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Abstract

A fuzzy set is a class of mathematical objects in which member-
ship is continuous. Unlike classical set theory, membership is no longer
crisp, but is characterized by a membership (characteristic) function
which assigns an element to a grade of membership ranging in a finite
nonnegative interval. The analogous notion of inclusion, union, in-
tersection, complement, convex sets, etc are defined to fuzzy sets and
with these notions, various properties of fuzzy sets are proved. These
properties will lead to the showcase of the hyperplane separation the-
orem for fuzzy convex sets without having the sets be disjoint.
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1 Introduction to the Developments and Ideas

in Fuzzy Set Theory

”As the complexity of a system increases, our ability to make pre-
cise and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and signifi-
cance (or relevance) become almost mutually exclusive character-
istics.”

-L. Zadeh [5]

Most of our traditional tools of developing formal models, logic, and rea-
soning are considered crisp. We define crisp as being bivalent, meaning a yes
or no relationship. In traditional formal logic, a statement is true or false
– and nothing in between. This notion is then extended onto classical set
theory where the sets are crisp. An element is included in a set or not –
there is no ambiguity. This precision supposes that the model can represent
exactly the real system that it is intends to model which further implies that
the model is unequivocal. This certainty eventually indicates that we are
able to suppose the foundations of a model to be completely known and have
no doubts on their occurrence. However, the real world gives evidence that
these assumptions are not justified. A complete model of a real system often
requires far more detailed data than we could ever recognize simultaneously,
process, and understand.

We can see since the introduction of classical axiomatic set theory in the
early 20th century, the field has been extensively used to advance many dis-
ciplines found in mathematics, formal logic, and computer science. However,
it is very evident that mathematical developments and research has reached
to a very high standard and are still climbing to this day. In this review, the
basic mathematical framework of fuzzy set theory will be established in L.A.
Zadeh’s, Fuzzy Sets [4], will be described. Such frameworks will include the
definitions of inclusion, union, intersection, complement, convex sets, rela-
tion, etc. We will further state and prove properties of fuzzy sets analogous
to classical set theory that will be preliminary to the main result of this pa-
per: The showcase and proof of the hyperplane separation theorem for fuzzy
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convex sets without the sets being disjoint (the significance of the sets not
being disjoint will be explained in its respective section). The foundations for
each proof are given by Zadeh but I will provide my own input and style in
the execution. If the proofs presented do not make sense, please read Zadeh’s
paper [4]. Even though there is a lot of machinery behind the nature of fuzzy
sets, it has proven to be very applicable in the world of engineering. Recent
developments in the 1970s have allowed fuzzy set theory to take rise in solv-
ing problems in modern day engineering such as data mining, optimization,
systems and control, etc. However, because of the limitations of this paper
and my own knowledge, we will not go in-depth into these applications but
please read Zimmermann’s paper, Fuzzy Set Theory [6], to learn more about
the applications of fuzzy set theory.
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2 Basic Definitions and Operations of Fuzzy

Sets

”All traditional logic habitually assumes that precise symbols are
being employed. It is, therefore, not applicable to this terrestrial
life but only to an imagined celestial existence.”

-Bertrand Russell [2]

2.1 The Mathematical Definition of a Fuzzy Set

We will begin with the basic mathematical definition of a fuzzy set and
its variations given by different prespectives:

Definition. (Fuzzy Set [Zimmerman’s Definition] [6] ) If X is a collection of
objects denoted generically by x, then a fuzzy set A in X is a set of ordered
pairs:

A = {(x, µA(x)) : x ∈ X}

where µA(x) is the membership function which maps X to the membership
space M ⊆ R. The range of the membership function is a subset of nonnaga-
tive real numbers whose supremum is finite.

A normalized fuzzy set is a fuzzy set in which supµA(x) = 1. Zadeh
has his own definition of a fuzzy sets in which it is normalized but extends
the normality of the fuzzy set by making ∈ µA(x) = 0 as well.

