
Review: Fast Fourier Methods in Computational Complex Analysis

Jason Waataja

June 10, 2019

Abstract

The discrete Fourier transform is an operation with uses in almost every area of science and
it comes up in countless branches of mathematics. In particular, it has many applications in
computational complex analysis. The fast Fourier transform algorithm is ubiquitous in its com-
putation. Peter Henrici covers many of these applications in his article “Fast Fourier Methods
in Computational Complex Analysis.” This paper will cover the discrete Fourier transform, the
fast Fourier transform algorithm, and a selection of applications from Henrici’s paper, as well
as extend what he did in the multi-dimensional case.

Contents

1 Introduction 2

2 The Transform 2
2.1 Infinite Sequences . 2
2.2 Trigonometric Series . 3
2.3 Existence of the Transform and its Inverse . 4
2.4 Implementation and the Fast Fourier Transform . 5

3 Approximating Fourier Coefficients and Applications 7
3.1 Fourier Coefficients . 7
3.2 Trigonometric Interpolation . 9
3.3 Computation of Harmonic Conjugates . 10
3.4 Computation of Laurent Coefficients . 11
3.5 Numeric Differentiation . 12

4 Multiplication of Polynomials and Power Series 12
4.1 The Conjugate, Reversion, and Convolution Operators 12
4.2 Polynomial Multiplication . 15
4.3 Formal Power Series Multiplication . 16

5 Additional Details on the Multi-Dimensional Transform 16
5.1 The Multi-Dimensional Transform . 16
5.2 Computation of Multi-Dimensional Transform . 18
5.3 Multi-Dimensional Convolution Theorem . 19

1

6 Conclusion 20

1 Introduction

In “Fast Fourier Methods in Computational Analysis,” Peter Henrici outlines the discrete Fourier
Transform, a fast algorithm for its implementation called the fast Fourier transform and explains
many of its applications in complex analysis and related fields [3]. When the article was writ-
ten, Fourier analysis was already one of the most pervasive tools in applied mathematics, and its
prominence has only grown. In particular, Fourier analysis is invaluable in phenomena that are
periodic in time or space and anywhere circular geometry arises. The article serves as a survey of
discrete Fourier analysis, informing its audience of the basics of its theory and more importantly
its applications.

Henrici begins by introducing the discrete Fourier operator which is a transform on bilateral
infinite sequences. Several basic facts are established such as its linearity and invertibility. From
its definition, computing the transform is computationally expensive, leading to the introduction
of the fast Fourier transform family of algorithms. Henrici also describes the multi-dimensional
case. The bulk of the paper then summarizes applications of the discrete Fourier transform and
instances where a computationally efficient method to compute it proves useful. Highlights include
approximating the coefficients of Fourier and Laurent series, convolutions and their applications,
and algorithms for manipulation of formal power series.

In this paper I will give the definition of the transform and the fast Fourier transform algorithm.
I will then go over the applications relevant to an introductory course on complex analysis and
finally I will explain the multi-dimensional transform, expanding upon what Henrici did and filling
in missing details.

2 The Transform

2.1 Infinite Sequences

The space of the discrete Fourier transform is that of periodic bilateral infinite sequences.

Definition 2.1. We denote Πn to be space of sequences

x = {xk}∞k=−∞
where each xk is a complex number and where the sequence satisfies

xk+n = xk.

That is, the sequence is periodic in n. This becomes a vector space when we define addition
and scalar multiplication as

(x + y)k = xk + yk

(cx)k = cxk.

and we define the zero element to be 0 to be 0 in every term. This space admits an n-dimensional
basis where for m = 0, 1, . . . , n− 1 we define e(m) = {emk } where

emk =

{
1, k ≡ m (mod n),

0, k 6≡ m (mod n).

2

2.2 Trigonometric Series

In his paper, Henrici begins by defining the transform and then its inverse. I will take the opposite
approach and develop the theory similarly to how it may have been done in a first introduction to
Fourier series. For a function f we start by assuming f has a representation as a trigonometric
series and then determine the formula for the coefficients, which will be the transform. I assume
the reader is familiar with Fourier series, which are periodic functions with a representation of the
form

f(θ) =

∞∑
−∞

cne
inθ

where the cn are complex constant coefficients. Understanding of Fourier series will assist in un-
derstanding the discrete Fourier transform. It will also turn out that the discrete Fourier transform
can approximate these coefficients.

We now attempt to do this with discrete sequences. To begin, we define the principle root of
unity.

Definition 2.2. The principle roof of unity wn is defined as

wn = e2πi/n.

For 0 ≤ k ≤ n−1 the numbers wkn are the nth roots of unity. We recall three facts from complex
analysis,

wnn = 1

wk+nn = wkn
n−1∑
k=0

wkrn =

{
n if r ≡ 0 (mod n)

0 if r 6≡ 0 (mod n).

(2.1)

The second of these follows from the first and the third follows from the formula for the sum of a
finite geometric series.

