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1. Introduction

Tiling is the fundamental problem of tessellating a region, the attempt to fit some
alphabet of tiles within that region such that there is no overlapping of the tiles and
no empty space is left in the region. These mathematical tilings provide nice analogies
to real life natural patterns that optimize space efficiency, like crystal structures or
honeycombs. Although this problem is highly geometric, we can translate certain tiles
and regions into an algebraic sense such we decompose the boundaries into certain
combinations of elements of groups. These are known as Conway’s Tiling Groups
and by so called boundary invariants of these groups, we can determine whether or
not we can solve the tiling problem.

In this paper, we examine the notion of translating in between viewing tiling as
a geometric and algebraic problem and focus on some key examples where we can
derive necessary and sufficient conditions for the tiling problems. We follow along-
side Thurston [1] and use examples that will focus on tilings of so-called lozenges,
essentially rhombuses inside the lattice regions of Z2.

2. Definitions

We will start with a quick exposition of the necessary algebraic and geometric defi-
nitions to understand a more rigorous approach to tiling, although high level intuition
of the concepts is enough to follow along. We begin by outlining algebraic terms and
then transitioning into the more abstract geometric terms that base themselves off
the algebra.

2.1. Algebra.

Definition 2.1. A group (G, ·) is a set G equipped with an operator ·: G×G→ G,
denoting x · y as just xy and xx as x2 and so forth with higher powers, which satisfy
the following group axioms

(1) Closure: If x and y are in G then xy is in G
(2) Associativity : For x, y, z in G , x(yz) = (xy)z
(3) Identity : There exists an identity element 1 in G such that for each x in G,

x = 1x = x1
(4) Inverse: For each x in G, there is an inverse x−1 such that xx−1 = x−1x = 1

We will mostly denote (G, ·) as just G

Definition 2.2. A homomorphism from (G, ·) to (H, ?) is a map φ : G → H such
that φ(x · y) = φ(x) ? φ(y).
An isomorphism is a bijective homomorphism.
An automorphism is an isomorphism from a group to itself.
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Definition 2.3. The kernel of a homomorphism is the set of all elements mapped to
the identity.

Definition 2.4. A free group F (S) is a group generated by a set S where each group
element is a word, a finite sequence of the elements of S, the inverses of the elements
and S. We can make each word have a unique representation by ensuring there is no
x and x−1 next to each other and that multiple adjacent x are written in their power
form xn. The group operation is concatenation of two sequences, the identity being
the empty sequence and inverses defined as reversing the order of the sequence and
replacing each sequence element with its inverse [? ].

Definition 2.5. A presentation of a group 〈S,R〉 is a way of constructing a group
where S is a set of generators and R a set of relators are elements of the free group of
S, words of the generators. Each element of the group is an element of the free group
of S, a word, but where each instance of a relator in the word maps to the identity.

So for example, if you have some presentation 〈a, b|b2, a2〉, the word b3a2b =
b2ba2a = ebea = ba. We will only focusing on presentations of groups more than
groups themselves and so a rigorous treatment of a presentation is not necessary. So
we will also assume every group we look at will have a presentation without proof.
We focus on presentations which are finite, meaning S and R are finite.

2.2. Geometry.

Definition 2.6. A graph of a group Γ(G) is a directed graph whose vertices are the
elements of a group G with presentation 〈S,R〉. Say S has n elements g1, . . . , gn, then
for each vertex v ∈ Γ(G), there are n outgoing edges, labelled by each generator in S
so for a generator gi, v connects to vgi. We make the slight modification where each
generator that satisfies g2i = e, we draw one undirected edge instead of two opposite
directed edges between the elements.

So starting at any vertex in Γ(G) and following along the edges of any relator in
R, we return back to the starting vertex.

Definition 2.7. A directed graph is homogeneous if for every edge label g the trans-
form taking v → gv is an automorphism of the graph.