Definition. (Fuzzy Set [Zadeh’s Definition] [4]) If X is a collection of objects
denoted generically by x, then a fuzzy set A in X is a set of ordered pairs:

A = {(x, µA(x)) : x ∈ X} (1)

where µA(x) is the membership function which maps X to a real number in
the interval [0, 1].
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For simplicity sake of arguments presented later on in this paper, we will
take Zadeh’s definition (1) of a fuzzy set as our definition and work with it
exclusively, unless otherwise noted. With this definition, we will proceed to
give an example to support this concept.

Example. Let X be the real number line R and let A = {R, µA(x) : x ∈ R}
be a fuzzy set of numbers. Then we can give a characterization of A by spec-
ifying µA(x) as a function of R. We can give explicit values for µA such as:
µA(1000) = 0.2, µA(45) = 0.52, µA(928) = 1

π
, etc.

Also with this definition, we can establish the definition of a set found in
classical set theory and we will call it a classic crisp set.

Definition. (Classic Crisp Set) A fuzzy set A = {(X,µA(x) : x ∈ X} where
the membership function outputs only 0 or 1, exclusively. So for all x ∈ X,

µA(x) = 1 or µA(x) = 0

where the ’or’ is an exclusive disjunction.

It should be noted that the careful reader might see that the membership
function of a fuzzy set has strong resemblance to a probabilistic set which
is defined as

Definition. (Probabilistic Set [3]) A probabilistic set A = {X,µA(x, ω)} on
X is defined by the defining function

µA : X × Ω 3 (x, ω)→ µA(x, ω) ∈ ΩC

where (ΩC , BC) = [0, 1] are Borel sets 1

However, even with these similarities, there are many essential differences
between these topics which should be clear once more properties of the mem-
bership function has been established. Surprisingly, the concept of a fuzzy set
is completely nonstatistical in nature. With that in mind, we will now estab-
lish several definitions of fuzzy sets that are analogous to their corresponding
definitions found in classical set theory.

1a Borel set is any set in a topological space that can be formed from open sets (or,
equivalently, from closed sets) through the operations of countable union, countable in-
tersection, and relative complement. For a topological space X, the collection of all Borel
sets on X forms a σ-algebra. The σ-algebra on X is the smallest σ-algebra containing all
open sets.
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2.2 Inclusion, the Empty Fuzzy Set, and Fuzzy Set
Equality

From this section and onwards, if A is a fuzzy set, A will always be in
X and the membership function will always be denotes µA(x) for x ∈ X.
Furthermore, any relation with µA will imply that the relation holds for µA
for all x ∈ X.

Definition. Let X be a collection of objects and µA(x) : X → [0, 1] be
a membership function. Now let x ∈ X and construct the fuzzy set A =
(X,µA(x)). Then x is called

not included in the fuzzy set A if µA(x) = 0
fully included in the fuzzy set A if µA(x) = 1
partially included in the fuzzy set A if 0 < µA(x) < 1.

Now the definitions of the empty fuzzy set and fuzzy set equality
should be easily seen as

Definition. (Empty Fuzzy Set) A fuzzy set A is empty if and only if its
membership function is identically zero on X, µA ≡ 0.

Definition. (Fuzzy Set Equality) Two fuzzy sets A and B are equal if and
only if µA(x) = µB(x) for all x ∈ X. We will denote equality as A = B.

With these definitions, we are now able to establish the notion of con-
tainment, union, and intersection.
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2.3 Containment, Union, Intersection, and Comple-
ment

The notion of containment or subset can be defined similarly as fuzzy
set equality as

Definition. (Containment) The fuzzy set A is contained in the fuzzy set B
(or A is a subset of B) if and only if µA ≤ µB. We will denote subset between
two fuzzy sets as A ⊆ B.