Given x ∈ Πn, suppose we wish to represent x as a sum of such terms. That is, we want to
represent xr by a sum of terms of the form akw

rk
n where k ranges over some set of integers. Such a

sequence would be determined by the coefficients ak. Since x is completely determined by n pieces
of information, say x0 through xn−1, it is reasonable to assume we could form this representation
using n numbers without any loss of information, say k = 0 through k = n − 1. Indeed, by (2.1),

we have w
r(k+n)
n = wrkn so all terms except aside from k = 0 through k = n−1 would be redundant.

Such a series would take the form

xr =
n−1∑
k=0

akw
rk
n . (2.2)

In view of w
(r+n)(k)
n = wrkn , which also follows from (2.1), we see that this is indeed periodic in n.

Since there are n such coefficients ak, we can represent them as a sequence y ∈ Πn. The question
arises of how we compute the terms in y. Suppose x has such a representation. Say we wish to
compute the mth term. Similarly to how in the case of regular Fourier series we integrated our

3

function multiplied by e−inθ, here we will sum with multiplication by w−krn . This gives,

n−1∑
j=0

w−rjn xj =

n−1∑
j=0

w−rjn

n−1∑
k=0

ykw
jk
n

=
n−1∑
j=0

n−1∑
k=0

ykw
(k−r)j
n .

Interchanging the order of summations we have,

n−1∑
k=0

n−1∑
j=0

ykw
(k−r)j
n

=
n−1∑
k=0

yk

n−1∑
j=0

w(k−r)j
n

= nyr.

In the last step we have used (2.1) which says the inner sum is n if k − r ≡ 0 (mod n) and 0
otherwise. As k ranges from 0 to n− 1, this will happen exactly once when k = r and so all terms
will be filtered except the desired case where r ≡ k (mod n). Correcting for the factor of n we
come to the what Henrici calls the discrete Fourier operator.

Definition 2.3. We define the discrete Fourier operator Fn on a sequence x ∈ Πn as y = Fnx
where

ym =
1

n

n−1∑
k=0

w−mkn xk. (2.3)

This operator defines a map from Πn to Πn as we can see from (2.1) that (2.3) satisfies ym+n =
ym. One can also easily verify the map is linear which follows from the formula itself.

2.3 Existence of the Transform and its Inverse

When does a sequence x admit a representation of the form (2.2)? In

ym =
1

n

n−1∑
k=0

w−mkn xk

the coefficients w−mkn are constants and we see that Fn is actually equivalent to multiplication by
the matrix

1

n

(w−0n)

0
(w−0n)

1 · · · (w−0n)
n−1

(w−1n)
0

(w−1n)
1 · · · (w−1n)

n−1

...
...

. . .
...

(w
−(n−1)
n)

0
(w
−(n−1)
n)

1
· · · (w

−(n−1)
n)

n−1

which is the Vandermonde matrix for w0

n, w−1n , . . . , w
−(n−1)
n . These are actually the nth roots of

unity and hence distinct. It is known from linear algebra that if the inputs to the Vandermonde

4

matrix are distinct that the determinant of the Vandermonde matrix is non-zero, hence invertible.
See, for example, page 2 of [5]. This shows the linear transformation given by Fn is a bijective
map from Πn to Πn. The important result is that the inverse operator F−1n is well defined and
that every y ∈ Πn has a corresponding x such that Fnx = y.

What is this inverse? We have already seen it in (2.2).

Definition 2.4. If we are given a sequence y ∈ Πn then we define the inverse Fourier operator
F−1n as x = Fny where

xm =
n−1∑
k=0

akw
mk
n . (2.4)

We already showed in Section 2.2 that in the case a sequence x has a representation of the
form (2.4) then FnF−1n x = x and so Fn composed with F−1n is the identity map. This shows that
each indeed gives the inverse of the other. However, we needed their bijectivity to know that every
x did have a representation of this form.

2.4 Implementation and the Fast Fourier Transform

Suppose we wish to compute Fnx. How fast can we implement this operation. A näıve imple-
mentation based on (2.3) would require n − 1 multiplications if we assume all powers of wn are
precomputed and we exclude the trivial case where the exponent of wn is 0. To completely deter-
mine Fnx requires knowing a full period of n coefficients, so the full calculations takes n(n − 1)
total multiplications. A similar bound would hold for the number of additions and so the time it
would take to compute Fn using this algorithm would be O(n2). This would be infeasible for very
large n and so a faster algorithm is required to make the discrete Fourier operator computationally
efficient.

Enter the fast Fourier transform. It is the existence of this algorithm that makes the applications
in Henrici’s article feasible. It is an instance of the divide and conquer family of algorithms where
we break the calculation into subproblems and combine the result. Consider the case where n = pq
for integers p and q. For 0 ≤ j ≤ p− 1 we can form the subsequence x(j) given by taking every pth
element of x starting at j of which there will be q unique values. That is, x(j) ∈ Πq and

x(j) = {x(j)k } = {xj+pk}.

