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Abstract

From the shape that people are worst at drawing by hand to the
orbits that most planets cannot escape, the appearance of circles and
ellipses is ubiquitous in the universe. The study of these two geometric
objects hence never stops. Among countless properties they have, π and
elliptic perimeter are two of the brightest ones that mathematicians have
been pursuing for thousands of years. In this paper, we will explore a
surprising but elegant relation between arithmetic-geometric mean and
the two of them, which somehow makes the world more approachable to
us.

We will begin by closely examining arithmetic-geometric mean as the
cornerstone for our discussion. Then, with modest knowledge of elliptic
integrals, we will reach the first highlight of the paper, namely a formula
for π that is highly suitable for computation. After the exposure, we
restore ourselves with the tool of Landen’s Transformations, which will
serve as a medium tool of relating different elliptic integrals. We will
climax with the intangible nature of ellipse, displayed as some exact but
not simple or simple but not exact formulas for the perimeter. Last
but not the least, we explore a special type of elliptic functions which
arises naturally from elliptic integrals and peek at some of its interesting
properties.

This paper is an explicit review of the references listed in the end and
should be approachable to students armed with elementary calculus and
patience with heavy algebraic manipulations.
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The proofs and ideas in this paper are mainly credited to Almkvist
and Berndt [1], while the contributions of other mathematicians will be
explicitly stated as the discussion proceeds.
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1 Arithmetic-geometric Mean

We begin our journey with a brief discussion of the arithmetic-geometric
mean. The definition, rate of convergence, and implication of the mean
will be presented below.
Definition 1.1. Given two positive real numbers a and b where a < b,
define the following recursion:

a1 = a, b1 = b,

an+1 =
√
anbn, bn+1 =

an + bn
2

The number the two sequences converge to is called the arithmetic-
geometric mean of a and b, which is often denoted as M(a, b).

To show the validity of the above definition, we need to prove limits
of the two sequences exit and are the same: Notice by AM-GM,

an+1 =
√
anbn <

an + bn
2

= bn+1

which implies the n-th term of {an} is strictly less than that of {bn}.
Thus,

an+1 =
√
anbn >

√
an · an = an,

bn+1 =
an + bn

2
<
bn + bn

2
= bn

Thus, {an} is increasing and bounded above by b, and {bn} is de-
creasing and bounded below by a. By monotone convergence theorem,
each sequence therefore converges. Moreover, by the elementary identity
intrinsically embedded in AGM, namely (a + b)2 − 4ab = (a − b)2, we
have

b1 − a1
b− a

=
b− a

4(b1 + a1)
=

b− a
2(a+ b) + 4a1

<
1

2

Performing induction on n by the exact procedure as above gives,

bn − an =

(
1

2

)n
(b− a)

Clearly, as n → ∞, the sequence {bn − an} tends to 0. Therefore,
{an} and {bn} have the same limit. Take a closer look at the rapidity of
the convergence by defining,

cn =
√
b2n − a2n, n ≥ 0
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Then,

cn+1 =
√
b2n+1 − a2n+1 =

1

2
(bn − an) =

c2n
4bn+1

≤ c2n
4M(a, b)

Thus, {cn} tends to 0 quadratically. This is a fast rate of convergence
and well adapted to numerical computations. Later in Chapter 3, we
will see the rapid convergence of AGM gives rise to Gauss-Legendre algo-
rithm which can produce 45 million correct digits of π with only simply
25 iterations.

2 Introduction to Elliptic Integral

As for now, we step into the discussion of elliptic integral where the
definitions of several special types of elliptic integral will be given. Then,
we will delicately explore a both surprising and essential representation
of arithmetic-geometric mean in terms of elliptic integral, which is due
to Gauss, of course.

Definition 2.1. Define the complete elliptic integral of the first kind
as: |x| < 1,

K(x) =

∫ π/2

0

(1− x2 sin2 ϕ)−
1
2dϕ =

∫ 1

0

dt√
(1− t2)(1− x2t2)

(1)

Such type of integral naturally arises in the computation of the arc
length of a lemniscate or the period of a pendulum. Later in this chapter
we shall see that elliptic integral of the first kind can be directly expressed
as a function of the arithmetic-geometric mean.

Definition 2.2. Define the complete elliptic integral of the second
kind as: |x| < 1,

E(x) =

∫ π/2

0

(1− x2 sin2 ϕ)
1
2dϕ =

∫ 1

0

√
1− k2t2√
1− t2

dt (2)

Notice, it’s easy to tell that the elliptic integral of the second kind de-
scribes the perimeter of an ellipse. Liouville proved in 1834 that both the
first and the second kind are nonelementary, meaning that there are no
such antiderivatives of these integrals in terms of elementary functions.
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Gauss proved the theorem below with his ingenious idea of equating
the series expansion of both sides of the equation, which can be found
in [1] pp.588-589. However, here we present another short and elegant
proof that is given by Newman [8]:

Theorem 2.1 Let |x| < 1, then

M(1 + x, 1− x) =
π

2K(x)

Proof. Before proving theorem 2.1, we give a reformulation of it.
Define

I(a, b) =

∫ π/2

0

(a2 cos2 ϕ+ b2 sin2 ϕ)1/2dϕ

Clearly,

I(a, b) =
1

a
K(x), x =

1

a

√
a2 − b2

Since

M(a, b) = M(a1, b1) and M(ca, cb) = cM(a, b)

for any constant c, we have

M(1− x, 1 + x) =
1

a
M(a+

√
a2 − b2, a−

√
a2 − b2) =

1

a
M(a, b)

Then, the reformulation of Theorem 2.1 follows immediately as
Theorem 2.1’ Let a > b > 0. Then