From this definition of containment, it can easily be seen that for two
fuzzy sets A and B that A = B if and only if A ⊆ B and B ⊆ A. Further-
more, the notion of a proper subset will be the same as the definition of
subset but with µA < µB and be denoted as A ⊂ B.

Note that unlike classical set theory, the intuitive idea of ”belonging” to
a set does not play a fundamental role in fuzzy sets. It is not meaningful
to talk about a point x ”belonging” to a fuzzy set A, but depends on its
membership function. The idea of a point ”belonging” to a fuzzy set can be
defined by introducing levels and level sets (introduced in Section 3). With
that in mind, we see the pattern that operations defined on fuzzy sets depend
entirely on the membership function. With this idea in mind, we are able to
construct analogous definitions for unions, intersection, and complement
of fuzzy sets using the membership function.

Definition. (Union) The union of two fuzzy sets A and B with membership
functions µA and µB, respectively, is a fuzzy set C denoted as C = A ∪ B,
whose membership function µC is defined as

µC(x) = max(µA(x), µB(x)). (2)

We will shorthand this notation by

µC = µA ∨ µB.

Definition. (Intersection) The intersection of two fuzzy sets A and B with
membership functions µA and µB, respsectively, is a fuzzy set C denoted as
C = A ∪B, whose membership function µC is defined as

µC(x) = min(µA(x), µB(x)).
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Figure 1: Graphical interpretation of fuzzy union and intersection.

We will shorthand this notation by

µC = µA ∧ µB.

By the definition, fuzzy sets are closed by union and intersection. Fur-
thermore, it is easily seen that the union and intersection of fuzzy sets is
commutative and associative. To get a better understanding of fuzzy union
and intersection, we can look at Figure 1. where the graph represents the
union and intersection of fuzzy sets in R. The curves represent the value of
the membership function at the respective x ∈ R. Segments 1 and 2 com-
promises the union while segments 3 and 4 compromises the intersection.
Finally, we define the complement of a fuzzy set as

Definition. (Complement) The complement of a fuzzy set A with member-
ship function µA is a fuzzy set denoted Ac whose membership function µAc is
defined as

µAc = 1− µA.
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3 Properties of Union, Intersection, and Com-

plements

“As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.”

-Albert Einstein

3.1 Machinery of Fuzzy Set Operations

Just like classical set theory, De Morgan’s laws and the distributive laws
hold. With the definitions for the operations, it is easy enough to extend
these notions to fuzzy set theory by working with the membership function.

Theorem. (De Morgan’s Laws) Let A and B be fuzzy sets. Then (A∪B)c =
Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

Proof. To show the first equality, it suffices to show that

1− µA ∨ µB = µA ∧ µB

which can easily be shown by proving it for the two possible cases: µA > µB
or µB > µA. The second equality is shown using a similar argument. The
rest of the proof is left for the reader.

Theorem. (Distributive Laws) Let A, B, and C be fuzzy sets. Then C ∪
(A ∩B) = (C ∪ A) ∩ (C ∪B) and C ∩ (A ∪B) = (C ∩ A) ∪ (C ∩B).

Proof. To show the first equality, it suffices to show that

µC ∨ (µA ∧ µB) = (µC ∨ µA) ∧ (µC ∨ µB)

which can be easily (but also tediously) shown by considering the six cases:

µA > µB > µC , µA > µC > µB, µB > µA > µC ,

µB > µC > µA, µC > µA > µB, µC > µB > µA.

The second equality is shown using a similar argument. The rest of the proof
is left for the reader.
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A more interesting property that is similar to classical set theory is pre-
senting a more appealing way of understanding the union.

Theorem. Let A and B be fuzzy sets. Then the union of A and B is the
smallest fuzzy set containing both A and B.

Proof. It suffices to show that if D is a fuzzy set that contains both A and
B, then C = A ∪ B is also contained in D. So let C = A ∪ B and suppose
D is a fuzzy set that contains both A and B. By the definition of union, it
follows that

µA ∨ µB ≥ µA (3)

and

µA ∨ µB ≥ µB. (4)

Since D contains both A and B, by the definition of containment, it follows
that

µD ≥ µA and µD ≥ µB.