We can also think of this as selecting the subsequence {xk} where k ≡ j (mod p). The crux of
algorithm is breaking the computation of Fnx into p subproblems of size q where we compute the
p values of Fqx

(j) with j = 0 through j = p− 1 and then combine them for each xn with with one
summation of size p.

5

Indeed, we can rewrite the summation formula for ym as p groups of q multiplications as follows

ym =
1

n

n−1∑
k=0

w−mkn xk

=
1

p

p−1∑
j=0

1

q

q−1∑
h=0

w−m(j+ph)
n xj+ph

=
1

p

p−1∑
j=0

1

q

q−1∑
h=0

w−mjn w−pmhn xj+ph

=
1

p

p−1∑
j=0

w−mjn

1

q

q−1∑
h=0

w−pmhn xj+ph.

We now note that
wpn = e2πip/n = e2πi/q = wq

which gives

1

p

p−1∑
j=0

w−mjn

1

q

q−1∑
h=0

w−mhq xj+ph.

But, the inner sum

1

q

q−1∑
h=0

w−mhq xj+ph

is exactly Fqx
(j) which is y

(j)
m . Thus, what we’ve shown is

ym =
1

p

p−1∑
j=0

w−mjn y(j)m . (2.5)

The property of this relation that allows us to compute the transform quickly is that the same
sequences y(j) come up in the computation of each ym without having to be recalculated. So,
we can recursively compute the transform of each y(j) and use those to compute each ym. This
completes the specification of the algorithm.

To analyze the running time, suppose n can be factorized as n = n1n2 · · ·nk where we do not
require that the nj are prime. If we let p = n1 and q = n2 · · ·nk. Assuming that the n1 transforms
of size n2 · · ·nk have already been computed, for each ym we do n(n1 − 1) multiplications. To
compute the n1 transforms at the next level down, for each we must do n

n1
(n2 − 1) multiplications

n1 times yielding n1
n
n1

(n2−1) = n(n2−1) multiplications. We can repeat this, finding the number
of multiplication required at the jth level of recursion where there are n1n2 · · ·nj transforms and in
each we must do n

n1n2···nj
(nj−1) multiplications for a total of n1n2 · · ·nj n

n1n2···nj
(nj−1) = n(nj−1).

Thus, the overall work done by the whole algorithm is

n(n1 − 1) + n(n2 − 1) + · · ·+ n(nk − 1) = n

k∑
j=1

(nj − 1). (2.6)

6

Consider the special case where n = 2k and there are simply k factors where n1 = n2 = · · · =
nk = 2. In this case we would require

n

k∑
j−1

1 = nk

multiplications. Since k = log2 n we see that the overall work done in this case is O(n log n). This
represents a huge improvement from the previous O(n2) algorithm. The speed at which we will be
able to carry out this algorithm will be vital to everything that comes later.

3 Approximating Fourier Coefficients and Applications

In the next few sections I will summarize particular results that Henrici develops with a focus on
applications to the complex analysis we have seen in class.

3.1 Fourier Coefficients

Suppose we wish to calculate the Fourier coefficients of a function f . Also, to make the connection
with the discrete Fourier transform easier, suppose instead of working with 2π periodic functions we
are working with functions periodic in 1 where we compute the coefficients {am} with the formula

am =

∫ 1

0
f(t)e−2πimt dt. (3.1)

We denote the space of 1-periodic functions as Π. In calculating (3.1) the above integral may
be hard to evaluate in closed form. Also, it will not always be that we are working a function f
specified by a formula. It may be that we are given n data points sampled at equal times tk given
by the sequence xk = f(tk). If the sampling points are given by

tk =
k

n

by the periodicity of f we can extend {xk} infinitely with period n to get x ∈ Πn where x =
{xk}∞k=−∞.

It turns out that the discrete Fourier transform aligns with the Riemann sum for (3.1) with
equally spaced intervals where we take the value of f at the left hand endpoint of each interval.
That is, we let

âm =
1

n

n−1∑
k=0

xkw
−mk
n (3.2)

and then declare
â = {âm} = Fnx.

There are formulas available to estimate the error of this summation interpreted as a general
Riemann sum, but in the case of Fourier series we get a much better result.

Indeed, suppose the Fourier series for x = f(t) is absolutely convergent, then we can write

xk = f(tk) =
∞∑

m=∞
ame

2πitk =

∞∑
m=∞

ame
2πik/n =

∞∑
m=∞

amw
km
n .

7

Substituting this into (3.2) we see

âm =
1

n

n−1∑
k=0

w−mkxk

=
1

n

n−1∑
k=0

w−mk
∞∑

h=∞
amw

kh
n

=
1

n

n−1∑
k=0

∞∑
h=∞

amw
k(h−m)
n .

Because this is a sum of convergent series we may interchange the order of summations which gives,

1

n

∞∑
h=∞

n−1∑
k=0

amw
k(h−m)
n

=
1

n

∞∑
h=∞

am

n−1∑
k=0

wk(h−m)
n .

