= 2 (2π)
−s

k∑
m=0

(
k

m

)(
<
(
zk−m

)
cos

πs

2
+ =

(
zk−m

)
sin

πs

2

)
(Γ (s) ζ (s))

(m)

= 2 (2π)
−s

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)(
<
(
zk−m

)
cos

πs

2
+ =

(
zk−m

)
sin

πs

2

)
Γ(r) (s) ζ(m−r) (s) .

where again z = − log 2π − iπ/2.

The trigonometric terms make this relation rather interesting for integer-valued
inputs. If s = 2n+ 1 for n = 1, 2, 3, . . ., the cosine term vanishes and the sine term
becomes (−1)

n, so we get

(−1)
k
ζ(k) (−2n)

=
2 (−1)

n

(2π)
2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
=
(
zk−m

)
Γ(r) (2n+ 1) ζ(m−r) (2n+ 1) .

This shows that ζ(k) (−2n) is a linear combination of

ζ (2n+ 1) , ζ ′ (2n+ 1) , . . . , ζ(k) (2n+ 1) .

Similarly, letting s = 2n shows that ζ(k) (1− 2n) is a linear combination of

ζ (2n) , ζ ′ (2n) , . . . , ζ(k) (2n) .

The most interesting result in my opinion is the closed form for ζ(k) (0), because
the proof is rather clever.

The idea is to equate coefficients of power series. Since ζ (1− s) is analytic at
s = 1, it has an expansion

ζ (1− s) =

∞∑
n=0

(−1)
n
ζ(n) (0)

n!
(s− 1)

n
.
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Now we expand the right-hand side of (2.2) in its power series. The product
Γ (s) ζ (s) has one simple pole of residue 1 at s = 1 due to ζ, so it has a Lau-
rent series expansion

(2.3) Γ (s) ζ (s) =
1

s− 1
+

∞∑
n=0

an (s− 1)
n
.

Then we write (again, with z = − log 2π−iπ/2) esz = eze(s−1)z =
∑∞

0 en (z) (s− 1)
n,

where en (z) = ezzn/n!, so that the product Γ (s) ζ (s) esz has the expansion(
1

s− 1
+

∞∑
n=0

an (s− 1)
n

)( ∞∑
n=0

en (z) (s− 1)
n

)

=

∞∑
n=0

en (z) (s− 1)
n−1

+

∞∑
n=0

(
n∑
k=0

aken−k (z)

)
(s− 1)

n

=
ez

s− 1
+

∞∑
n=0

(
en+1 (z) +

n∑
k=0

aken−k (z)

)
(s− 1)

n
.

Now we can equate coefficients through (2.2) to get that

(−1)
n ζ

(n) (0)

n!
= en+1 (z) + en+1 (z) +

n∑
k=0

ak (en−k (z) + en−k (z)) ,

since ez + ez = 0, so the leading (s− 1)
−1 term drops out (as it very well should,

if our identity was to hold). In particular, ez = −i/ (2π) and ez = i/ (2π), so

en (z) + en (z) =
−izn + izn

2πn!
=

1

π

= (zn)

n!
.

Hence we find that

(−1)
n ζ

(n) (0)

n!
=

1

π

=
(
zn+1

)
(n+ 1)!

+
1

π

n∑
k=0

ak
=
(
zn−k

)
(n− k)!

.

We have that =
(
z0
)

= 0 and it turns out that a0 = 0, which lets us delete the first
and last terms of the sum to get the following theorem.

Theorem 5. If z = − log 2π − iπ/2 and n ≥ 0, we have

(2.4) (−1)
n ζ

(n) (0)

n!
=

1

π

=
(
zn+1

)
(n+ 1)!

+
1

π

n−1∑
k=1

ak
=
(
zn−k

)
(n− k)!

,

where the an are determined by 2.3.

The paper goes on to develop some machinery to compute the an. (2.4) lets
us compute the derivatives of ζ at 0; for example, ζ (0) = −1/2 and ζ ′ (0) =

− 1
2π=

(
z2
)

= − 1
2 log 2π (easy since the sum does not have any terms). Another

interesting result that is readily observed through decimal approximations of the
values is that ζ(n) (0) /n! → −1 (which aligns with the fact that the radius of
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convergence for the power series at 0 is 1). Here is an except of the table in the
paper that shows this.

n ζ(n) (0) ζ(n) (0) /n!