Then from (3) and (4), we see that

µD ≥ µA ∨ µB.

Therefore, by the definition of containment, C = A ∪ B ⊆ D. Hence the
desired result is obtained.
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4 Algebraic Operations and Relations on Fuzzy

Sets

“Either mathematics is too big for the human mind or the human
mind is more than a machine.”

-Kurt Godel

4.1 Fuzzy Algebraic Operations

Just like classical set theory, we are able to define other ways of combining
fuzzy sets and relating them to one another. In this section, we shall define
some of the important and interesting algebraic operations.

Definition. (Algebraic Product) The algebraic product of fuzzy sets A
and B, denoted AB, is defined by the membership functions of A and B as
follows:

µAB = µAµB.

With the definition above, it follows easily for fuzzy sets A and B that

AB ⊆ A ∩B.

Definition. (Algebraic Sum) The algebraic sum of fuzzy sets A and B,
denoted A+B, is defined by the membership functions of A and B as follows:

µA+B = µA + µB

provided that µA + µB ≤ 1.

Unlike the algebraic product, the algebraic sum of two fuzzy sets is mean-
ingful only when µA +µB ≤ 1 is satisfied. Furthermore, it can easily be seen
that both the algebraic sum and product are commutative, associative, and
distributive.

Definition. (Absolute Difference) The Absolute difference of fuzzy sets
A and B, denoted |A−B|, is defined by

µ|A−B| = |µA − µB|.
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Now if we have two arbitrary vectors x and y, a convex combination is a
linear combination of x and y of the form

xt+ (1− t)y 0 ≤ t ≤ 1.

Now the same notion can be applied to fuzzy sets with our definitions of
algebraic sum and product.

Definition. (Convex Combination) Let A,B, and Γ be fuzzy sets. The Con-
vex combination of A, B , and Γ, denoted (A,B; Γ), is defined by

(A,B; Γ) = AΓ + ΓCB

so the membership function of (A,B; Γ) is

µ(A,B;Γ) = µAµΓ + (1− µΓ)µB.
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4.2 Fuzzy Relations and Sets Constructed by Map-
pings

Just as in classical set theory, the idea of a relation plays an important
role in the theory and their applications. We will see that the notion of a
relation in classical set theory has a very natural extension to fuzzy sets, but
first we will establish what a relation is classic set theory.

Classically, a relation is defined as a set of ordered pairs in which the
first and second component of the ordered pair satisfies a certain condition.
For example, there is the relation R composed of all ordered pairs of real
numbers x and y such that x < y. Using mathematical notation, we can
define the relation R as

R = {(x, y) : x ∈ R ∧ y ∈ R ∧ x < y}

In the context of fuzzy sets, we can define Γ as a fuzzy relation in a fuzzy set
Λ that is contained in the product space Λ× Λ. Defined more generally,

Definition. (n-ary fuzzy relation) A n-ary fuzzy relation, Γ in a fuzzy
set Λ is in the product space Λ × Λ × · · · where the membership function is
in the form µΓ(x1, x2, . . . , xn) for xi ∈ Λ; 1 ≤ i ≤ n.

A relation can be thought of as a generalized notion of a mapping from
one set to another. Now one can wonder what happens to fuzzy sets from
mappings.