By (2.1) the inner sum vanishes unless h ≡ m (mod n) and thus all terms except these are filtered
out. For those that don’t vanish we have the inner sum is n and so the factors of n will cancel out.
This gives the important estimate

âm − am =
∑
k 6=0

am+kn (3.3)

We can go further with this. We define

g(z) = f

(
1

2πi
Log z

)
.

If f is analytic on the strip −η ≤ Im z ≤ η then g is analytic on the annulus e−2πη ≤ |z| ≤ e2πη.
Consider the Laurent coefficients {am} of g computed with unit circle. These are

am =
1

2πi

∫
|z|=1

f
(

1
2πi Log z

)
zm+1

dz

=
1

2πi

∫ 2π

0

f
(

1
2πi Log eiθ

)
eiθ(m+1)

ieiθ dθ

=
1

2π

∫ 2π

0
f(θ/2π)e−imθ dθ

=

∫ 1

0
f(u)e−2πimu du

where in the last line we have made the substitution u = θ
2π . This shows the Fourier coefficients

of f are exactly the Laurent coefficients of g. Since g is analytic on the annulus, we can use the
Cauchy estimates to get

|am| ≤Me−2πη|m|

8

where M is the maximum modulus of g on the annulus.
If we let |m| < n and use this estimate with (3.3) we get

|âm − am| =

∣∣∣∣∣∣
∑
k 6=0

am+kn

∣∣∣∣∣∣
≤
∞∑
k=1

Me−2πη|m+kn| +
∞∑
k=1

Me−2πη|m−kn|

=
∞∑
k=1

Me−2πη(m+kn) +
∞∑
k=1

Me−2πη(kn−m)

= Me−2πηm
∞∑
k=1

e−2πηkn +Me2πηm
∞∑
k=1

e−2πηkn.

Because e−2πηn < 1 we may use the formula for the sum of a geometric series which gives,

M
(
e−2πηm + e2πηm

) e−2πηn

1− e−2πηn

= 2M cosh(2πmη)
e−2πηn

1− e−2πηn

We arrive at our convergence theorem.

Theorem 3.1. If x = f(z) is analytic for |Im z| ≤ η, then in approximating an with âm defined as
in (3.2), the error does not exceed

|âm − am| ≤ 2M cosh(2πmη)
e−2πηn

1− e−2πηn
. (3.4)

As a consequence, the error âm−am tends to 0 like e−2πηn as n→∞ which is geometric decay.

3.2 Trigonometric Interpolation

As one might want to interpolate a function with a polynomial, so too might we wish to interpolate
a periodic function with a trigonometric polynomial of the form

p(t) =

−n/2∑
m=−n/2

ame
2πimt.

Suppose f ∈ Π and we are given n equally spaced data points xk = f(tk). The obvious strategy
would be to use f ’s Fourier series and to truncate the terms. The fast Fourier transform would
produce the coefficients. This seems as if it would be a crude approximation, but it turns out that
by construction the approximation matches exactly with f at the sampling points. Let

âm =
1

n

n−1∑
k=0

xkw
−km
n .

9

and if n is even then we set

p(t) =

−n/2∑
m=−n/2

′

âme
2πimt.

Note the prime on the summation which indicates that for m = ±n
2 we multiply the term by 1

2 ,
analogous to how we take a0

2 in regular Fourier series. We will show the following.

Theorem 3.2. The trigonometric polynomial approximating a function using the coefficients from
the discrete Fourier transform is exactly exactly that function at the sampling points. That is,

p(tk) = xk

for all k.

Indeed, at tk we have e2πimk/n = wmkn so

p(tk) =

−n/2∑
m=−n/2

′

âmw
km
n .

This has n + 1 terms. By (2.1), the expression we are summing is periodic in n. Thus, we can
combine the first and last terms where m differs by n and since each was multiplied by 1

2 it will be
as if they were a single term. Secondly, periodicity in n allows us to shift indices right by n

2 and
recollect the terms to get

p(tk) =

n∑
m=0

âmw
km
n

In view of (2.4), this is exactly xk, completing the proof.
Basically, it turned out that the process we would use to find the best possible trigonometric

interpolation is exactly the same as what we did to derive Fn. We actually constructed Fn as a
way to generate a trigonometric polynomial with a certain set of values, and so it turns out that
this is the same problem as trigonometric interpolation.

Henrici gives a lower a bound on the error for points other than tk. It turns out that

|p(t)− f(t)| ≤ |an/2|+ |a−n/2|+ 2
∑
|k|>n/2

|ak| (3.5)

where {ak} are the regular Fourier coefficients of f . For his proof, see page 496 of [3]. This will
hold if the Fourier series converges absolutely and show that the error approaches 0 as n→∞.

3.3 Computation of Harmonic Conjugates

Fourier series also aid in understanding harmonic conjugates. Suppose we are given a harmonic
function u on the unit disk that extends continuously to its boundary. Henrici gives a method for
approximating u’s harmonic conjugate v.

Consider u on the boundary so that u(eiθ) is a 2π-periodic function of θ. Suppose it’s given by
an absolutely convergent Fourier series

u(θ) =

∞∑
m=−∞

ame
imθ.