Its easy to see that every graph of a group is homogenous as it just shifts every
vertex to its incident vertex connected by g and there is an obvious inverse that takes
v → g−1v. It is also important to note that every automorphism of the graph of a
group has this property, to see this, let v0 be some vertex mapped to gv0, then for
an arbitrary v1, v1 = v0g

′ as each vertex can be mapped to the identity by its inverse
and then back to the desired vertex. Thus v1 = v0g

′ → gv0g
′ = gv1 hence every

automorphism is homogenous [1]. This also means that every circular permutation
of a word traces out the same area but starts at a different vertex.

Remark 2.8. Thus a suitable directed graph with every vertex having n distinctly
labeled inbound edges and n outbound edges is the graph of a group iff it admits an
automorphism that takes every vertex to another. This gives us an easy way to show
a certain geometrically interpreted graph is a the graph of a group.

Definition 2.9. A simplex is a set of vertices, the dimension n being the cardinality
of the set, and we call it an n-face. A simplicial complex K is a set of simplices such
that
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(1) Clousre: If a simplex ω ∈ K and τ ⊂ ω nonempty then τ ∈ K.
(2) Intersection: If ω0, ω1 ∈ K and ω0 ∩ ω1 = τ nonempty, then τ ∈ ω0, ω1.

An m-complex is a simplicial complex with simplices of dimension at most m.

So a 2-complex is a collection of triangles, lines and points and a 1-complex is a
collection of lines and points, which be thought of as a graph. For each graph Γ(G),
we can extend this to a notion of a 2-complex of the graph, where we fill in areas of
closed regions.

Definition 2.10. A 2-complex of a graph Γ(G) is denoted as Γ2(G) and is defined
as superset of Γ(G) where for each vertex v ∈ Γ(G), every relator of the group Ri

traces the boundary of one or more connected polygons (the edges being straight
lines) starting at v which is then filled in via a triangulation by something called the
two ears theorem [2]. We don’t do anything in the case where Ri = x2 as that is just
a single undirected edge.

Now we can focus on paths defined in Γ2(G), and a first important conclusion to
make is that Γ2(G) is simply-connected, as we can think of our construction as sewing
on arcs of a disk with m arcs, where Ri = g1g2 . . . gm, onto to boundary of the region
described by Ri. As all the vertices of the graph are connected is all collections of
these disks are obviously simply connected, thus Γ2(G) is as well. Knowing this,
we can derive our first important result that translates between group theory and
geometry.

Theorem 2.11. Every word that equals the identity can be simplified completely using
relators Ri.

Proof. Let a1a2 . . . as = 1 be the word we wish to simplify, then there is a loop
γ that takes the path along the edges of the graph Γ(G), which can be enlarged
from a single point. For any generator g if going along g from the identity still
allows you to return to identity, then this generator must show up in some relator
Ri because if it didn’t then there would no means of deriving g−1 to return us to the
identity. Thus every edge in the word is part of some relator. Let S be a covering
of γ from the regions created by the relators such that all edges of the path are the
boundary of some cover. Since the loop is compact, there exists a finite subcovering
by the Heine-Borel theorem and so pick the minimal one S ′. Then we start off at
the identity vertex and move along a1 via some relator Rj which could possibly be
shifted and add the relator’s word as gj1 . . . gjn into our construction c and keep going
inductively, using the same relator until ai differs from relator. Once ai differs from
gji , find the suitable Rk that has ai in it and inject the Rk’s word into c at gji so
that c = gj1 . . . gji−1

gk1 . . . gkmgji . . . gjn . Keep doing this until you obtain the word
a1a2 . . . asb1 . . . bt = 1 where the b word is extra relator junk at the end. We know
that the a word goes to the identity, so the b word does as well �

3. Simple Tiling Groups

We can now start looking at actual tiling groups starting with tiling Lozenges in a
triangular lattice