Definition. (Fuzzy Sets Constructed by Mappings 1) Let T : Γ → Ω be
a mapping from some space Γ to some other space Ω. Now let B ⊆ Ω be a
fuzzy set contained in Ω with a membership function µB(ω). Then the inverse
mapping T−1 constructs a fuzzy set A ⊆ Γ contained in Γ whose membership
function is defined as

µA(γ) = µB(ω) ω ∈ Ω

for all γ ∈ Γ which are mapped by T into ω.
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Conversely, we can consider what happens if A ⊆ Γ is a fuzzy set con-
tained in Γ and we have the same T : Γ→ Ω from the definition map from Γ
to Ω. We need to determine the membership function for the fuzzy set B ⊆ Ω
induced by the mapping T . One problem is that if T is not one-to-one, then
there is an ambiguity when two or more distinct points, γ1, γ2 ∈ Γ, γ1 6= γ2,
with different values of membership in Γ is mapped to the same point ω ∈ Ω.
In this case, we need to determine what the membership value for ω in Ω
has to be. In this case, we shall agree to assign the bigger of the two values
of membership to ω which gives us the definition:

Definition. (Fuzzy Sets Constructed by Mappings 2) Let T : Γ → Ω be a
mapping from some space Γ to some other space Ω. Now let A ⊆ Γ be a fuzzy
set contained in Ω with a membership function µA(γ). Then the mapping T
constructs a fuzzy set B ⊆ Ω contained in Ω whose membership function is
defined as

µB(ω) = max
γ∈range(T−1)

µA(γ).

15



5 Convex Fuzzy Sets and Its Properties

“A set is a Many that allows itself to be thought of as a One.”

-Georg Cantor

As we will define, it turns out that the analogous notion of a convex set can
readily be extended to the context of fuzzy sets in such a way to preserve
many of the properties that classical convex sets hold.

5.1 Basic Definitions of Convex Fuzzy Sets and Bound-
eness

Throughout this section, to deal with ambiguity, we will assume that the
fuzzy set X is a real Euclidean space En 2. With that in mind, we will now
introduce the definition of a convex fuzzy set.

Definition. (Convex Fuzzy Set) A fuzzy set A is convex if and only if the
sets Γα defined by

Γα = {x : µA(x) ≥ α}

are convex (in classical set theory) for all α in the interval [0, 1].

Definition. (Strictly Convex Fuzzy Set) A fuzzy set A is strictly convex
if the sets Γα for 0 < α ≤ 1 are strictly convex (the midpoint of any two
distinct points in Γα lies in the inferior of Γα).

Definition. (Strongly Convex Fuzzy Set) A fuzzy set A is strongly convex
if for any two distinct points x1 and x2 and λ ∈ (0, 1), we have

µA(λx1 + (1− λ)x2) > min(µA(x1), µA(x2)).

We note that the last two definitions are independent from each other.
That is, a fuzzy set begin strictly convex does not imply that it is strongly
convex or vice-versa. Now we will introduce the core of fuzzy sets.

2Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space
of all n-tuples of real numbers, (x1, x2, ..., xn). Such n-tuples are sometimes called points
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Definition. (Essentially Attained Point) Let A be a fuzzy convex set and let
M = supx∈A µA(x). If A is bounded, there is at least point x0 at which M
is essentially attained where for each ε > 0, any ball about x0 contains
points in the set Q(ε) = {x : M − µA(x) ≤ ε}.

Definition. (Core of a Fuzzy Set) The core of a fuzzy set A is the set of all
points X at which M is essentially attained and is denoted C(A).

As we will see in the next definition, the set Γα constructed in the defini-
tion above plays the foundational role in determining what property a fuzzy
set has. With that, we will introduce the definition of a bounded fuzzy set.

Definition. (Bounded Fuzzy Set) A fuzzy set A is bounded if and only if the
set Γα = {x : µA(x) ≥ α} are bounded (in classical set theory) for all α > 0;
that is, for every α > 0 there exists a finite bound R(a) such that |x| ≤ R(a)
for all x ∈ Γα.

With these definitions, we will now begin to prove basic properties of
convex/bounded fuzzy sets and see the strong resemblance to classical set
theory.
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5.2 Properties of Convex and Bounded Fuzzy Sets

We start by introducing a more intuitive definition of a convex fuzzy set
and showing that these two definitions are equivalent.