10

It’s easy to verify that if u is real then a−m = am so that this can be rewritten as

u(θ)a0 + 2

∞∑
m=1

(am + am)eimθ.

Consider the function

f(z) = a0 + 2
∞∑
m=1

amz
m.

In view of the absolute convergence of the Fourier series for u on the boundary, f will converge
uniformly and absolutely on the whole closure of the unit disk by the Weierstrass M-test, and
moreover it will be to an analytic function. Taking the real part of f given by 1

2(f + f) we get
exactly our formula for u(θ). Since the real part of f is harmonic and agrees with u on the boundary,
it will agree on the interior as well. We also get a formula for the series of u’s harmonic conjugate
v, given by

Im f =
1

i
(f − f) =

2

i

∞∑
m=1

(am − am)zm =

∞∑
m=1

(−iam + ia−m)zn.

Thus,

v(θ) =
∞∑

m=−∞
bme

imθ

where

bm =

−iam m > 0

0 m = 0

iam m < 0.

(3.6)

We can use the fast Fourier transform for approximating these coefficients. First, sample u at n
equally spaced intervals and compute âm exactly as in the previous section. Use (3.6) to calculate
b̂m and approximate v with

v̂(θ) =
∑
|m|≤n/2

′
b̂me

imθ.

Formula (3.5) gives a bound on the error between v̂ and v.

3.4 Computation of Laurent Coefficients

Similarly, we can use the fast Fourier transform to estimate Laurent coefficients. Consider a function
f with a Laurent series that converges on an annulus A = {ρ1 < z < ρ2} where ρ1 < 1 < ρ2. We
have

f(z) =
∞∑

m=−∞
amz

m.

The coefficients are given by

am =
1

2πi

∫
|z|=1

z−m−1f(z) dz.

11

Parameterizing this with z = eiθ and in view of dz = iz dθ we get

am =
1

2πi

∫ 2π

0
zmf(z)i dθ =

1

2π

∫ 2π

0
eimθf(eiθ) dθ.

This is exactly the mth Fourier coefficients of the function obtained by evaluating f along the unit
circle, which will be 2π periodic in the angle.

To approximate these, evaluate f at n equally spaced points around the unit circle to get a
sequence f ∈ Πn. Compute ân = Fnf . The inequality (3.4) gives an estimate on the error between
âm and am.

3.5 Numeric Differentiation

Suppose we are given a function f analytic on a disk {|z − z0| < σ}. Choose any 0 < ρ < δ and
define g(z) = f(z0 + ρz). Note, that g is analytic on a disk containing the unit circle and we also
have f (m)(z0) = 1

ρm g
(m)(0). The function g is given by

g(z) =

∞∑
0

amz
m.

We showed in the previous section that {am} can be approximated with the fast Fourier transform.
Moreover, since

g(m)(0) = m!am

we have

f (m)(z0) =
m!

ρm
am.

Estimating f (m)(z0) ≈ m!
ρm âm we once again have by (3.4) that for fixed m that the error goes to 0

geometrically as n→∞. Using the fast Fourier transform to compute âm gives an efficient method
of numeric differentiation.

4 Multiplication of Polynomials and Power Series

A wide swath of the applications in Henrici’s paper make use of the convolution operation. In
particular, algorithms for formal multiplications are made much faster by use of the fast Fourier
transform.

4.1 The Conjugate, Reversion, and Convolution Operators

We now introduce several new operators.

Definition 4.1. The conjugate discrete Fourier operator that takes Πn to Πn is defined as

(Fnx)m =
1

n

n−1∑
k=0

wmkn xk. (4.1)

12

Compare this with (2.3), the definition of Fn. The formula is the same except w−mkn is replaced
by wmkn . Also compare this with the definition of F−1n given by (2.4). We see that

F−1n = nFn. (4.2)

Definition 4.2. We define the reversion operator on x ∈ Πn as

(RFnx)m = x−m. (4.3)

We have

(RFnx)m =
1

n

n−1∑
k=0

wmkn xk = (Fnx)m

and

(FnRx)m =
1

n

n−1∑
k=0

w−mkn x−k

=
1

n

n−1∑
k=0

wmkn xk

= (Fnx)m.

Combining these we get
FnR = RFn = Fn.

To summarize, we have

Theorem 4.1.
F−1n = nFn = nFnR = nRFn. (4.4)

Note that (4.4) allow us to compute F−1n or Fn with the same algorithm as for Fn, the fast
Fourier transform. This shows that they can both be calculated with O(n log n) complexity.

Definition 4.3. The Hadamard product of x and y in Πn is given by

(x · y)m = xmym (4.5)

This is just term-wise multiplication.