3.1. Triangular Tiling Group. First, we define the region on which we want to tile
on. Taking the lattice of Z2 and shifting every odd row over by 0.5 units to the left
and squishing the entire plane vertically by a factor of

√
.75 we connect all adjacent
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Figure 1. Left: Triangle group A’s generators showing action of the
first relator. Right: A section of the graph of A

vertices by edges to triangulate the plane into equilateral triangles. We label each
edge type S = {a, b, c} in such a manner: a points to the right along the x-axis, b
points up and to the left at a 120◦ angle, c points down and to the left at a 240◦

angle. We see that this is in fact homogenous as shifting one vertex, shifts all of them
by the same sequence of edges, so by remark 2.7, we have that this is a graph of a
group A.

Definition 3.1. Ais a group with presentation 〈S|abc, cba〉 where moving along abc
produces an upright equilateral triangle and cba produces an upside down equilateral
triangle.

These are the fundamental shapes of the graph and everything can be tiled by
them. Since abc = cba = 1 we know that ab = c−1 = ba hence they commute. This
group can clearly be seen as isomorphic to Z2 under addition as we essentially can
undo the transformed Z2 lattice to see that b goes up the y-axis, a goes up the x-axis,
and c is down and to the left. An explicit bijection is a 7→ (1, 0), b(0, 1), c 7→ (−1,−1)

To define a path π, we use 1-complex who’s edges trace over the generators S.
We can convert this geometric idea into a group setting by looking at the free group
of the generators F (S), where we the sequence of edges traced by π is exactly the
word in F (S). We denote this word in the free group as α(π) to differentiate from
the geometric path of π. We can show that π makes a closed shape iff there is a
homomorphism φ : F (S) → A where φ(α(π)) = 1. This is because as we showed
in theorem 2.10, that a path π being closed means that the respective word of the
region α(π) can be written simplified using its relators, so taking φ(xy) = φ(x)φ(y)
recursively until you hit the last defined relator by the theorem, in which φ(Ri) = 1
and thus backtracking everything gets mapped to the identity. The other way is
simply noting that the sequence of edges returns to itself, hence π must be closed.

3.2. Lozenges. A lozenge is a gluing of two adjacent equilateral triangles and re-
moving the connecting edge. There are three lozenges depending on which side of
the three sides the upside down triangle is glued to the upright triangle.

These three lozenges are L1 = aba−1b−1, L2 = bcb−1c−1 and L3 = cac−1a−1 where
circular permutations of these descriptions are all equivalent.

Definition 3.2. We call the set of these three lozenges a tile set, denoted by Σ and
the group L with presentation 〈S|L1, L2, L3〉 is the lozenge group.

As each L1, L2, L3 = 1, we can move the inverses over to the other side to see that
ab = ba, bc = cb, ac = ca so all the generators commute. Thus it must be isomorphic
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Figure 2. From left to right: L1, L2, L3

to Z3 under addition as it can be seen to have the presentation 〈a = (1, 0, 0), b =
(0, 1, 0), c = (0, 0, 1)|aba−1b−1, bcb−1c−1, cac−1a−1〉.

Now that have lozenges and our triangular region we want to tile in, we can find
necessary conditions for there to be a valid tiling of these lozenges.

Theorem 3.3. If R is a region tiled by some group of tiles Σ and tile group M , then
the image of the boundary of the region I(π) of the map of φ : F (S)→M applied to
α(π)), is the identity.

Proof. Suppose R can be tiled by the tile set Σ, then if R is composed of just one
tile, the boundary must be a circular permutation of one of the relators and hence
maps to the identity. Suppose we I(π) maps to the identity for a tiling up to size k,
then for a tiling of size k + 1 we know that there is some tile with no edge touching
another tile by finiteness. So pick the vertex of the edge such that if you start a
path clockwise around the tile, you will first hit the other endpoint of that edge.
Now define the boundary π0 as this clockwise path around the tile. Then define the
boundary π1 around the rest of the region R minus the tile, starting at the same
vertex but going counterclockwise. Then as this region is tiled by k tiles, we know
that I(π0) = I(π1) = 1, so as α(pi0)α(pi1) = α(pi) where π is the boundary of R, we
have by the properties of homomorphisms that I(π) = 1 �

This is however not a sufficient condition for a tiling which we will see why later
on.