Theorem. A fuzzy set A is convex if and only if

µA(x1 + (1− λ)x2) ≥ min(µA(x1), µA(x2))

for all x1, x2 ∈ X and all λ ∈ [0, 1].

Proof. Let A be a fuzzy set.
(=⇒) If A is convex and use the first definition and let α = µA(x1) ≤ µ(x2),
then x2 ∈ Γα and λx2 + (1 − λ)x2 ∈ Γα since Γα is convex. Therefore, we
have that

µA(λx1 + (1− λ)x2) ≥ α = muA(x1) = min(µA(x1), µA(x2)).

(⇐=) If µA(x1 + (1−)x2) ≥ min(µA(x1), µA(x2)) and α = muA(x1), then
Γα is the set of all points x2 such that µA(x2) ≥ µA(x1). Then we see that
λx1 + (1 − λ)x2 where 0 ≤ λ ≤ 1 is also in Γα. Therefore, Γα is convex (in
notion of classical set theory).

Now we will prove a theorem that analogously the same in the notion of
classical set theory.

Theorem. If A and B are convex, then A ∩B is convex.

Proof. Let C = A ∩B. Then we have that for λ ∈ [0, 1]

µC(λx1 + (1− λ)x2) = min(µA(λx1 + (1− λ)x2), µB(λx1 + (1− λ)x2)).

By assumption, we have that A and B are convex so by the previous theorem,
we have that

µA(λx1 + (1− λ)x2) ≥ min(µA(x1), µA(x2))

µA(λx1 + (1− λ)x2) ≥ min(µB(x1), µB(x2))

so by the definition of fuzzy intersection, we have

µC(λx1 + (1− λ)x2) ≥ min(min(µA(x1), µA(x2)),min(µB(x1), µB(x2))).

18



Rearranging the right hand side of the equation, we get that

µC(λx1 + (1− λ)x2) ≥ min(min(µA(x1), µB(x1)),min(µA(x2), µB(x2)))

so

µC(λx1 + (1− λ)x2) ≥ min(µC(x1), µc(x2)).

Hence by the previous theorem, C is fuzzy convex.

Theorem. If A and B are bounded fuzzy sets, then so is their intersection.

Proof. The proof is left for the reader.

Theorem. If A and B are strictly or strongly convex, then so is their inter-
section.

Proof. The proof is left for the reader.

Theorem. If A is a convex fuzzy set, then its core C(A) is a convex set

Proof. It suffices to show that if M is essentially attained at x0 and x1 where
x0 6= x1, then it is also essentially attained at all x where x = λx0 + (1−)x1

for λ ∈ [0, 1]. Now we will construct a cylinder, S, with a radius of ε with
the line crossing x0 and x1 as its axis. Now let x′0 be a point in a ball of
radius ε about x0 and x′1 be a point in a ball of radius ε about x1 such that

µA(x′0) ≥M − ε
µA(x′1) ≥M − ε.

Then since A is a fuzzy convex set, for any point u on the line x′0x
′
1, we have

that µA(u) ≥ M − ε. Furthermore, since S is a convex cylinder, all points
on the line x′0x

′
1 will lie in S. Now let x be any point on the line x′0x

′
1. The

distance of this point from the line x′0x
′
1 must be less than or equal to ε since

the line lies in S. Furthermore, it follows that a ball with radius ε about x
will contain at least one point of the line x′0x

′
1 and hence, contain at least one

point, h, such that µA(h) ≥M−ε. Therefore, it follows that M is essentially
attained at x, and consequently, the core C(A) is convex.

Now that we have proved these many properties of convex fuzzy sets, we
can see that there are a lot of similarities and differences in the idea of a set
being convex in classical and fuzzy set theory. Even though the proofs are
different, the foundation that the proof lies on is essentially the same and
the methodology of each proof can be related.
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6 The Hyperplane Separation Theorem of Fuzzy

Convex Sets

”The sentence ’snow is white’ is true if, and only if, snow is white.”