0 −0.50000000000000 −0.50000000000000

1 −0.918938533204672 −0.918938533204672

2 −2.0063564559085 −1.003178227954292

3 −6.0047111668622 −1.000785194477042

4 −23.99710318801370 −0.9998792995005709

5 −120.0002329075584 −1.000001940896320

6 −720.0009368251297 −1.000001301146014

7 −5039.999150176233 −0.9999998313841731

8 −40320.00023243172 −1.000000005764676

9 −362880.0003305895 −1.000000000911016

3. Application to the Riemann Hypothesis

Of course, no paper discussing the Riemann zeta function is complete without at
least a cursory mention of the Riemann hypothesis. Recall that the Euler product
formula

ζ (s) =
∏

p prime

1

1− p−s

for < (s) > 1 implies that ζ (s) 6= 0 for < (s) > 1. We seen that the zeta function
has no zeros along the line < (s) = 1 using the techniques of Zagier [6]. Then by
applying the functional equation 1.1 and the fact that Γ (s) has no zeros, we see that
the zeta function has no zeros in the left half-plane except at the zeros of cos πs2 ,
which are of course at the negative even integers. These are referred to as the trivial
zeros of the zeta function; the remaining nontrivial zeros are therefore within the
strip 0 < < (s) < 1. This is the basis for the Riemann hypothesis, which is the
assertion that s is a nontrivial zero of the zeta function only if < (s) = 1/2 (often
referred to as the critical line). Seeing as < (s) = 1/2 if and only if < (1− s) = 1/2,
it is not hard to believe that the functional equation is closely tied to the Riemann
hypothesis. Indeed, it has been known for a while that the functional equation
allows for a fairly simple restatement of the Riemann hypothesis. A paper by
Spira [5] gives the following result concerning the function multiplied by ζ (s) in
the functional equation. Recall that we commonly denote s = σ + it.

Theorem 6. For t ≥ 10, 1/2 < σ < 1, |g (s)| > 1 where g (s) = Γ(s)
(2π)s 2 cos πs2 .

The value t = 10 is only chosen for convenience in the estimates; a later paper
[2] optimizes the hypotheses to only require that |t| ≥ 6.8 and σ > 1/2. The
proofs of these results use Stirling’s formula for the gamma function and mainly
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involve calculating partial derivatives with respect to σ. In any case, this result
implies that |ζ (1− s)| > |ζ (s)| for t ≥ 10 and 1/2 < σ < 1, except possibly at
points where ζ (s) = 0, where the functional equation implies ζ (1− s) = ζ (s) = 0.
Hence the Riemann hypothesis would that the inequality holds in the entire range
t ≥ 10, 1/2 < σ < 1. The inequality holding for the whole range would also imply
the Riemann hypothesis. This is because the zeros of the zeta function come in
conjugate pairs, so this inequality would confirm that there are no zeros in the
whole strip except possibly for −10 ≤ t ≤ 10, which can be checked directly. In
fact, [4] notes that the functional equation provides a basis for counting the zeros
of the zeta function in a bounded strip and confirming that they lie on the line
< (s) = 1/2. We have already seen that the argument principle allows us to count
the zeros of an analytic function. We then introduce another form of the functional
equation:

(3.1) ξ (s) = ξ (1− s) ,

where
ξ (s) =

1

2
s (s− 1)π−s/2Γ (s/2) ζ (s) .

This equation can be obtained from our original with some functional equations
for Γ (s), specifically the Euler reflection formula Γ (s) Γ (1− s) = π/ sinπs and
the duplication formula Γ (2s) = π−1/222s−1Γ (s) Γ (s+ 1/2). We also note that
ξ (1/2 + it) ∈ R for t ∈ R. To see this, first note that ξ (1/2 + it) = ξ (1/2− it); the
1
2s (s− 1) term is unchanged by direct computation and we can push conjugation
down to s for the remaining terms. Then the functional equation tells us that

ξ

(
1

2
+ it

)
= ξ

(
1

2
− it

)
= ξ

(
1−

(
1

2
+ it

))
= ξ

(
1

2
+ it

)
for t ∈ R. We conclude that sign changes of ξ on the critical line correspond
precisely to zeros of the zeta function, given that the rest of the terms are nonzero.
This is the promised method of counting zeros. If we count n sign changes of
ξ (1/2 + it) in a certain range of 0 < t < T and also use the argument principle to
confirm that there are exactly n zeros in 0 < t < T , 0 < σ < 1, we verify that all
the zeros of the zeta function lie on the critical line up to that bound. This works
as long as we have a rigorous bound on an error term for computing ζ (s) and also
as long as the zeros are simple, so that we can actually pair up sign changes with
zeros. This has been the case for all the zeros examined so far, but the question of
whether all the zeros of the zeta function are simple is also open.

The Riemann zeta function and its cousins arguably characterize the appeal
and utility of complex analysis. We have seen that the functional equation is a
defining trait of the zeta function and paves the way to things such as its analytic
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continuation to the entire complex plane (except at 1), the values of its derivatives,
and the location of its zeros. While there are many aspects of the zeta function
that we did not explore in this paper, it is hopefully evident that the functional
equation still lends us great insight into the behavior of the function and why it is
so fascinating.
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