3.3. Translating to Z3. As the lozenge group is isomorphic to Z3„ there is a very
nice treatment of transforming the lozenges into this space. We consider the tessela-
tion of cubes such that a corner of each cube is pointing upwards and an edge going
up to this vertex is aligned to the x axis. We can look at the graph Γ(L) as the graph
of the vertices of these cubes and edges connecting their vertices, directing each la-
belled edge so it moves upwards along the z axis and labelling them in the same sense
as before. So moving along abc instead of returning to the original vertex, its ends at
the original point shifted up vertically by 3. Thus projecting the image of any graph
of the cubes from above onto the xy plane produces a graph of the triangles while
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Figure 3. From left to right: L1, L2, L3

the projection of each face of the cube produces a lozenge, one variety for each pair
of similarly oriented faces.

So for a general boundary π of a region, we can lift the edges into the graph of
the Γ(L), by starting at a vertex plane and moving it up vertically some amount to
match a cube’s vertex, then matching the edge of the boundary with the edge of the
graph one by one until you’ve exhausted all edges of π, however we can’t conclude
that the region closes up again. This is because although you will definitely return
to the same spot projected down onto the xy plane, the starting z coordinate might
not match up with the ending one. This is the case when I(π) ∈ L 6= 1, the image
of the boundary in the lozenge group, thought of in Γ(L). This is equivalent to the
change in height from the starting to the end vertex and is isomorphic to Z under
addition. We can interpret this as the map from L → A as the projection from the
graph onto the plane and kernel of the map being the vertices above and below the
starting one, as they are all mapped to that point. As L is isomorphic to Z3 and A
isomorphic to Z2, the homomorphism acting as a projection Z3 → Z2 has a kernel of
Z.

As each a, b, c go up 1 on their labeled edges and their inverses go down one, the
height difference can be seen by summing all the powers of a, b, c in a word.

Remark 3.4. So every tileable region must have the same multiplicity of generators
and their inverses

. The converse doesn’t hold as we can consider the simple example of abcb−1a−1c−1
which traces out two upright triangles and thus can’t be tiled by a lozenge. To find
sufficient conditions for tiling, we look at defining the height and distance between
vertices more explicitly.

4. Tiling conditions for lozenges

4.1. The distance function. We consider a 2-complex region R made up of tri-
angles of Γ(A) and for any two vertices v and w we can define a distance function
between them d(v, w)

Definition 4.1. Let v, w be vertices in R, then d(v, w) is the shortest-path distance
from v to w along only positively oriented edges, with each edge having 1 unit of
distance.
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Restricting to positively directed edges means that our path ,which can be described
as a word in F (S), has no inverses in it, so the distance obviously isn’t symmetric
but is still defined for d(w, v) if its defined for d(v, w). We can show this by circling
around each triangle the path is connected to and getting back to the identity.

Theorem 4.2. If R connected, then d(v, w) is well defined for all vertices v, w in R.
d(v, w) is also not necessarily symmetric.

Proof. When we consider R as connected, d(v, w) is defined for all v, w in R as you
can always get a path by first, from v, going along one generator, say a until you
hit a boundary vertex x. Then for w you do the same but with an inverse generator
like a−1 until you hit a boundary y. So from x we follow the boundary until you
get to an inverse generator, then follow the other two appropriate generators on the
triangle in which the boundary is defined on and continue until you get to y. This is
possible as the boundary of R is obviously connected. Hence we have found a path
from v → x→ y → w so d(v, w) is well-defined.