Definition 4.4. Given u and v in Πn we define their convolution as

(u ∗ v)m =
m∑
k=0

ukvm−k =
m∑
k=0

um−kvk. (4.6)

It’s easy to see these two sums have the same terms and are therefore the same.
We now relate this to the discrete Fourier transform. Given any u and v, we can associate

unique sequences x = F−1n u and y = F−1n v. Equivalently, u = Fnx and v = Fny. We can write

13

their convolution as

(u ∗ v)m =
n−1∑
k=0

um−kvk

=
n−1∑
k=0

1

n

n−1∑
j=0

xjw
−(m−k)j
n

 vk

=
1

n

n−1∑
k=0

n−1∑
j=0

vkxjw
−(m−k)j
n .

Interchanging the order of summations we have

1

n

n−1∑
j=0

n−1∑
k=0

vkxjw
−(m−k)j
n

=
1

n

n−1∑
j=0

xjw
−mj
n

n−1∑
k=0

vkw
jk
n .

Using the formula for F−1n we get,

1

n

n−1∑
j=0

xjw
−mj
n (yj)

=
1

n

n−1∑
j=0

(xjyj)w
−mj
n

= (Fn(x · y))m.

What we’ve shown is that
Fn(x · y) = Fnx ∗Fny

We can also rewrite this as
u ∗ v = Fn(F−1n u ·F−1n v).

Using the identities in (4.4) we have

u ∗ v = Fn(F−1n u ·F−1n v)

= Fn(nRFnu · nRFnv)

= n2Fn(RFnu ·RFnv)

Clearly, the order of termwise multiplication and reversion can be done in either order, so

n2Fn(RFnu ·RFnv) = n2FnR(Fnu ·Fnv)

Also by (4.4) we have F−1n = nFnR and so

n2FnR(Fnu ·Fnv) = nF−1n (Fnu ·Fnv)

14

and hence
u ∗ v = nF−1n (Fnu ·Fnv)

Taking Fn of both sides we get
Fn(u ∗ v) = nFnu ·Fnv

In short, we’ve shown the convolution theorem.

Theorem 4.2. For sequences x and y in Πn,

Fn(x · y) = Fnx ∗Fny

Fn(x ∗ y) = nFnx ·Fny
(4.7)

Because the convolution is equivalent to three Fourier transforms and a single Hadamard prod-
uct, it may be computed in O(n log n) time. More specifically, if n is a power of two, it will take
no more than

3

2
n log2(2n)

complex multiplications. This is a large asymptotic improvement when compared to the näıve
O(n2) algorithm for computing a convolution from the definition.

4.2 Polynomial Multiplication

Suppose we are given polynomials p and q of degree n− 1 or less given by

p(z) = p0 + p1z + · · ·+ pn−1z
n−1

q(z) = q0 + q1z + · · ·+ qn−1z
n−1

Consider their product r(z) = p(z)q(z) which is a polynomial of degree at most 2n− 2. The näıve
algorithm for multiplication requires n2 complex multiplications.

Let p and q be two sequences in Π2n−2 define as

p = {p0, p1, . . . , pn−1, 0, . . . , 0}
q = {q0, q1, . . . , qn−1, 0, . . . , 0}

What is the kth coefficient of r? This is the sum of every possible combination of coefficients pj
and qh such that

j + h = k

and 0 ≤ j ≤ n− 1 and 0 ≤ h ≤ n− 1. Examining the definition of convolution in (4.6) we see that

r = p ∗ q

where r is the corresponding sequence for r in Π2n−2. Thus, with the fast Fourier transform in
hand, we may improve the O(n2) näıve algorithm to O(n log n), a rather astounding result.

Note, also that the same idea may be used for an O(n log n) algorithm for the multiplication of
large integers where n is the number of digits. This is a huge improvement over the O(n2) algorithm
taught in school and most often used by humans. For more information, see [4].

15

4.3 Formal Power Series Multiplication

In this section we work with infinite power series without considering convergence. We think of
them as objects on which we can do formal manipulation. For a power series P = a0 + a1z + · · · ,
we define Pn to be the partial sum containing the first n terms. That is,

Pn = a0 + a1z + · · · an−1zn−1

Given another power series Q, we can compute the nth coefficient in a similar matter. Indeed,
the nth of PQ is only affected by the first n terms of P and Q, so we may reduce it to the finite
case.

So, to compute the first n coefficients of PQ, we instead simply compute PnQn. What we have
is that

(PQ)n = (PnQn)n.

Using the algorithm in the previous section for polynomial multiplication, computing the first n
terms requires O(n log n) complex multiplications. This is another big improvement over the O(n2)
näıve algorithm.

5 Additional Details on the Multi-Dimensional Transform

In the paper, Henrici gives a definition of the multi-dimensional discrete Fourier transform but
omits several details and proofs. Here I will define the multi-dimensional transform and describe
in detail how to derive its properties.

I will not give applications of the multi-dimensional transformation here, but Henrici gives
several, see [3]. For example, the multi-dimensional convolution theorem may be used to create
fast Poisson solvers.

5.1 The Multi-Dimensional Transform

We define a new space Π
(d)
n of d-dimensional bilateral infinite sequences periodic in n for each

dimension. Such an object x ∈ Π
(d)
n is denoted

x = {xk1k2···kd}
∞
ki=∞

where x satisfies
xk1k2···(kj+n)···kd = xk1k2···kj ···kd

for any j and kj .