-Alfred Tarski

Once again, we will assume that the fuzzy set X to be a real Euclidean space
En.

6.1 Preliminary Ideas and Definitions

Before we talk about the Hyperplane Separation Theorem, we will intro-
duce new definitions and ideas related to fuzzy sets and hyperplanes.

Definition. (Shadow[Projection] of a Fuzzy Set on a Hyperplane) Let A be
a fuzzy set in X with membership function µA(x) = µA(x1, x2, . . . , xn). For
notational simplicity, the shadow (projection) of A on a hyperplane will be
defined for the special case where H is a coordinate hyperplane, H = {x :
x1 = 0}. We define the shadow of A on H = {x : x1 = 0} as a fuzzy set
SH(A) in En−1 with membership µSH(A)(x) given by

µSH(A)(x) = µSH(A)(x1, x2, . . . , xn) = sup
x1

µA(x1, x2, . . . , xn).

We will now prove some interesting properties related to the shdaow of a
fuzzy set on hyperplanes.

Theorem. If A is a convex fuzzy set, then its shadow on any hyperplane is
also a fuzzy convex set.

Proof. Result follows directly from the definition of a convex fuzzy set and
the shadow.

Theorem. Let H be any hyperplane and A and B be fuzzy sets. If SH(A) =
SH(B), then A = B.
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Proof. We will prove this assertion by proving its contrapositive. So suppose
that A 6= B for fuzzy sets A and B. Then there exists a point x0 such
that µA(x0) 6= µB(x0). We wish to show that there exists a hyperplane H
such that µSH(A)(x0∗) 6= µSH(B)(x0∗) for x0∗ being the projection of x0 on
H. Suppose without loss of generality that µA(x0) > µB(x0). Since B is a
convex set, it follows that Γβ = {x : µB(x) > β} is convex for β = µB(x0).
Therefore, there exists a hyperplane G such that it supports Γβ and passing
through x0. Now let H be a hyperplane that is orthogonal to G and x0∗ be
the projection of x0 on H. Then since µB(x) ≤ β for all x ∈ G, it follows
that µSH(B)(x0∗) ≤ β. Furthermore, by the same argument, we have that
µSH(A)(x0∗) ≤ α for α = µA(x0). Since α 6= β, it follows that µSH(A)(x0∗) 6=
µSH(B)(x0∗). Hence SH(A) 6= SH(B) and the desried result is obtained.

Definition. (Degree of Separation of Two Bounded Fuzzy Sets by a Hyper-
surface) Let A and B be bounded fuzzy sets and let H be a hypersurface in X
being defined by the equation h(x) = 0 with all points for which h(x) ≥ 0 be-
ing on one side of H and all points where h(x) ≤ 0 being on the other side of
H. Now let KH be a constant that is dependent on H such that µA(x) ≤ KH

on one side of H and µB(x) ≥ KH on the other side. Let MH = inf KH .
Then the constant

DH = 1−MH

is the degree of separation of A and B by H.
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6.2 Proof of The Hyperplane Separation Theorem of
Fuzzy Convex Sets

In classical set theory, the hyperplane separation theorem for convex sets
states that that if A and B are disjoint convex sets, then there exists a sep-
arating hyperplane H such that A is on one side of H and B is on the other
side. The study of this theorem can be extensive by itself and has many ap-
plication in the field of convex optimization. If the reader is curious, please
refer to Byod and Vandenberghe’s book, Convex Optimization [1] that covers
the topic in much better detail.