An obvious example for why this isn’t symmetric is v = 1 w = ab, then d(v, w) = 2,
the via the path ab, while d(w, v) = 1 via the path c. �

For any closed path on the graph, we know the length must be some multiple of 3
as word that returns to the identity can be written using substitutions of relators and
each relator is of size 3 by theorem 2.11. So the distance from v to w along any path
is actually equal to d(v, w) mod 3 as we can take the path made by d(v, w) = d1 call
it P1 and then the path made by d(w, v) = d2 call it P2. Then any other path from v
to w, P ′ has distance d3 so d3 + d2 = 3x must be a multiple of three so d1 + d2 = 3y
means d3 ≡ d1 mod 3.

4.2. The height function. Now look at the same procedure we did previously for
lifting the boundary of the region R into Γ(L). Instead of looking at an arbitrary
region, we look at one that is tiled by lozenges so each lozenge can be lifted to a face
of Γ2(L), the 2-complex of faces of the cubes.

Definition 4.3. For each vertex v in R, let h(v) be the height of the vertex in the
graph Γ(L) such that each incident vertex w has h(w) = h(v)± 1 depending on if its
a generator or an inverse of a generator.

This function is unique up to an additive constant, depending on how far we wish
to lift the vertices up from the plane. It’s also well defined, as the region is tiled
by lozenges so there is no edge in Γ(L) that goes to some higher or lower height
than what was defined. If there was then the sum of the exponents wouldn’t equal
zero when starting the word at that vertex and would contradict the tiling property
stated in remark 3.4. We also lift the middle edge, that would cut the lozenge into
two triangles, up into Γ(L), the new edge would lift to a diagonal that cuts through
a face of the cube and would contribute a height difference of −2 as each positively
oriented edge increases by 1 and we know that the word of two generators is equal
to the inverse of the third, ab = ba = c−1, bc = cb = a−1, ac = ca = b−1. Hence the
height difference (which deletes the additive constant) between any two vertices is
either the same as the distance, if the minimal path doesn’t go through any of these
diagonals, or the difference is greater than the distance if the path does go through
a diagonal. Hence h(w)− h(v) ≥ dv, w) is a necessary condition for tiling.

Though its difficult to find exact sufficient conditions for tiling a region, however,
we do have an algorithm we can utilize to figure out whether or not a region can be
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tiled by lozenges.
Let R be a triangular region with boundary π, then we can assign a height h(v)
for every vertex v ∈ π. Obviously if this isn’t well defined and multiple heights get
assigned to a vertex, then there is no tiling. We move onto constructing the height
function for all vertices inside R. First we note that h(v) has a range of [n,m] and
so we can start working on vertices with height n. We also color each triangle either
white or black, such that each adjacent triangle has an alternating color. Using strong
induction, suppose we have worked through all vertices of height less than or equal
to some k. Then for vertex v with height equal to k, we consider each edge e going
from v to w such that looking right along that directed edge, we see a black triangle.
Then if the h(w) is already defined and greater than k+ 1, the tiling is impossible so
stop the algorithm. Else, leave it with its defined value and if its not defined at all,
set h(w) = k + 1.

If every vertex can be given a height function successfully, we know there is a tiling
on R and every adjacent edge has either height difference one or two. Then we can
simply delete all edges with a two height difference and we are left with all the edges
that form a lozenge tiling [1].

5. Conclusion

Tiling groups are a neat way to breaking apart geometric problems into ones about
algebra in certain instances. These tiling groups can be applied to many other types
of objects such as dominoes and hexagons being tiled in square and triangular grids
respectively. It is even possible to extend tiling to 3 dimensions or above, which is
especially useful in natural 3d structures. As long as you can construct a graph of the
objects you wish to tile have it realize the homogenous property of graphs, it can be
put into the form of a presentation of a group. Although in many instances, a general
solution to the tiling problem doesn’t exist, we can find useful facts and especially
necessary conditions for tiling through group theory that can help us strengthen our
understanding of the problems.
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