Definition 5.1. The d-dimensional discrete Fourier transform is defined as

y = F (d)
n x

where

ym1m2···md
=

1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

w−k1m1−···−kdmd
n xk1k2···kd . (5.1)

16

For the same reason as in the one-dimensional case, F
(d)
n is linear. Bijectivity carries over as

well. Henrici does not give a proof of the bijectivity of the multi-dimensional transform, so I will
give one here. Something similar in the one-dimensional case may be found in [1], but my version
will generalize to higher dimensions.

First we define two more operators similarly to the one-dimensional case.

Definition 5.2. For x ∈ Π
(d)
n , the multi-dimensional conjugate Fourier operator y = F

(d)
n x is

defined as

ym1m2···md
=

1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

wk1m1+···+kdmd
n xk1k2···kd . (5.2)

The multi-dimensional inverse Fourier operator is defined as

F (d)
n

−1
x = ndF

(d)
n x. (5.3)

Because F
(d)
n is a linear operator on a nd-dimensional space, we may associate to it a matrix

A. Similarly, we see from the definition that F
(d)
n

−1
is linear and has a matrix A−1. It will suffice

to show that AA−1 = I.
To proceed, it is convenient to introduce vector notation for the multi-dimensional transform.

If k is an d-dimensional vector of integers and x ∈ Π
(d)
n , then we define

xk = xk1k2···kd .

We define Qn to be the d-dimensional unit lattice which is the set

Qn = {k : 0 ≤ kj ≤ n− 1 ∀j}

With this notation, (5.1) becomes

ym =
1

nd

∑
k∈Qn

w−k·mn xk

where here the dot indicates the dot product.
To each possible index vector k we associate unique integer k in the range 0 ≤ k ≤ nd−1. Such

a mapping may be given by k = k1 + nk2 + · · · + knn
d−1. Regardless, all that matters is that for

all k ∈ Qn we may associate a row of the matrix A, or a column. That is, given integers j and k
that lie between 1 and nd− 1, the entry Ajk is associated with two index vectors j and k. We may

now describe what A looks like. Examining where each basis vector in Π
(d)
n is sent we see that

Ajk =
1

nd
w−j·kn (5.4)

where here we once again mean the dot product and j and k are the associated index vectors to
the integers j and k. Similarly, from the definition we see

A−1jk = wj·k
n .

These matrices are more complicated than simply Vandermonde matrices.

17

Let

δij =

{
1 i = j

0 i 6= j

which is the Kronecker delta function. Showing AA−1 = I is the same as showing (AA−1)jk = δjk.
This entry is given by

(AA−1)jk =
∑
r∈Qn

1

nd
w−j·rn wr·k

n

=
1

nd

∑
r∈Qn

wr·(k−j)
n .

Unrolling the summation we get

1

n

n−1∑
r1

1

n

n−1∑
r2

· · · 1

n

n−1∑
rd=0

wr1(k1−j1)+···+rd(kd−jd)n

=
1

n

n−1∑
r1

wr1(k1−j1)n

1

n

n−1∑
r2

wr2(k2−j2)n · · · 1

n

n−1∑
rd=0

wrd(kd−jd)n .

Now, examine the innermost sum. By (2.1), this is 0 if kd 6= jd. This would make each outer sum

0 as well. On the other hand, if kd = jd then 1
n =

∑n−1
rd=0w

rd(kd−jd)
n = 1 and we have

1

n

n−1∑
r1

wr1(k1−j1)n

1

n

n−1∑
r2

wr2(k2−j2)n · · · 1

n

n−1∑
rd−1=0

w
rd−1(kd−1−jd−1)
n

We may repeat this process as many times as desired. If it turns that kα = jα for all possible α
then we end up with 1. On the other hand, if kα 6= jα at any point then one of these sums becomes
0 and all outer sums vanish. Hence, we’ve shown that (AA−1)jk = 1 if j = k and (AA−1)jk = 0 if

j 6= k. This says exactly that (AA−1)jk = δjk, hence AA−1 = I, completing the proof.

What we’ve shown is that because F
(d)
n and F

(d)
n

−1
are linear operators with invertible matrices

that give the identity matrix when multiplied. This means both are bijective operators where each
is the inverse of the other.

5.2 Computation of Multi-Dimensional Transform

The question arises of how to compute multi-dimensional transforms efficiently. Doing this directly

from (5.1) requires nd multiplications for each of the nd components. This is a total of (nd)
2

multiplications which requires quadratic time in the input size. That is, if we are given x ∈ Π
(d)
n

then that is nd total numbers and so the input size is nd.
Thankfully, no new algorithms are required. We may write (5.1) as

ym1m2···md
=

1

n

n−1∑
k1=0

w−k1m1
n

1

n

n−1∑
k2=0

w−k2m2
n · · · 1

n

n−1∑
kd=0

w−kdmd
n xk1k2···kd .