Now back to fuzzy sets. It is natural to question if we can extend this
theroem to fuzzy set theory as we were successful in all the previous notions.
It follows that the theorem can easily be extended to convex fuzzy sets with
slight modifications to the proof related to classical sets. However, the main
question is whether or not we can extend this theorem to convex fuzzy sets
without the sets being disjoint. The notion of two fuzzy sets being disjoint
seems to be too restrictive in the case of fuzzy sets. As it turns out, it is
possible (and not too difficult) to prove this assertion with the help of the
separation theorem of classical sets. The following theorem can be interpreted
as the hyperplane separation theorem of fuzzy convex sets. It states that the
highest degree of separation of two fuzzy convex sets A and B that can
be achieved with a hyperplane in X is the difference between one and the
maximal value of the membership of the intersection A ∩B.

Theorem. (The Hyperplane Separation Theorem of Fuzzy Convex Sets)

Let A and B be bounded fuzzy convex sets in X, with maximal mem-
bership values MA = supx µA(x) and MB = supx µB(x), respectively. Let
M be the maximal membership value for the intersection A ∩ B where M =
supx min(µA(x), µB(x)). Then the highest degree of separation is D = 1−M .
(Notice how this theorem does not require A and B to be disjoint).

Proof. [4] For simplicity sake, we will split the argument into two different
cases: (1) M = min(MA,MB) and (2) M < min(MA,MB). We note that the
second case takes care of the case for A ⊂ B and B ⊂ A.
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Case 1. M = min(MA,MB). Suppose without loss of generality that
MA < MB. Then we have that M = MA. Then by the property of bounded
sets stated in the previous subsection, we know there exists a hyperplane
H such that µB(x) ≤ M for all x on one side of H and µA(x) ≤ M since
µA(x) ≤ MA = M for all x on the other side of H. It suffices to show that
there does not exist a M ′ < M and a hyperplane H ′ such that µA(x) ≤M ′ on
one side ofH ′ and µB(x) ≤M ′ on the other side. So suppose for contradiction
that such a H ′ and M ′ exists and assume without loss of generality that the
core of A, C(A), is on the plus side of H ′. Recall that C(A) is the set of
points at which MA = M is essentially attained. Then we see that this
rules out the possibility µA(x) ≤M ′ for all x on the plus side of H ′. Hence it
must be that µA(x) ≤M ′ for all x on the minus side of H ′ and so µB(x) ≤M ′

for all x on the plus side of H ′. It follows as a consequence that for all x on
the plus side of H ′ that

sup
x

min(µA(x), µB(x)) ≤M ′

and similar on the minus side of H ′. Therefore, for all x ∈ X, it follows
that supx min(µA(x), µB(x)) ≤ M ′ which contradicts the assumption that
supx min(µA(x), µB(x)) = M > M ′. Hence there does not exist a M ′ < M
and a hyperpline H ′ such that µA(x) ≤M ′ on one side of H” and µB(x) ≤M ′

on the other side.

Case 2. M < min(MA,MB). For this case, we will consider the con-
vex sets (since A and B are convex) ΓA = {x : µA(x) > M} and ΓB =
{x : µB(x) > M}. We will first show that these sets are nonempty and
disjoint. The sets are trivially nonempty. Now suppose that ΓA and ΓB
are not disjoint. Then there exists a point u such that µA(u) > M and
µB(u) > M so that µA∩B(u) > M . However, that contradicts the assump-
tion that M = supµA∩B(x). Therefore, the sets ΓA and ΓB are nonempty
and disjoint. Now since ΓA and ΓB are disjoint and convex, by the separation
theorem of classical convex sets, there exists a hyperplane H such that ΓA is
on one side of H and ΓB is on the other side. Suppose without loss of gener-
ality that ΓA is on the plus side and ΓB is on the minus side. Furthremore,
by the definitions of ΓA and ΓB, for all points on the minus side of H, we
have that µA(x) ≤ M , and for all points on the plus side of H, µB(x) ≤ M .
Hence we have shown that there exists a hyperplane H with D = 1−M as
the degree of separation of A and B. If a higher degree of separation of A
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and B, D′ > D, was obtained, it would contradict the argument presented
in Case 1. of this proof.

We have shown both cases, and hence, the desired result is obtained.
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