18

This shows that we may think of a d-dimensional transform as the combination of d transforms
over nd possible combinations. Indeed, imagine for each of the nd−1 combinations of k1, k2, . . . kd−1
that we compute the inner transform

1

n

n−1∑
kd=0

w−kdmd
n xk1k2···kd .

Then, for each of the nd−1 combinations of x1, x2, . . . , xd−2, xd we compute the next inner-most
transform using the values of the innermost transform we just computed. Repeating this d times
we may compute each ym1m2···md

when we reach the outermost level. This shows the total number
of multiplications is dnd−1 times the number required for a single transform. If n = n1n2 · · ·nk
then from (2.6) the running time is

dnd
k∑
j=1

(nj − 1).

In the case that n is a power of two then we get

dnd log n = nd log nd

What this last equality shows is that if the input size is nd then the running time is the same
O(m logm) as in the one-dimensional case where here we take m to be the input size nd.

There exist algorithms outside of simple iterated one-dimensional transforms. Henrici gives an
example that gives better results for large values of d, see [3].

5.3 Multi-Dimensional Convolution Theorem

The convolution theorem generalizes to higher dimensions. As in the one-dimensional case, we

define the Hadamard product x · y for x,y ∈ Π
(d)
n to be their entry-wise product. For the multi-

dimensional convolution we have

Definition 5.3. For vectors x and y in Π
(d)
n we define z = x ∗ y to be

zk =
∑

m∈Qn

xmyk−m (5.5)

This leads us to the multi-dimensional convolution theorem.

Theorem 5.1. For any sequences x,y ∈ Π
(d)
n we have

F (d)
n (x · y) = F (d)

n x ∗F (d)
n y

F (d)
n (x ∗ y) = F (d)

n x ·F (d)
n y

(5.6)

Henrici omits a proof of this theorem. For a proof in the two-dimensional case, see [2]. Here I
will give a proof of the general case, similar to what we did in one dimension. Given sequences x

and y and let u = F
(d)
n x and v = F

(d)
n y. We have,

F (d)
n x ∗F (d)

n y = (u ∗ v)m

=
∑
k∈Qn

um−kvk

19

We can use the formula for the inverse transform to substitute for um−k.

∑
k∈Qn

1

nd

∑
j∈Qn

xjw
−(m−k)·j
n

 vk

=
1

nd

∑
k∈Qn

∑
j∈Qn

vkxjw
−(m−k)·j
n .

Interchanging the order of summations we have

1

nd

∑
j∈Qn

∑
k∈Qn

vkxjw
−(m−k)·j
n

which we can rewrite as

1

nd

∑
j∈Qn

xjw
−m·j
n

∑
k∈Qn

vkw
j·k
n

=
1

nd

∑
j∈Qn

xjw
−m·j
n (yj) Definition of inverse

=
1

nd

∑
j∈Qn

(xjyj)w
−m·j
n

= (F (d)
n (x · y))m.

Thus,
F (d)
n (x ∗ y) = F (d)

n x ·F (d)
n y

The other half of (5.6) can be derived from this exactly as in the justification of (4.7). This
completes the proof.

6 Conclusion

This paper has introduced the very basics of the fast Fourier transform. I invite the interested reader
to examine Henrici’s whole article “Fast Fourier Methods in Computational Complex Analysis.”
Topics not covered here include time series analysis, numerical solutions to certain equations such
as Symm’s equation and Theodorsen’s integral equation. Approximating the Fourier coefficients of
the solution to the Dirichlet problem on doubly connected regions is of particular interest for for
complex analysis. Henrici also covers a lot more on power series.

The applications of the fast Fourier transform include almost every area of science as well as
countless branches of mathematics. This paper has hopefully served as a gentle and interesting
introduction to the topic. However, the applications here and in Henrici’s paper are only the
beginning. Fourier analysis will surely turn up in many more places to come and whenever that
happens fast Fourier methods will almost surely play a role.

20

References

[1] A. V. Aho, The design and analysis of computer algorithms, ser. Addison-Wesley series in
computer science and information processing. Reading, Mass.: Addison-Wesley Pub. Co., 1974,
isbn: 0201000296.

[2] D. E. Dudgeon, Multidimensional digital signal processing, ser. Prentice-Hall signal processing
series. Englewood Cliffs, NJ: Prentice-Hall, 1984, pp. 70–71, isbn: 0136049591.

[3] P. Henrici, “Fast fourier methods in computational complex analysis,” eng, SIAM Review,
vol. 21, no. 4, pp. 481–527, 1979, issn: 00361445.

[4] A. Schönhage and V. Strassen, “Fast multiplication of large numbers,” Computing, vol. 7,
no. 3, pp. 281–292, 1971, issn: 0010-485X.

[5] L. R. Turner, “Inverse of the vandermonde matrix with applications - nasa-tn-d-3547,” Tech.
Rep., 1966. [Online]. Available: http://hdl.handle.net/2060/19660023042.

21