M(a, b) =
π

2I(a, b)

Proof. With a change of variable, here we omit the cumbersome
calculations, we can rewrite I(a, b) as

I(a, b) =

∫ ∞
0

dx√
(x2 + a2)(x2 + b2)

=
1

2

∫ ∞
−∞

dx√
(x2 + a2)(x2 + b2)

Observe that the elliptic integral on the right hand side above is
invariant under the transformation

(a, b)→
(
a+ b

2
,
√
ab

)
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since by a change of variable t = 1
2
(x − ab/x), x ∈ (0,∞), t ∈

(−∞,∞), moreover

dt =
x2 + ab

2x2
, t2+

(
a+ b

2

)2

=
(x2 + a2)(x2 + b2)

4x2
, t2+ab =

(x2 + ab)2

4x2

under the transformation,∫ ∞
−∞

dt√
(t2 +

(
a+b
2

)2
)(t2 + ab)

= 2

∫ ∞
0

dx√
(x2 + a2)(x2 + b2)

the elliptic integral is preserved.
Therefore, if we continue the process of taking arithmetic-geometric

mean of a and b, which we denote as M , we find that all the integrals
have the same value∫ ∞

−∞

dx√
(x2 + a2)(x2 + b2)

=

∫ ∞
−∞

dx√
(x2 + a2n)(x2 + b2n)

→
∫ ∞
−∞

dx√
(x2 +M2)(x2 +M2)

=

∫ ∞
−∞

dx

x2 +M2
=

π

M

and we obtain the formula

M(a, b) = π/

∫ ∞
−∞

dx√
(x2 + a2)(x2 + b2)

=
π

2I(a, b)

Theoretically this formula is already fascinating in the sense that it
bridges elliptic integral and arithmetic-geometric mean. In practice, we
shall see in Chapter 3 and Chapter 5 that theorem 2.1 is the founda-
tion of fast computations of π and elliptic perimeter.

3 Calculation of π

In this section, we present an efficient method to compute π with the
use of the fast convergence of the arithmetic-geometric mean. Before
giving the explicit formula, we need two important theorems that relate
the integrals E(x) and K(x).

The first one below is also known as the Legendre’s Relation:
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Theorem 3.1. Let x′ =
√

1− x2, where 0 < x < 1. Then

K(x)E(x′) +K(x′)E(x)−K(x)K(x′) =
π

2
(3)

where K and E are the complete elliptic integrals of the first and
second kinds defined as (1) and (2) respectively.

The proof given below follows the idea to show that the derivative of
the left hand side of the equation above is 0, thereby showing that it is
a constant. Then, we find the constant by taking limits.

Proof. To make notations clear, we let c = x2 and c′ = 1 − c.
Also, we denote E(c) and K(c) as E and K respectively. We begin by
differentiating (E −K) with respect to c,

d

dc
(E −K) =

d

dc

(∫ π/2

0

−c sin2 ϕ

(1− c sin2 ϕ)1/2
dϕ

)
(4)

=
E

2c
− 1

2c

∫ π/2

0

1

(1− c sin2 ϕ)1/2
dϕ (5)

Notice such relation,

d

dϕ

(
sinϕ cosϕ

(1− c sin2 ϕ)1/2

)
=

1

c
(1− c sin2 ϕ)1/2 − c′

c
(1− c sin2 ϕ)−3/2

we substitute it into the (5) and yield

d

dc
(E −K) =

E

2c
− E

2cc′
+

1

2c′

∫ π/2

0

d

dϕ

(
sinϕ cosϕ

(1− c sin2 ϕ)1/2

)
dϕ

=
E

2c

(
1− 1

c′

)
= − E

2c′

To keep the notation consistent, we let denote K(c′) and E(c′) as K ′

and E ′ respectively. Since c′ = 1 − c, by exact the same procedure as
above with a reflection of c, we have

d

dc
(E ′ −K ′) =

E ′

2c

Moreover,

dE

dc
= −1

2

∫ π/2

0

sin2 ϕ√
1− c sin2 ϕ

dϕ =
E −K

2c
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Similarly,
dE ′

dc
= −E

′ −K ′

2c′

Now, we are in good shape to launch the first conclusion. If L denotes
the left hand side of (3), then we can write L as

L = EE ′ − (E −K)(E ′ −K ′)

Combining all the derivatives above, we find that

dL

dc
=

(E −K)E ′

2c
− E(E ′ −K ′)

2c′
+
E(E ′ −K ′)

2c′
− (E −K)E ′

2c
= 0

Thus, L is a constant. Then, we find its value by letting c tend to 0,

E −K = −c
∫ π/2

0

sin2 ϕ

(1− c sin2 ϕ)1/2
dϕ = O(c)

and

K ′ =

∫ π/2

0

(1− c′ sin2 ϕ)−1/2dϕ ≤
∫ π/2

0

(1− c′)−1/2dϕ = O(c−1/2)

Thus,

lim
c→0

L = lim
c→0
{(E −K)K ′ + E ′K} = lim

c→0

(
O(c1/2) + 1 · π

2

)
=
π

2

Then, we turn to look at the second key theorem:
Theorem 3.2. For a > b > 0, define

J(a, b) =

∫ π/2

0

(a2 cos2 ϕ+ b2 sin2 ϕ)1/2dϕ (6)

and recall cn is defined in Section 1. Then

J(a, b) =

(
a2 − 1

2

∞∑
n=0

2nc2n

)
I(a, b)

where I(a, b) is defined in Section 2.
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Here we forego a cumbersome proof that involves heavy algebra,
which can be found in Borwein’s book [3], pp 13-15. Notice that

J(a, b) = aE(x), x =
1

a

√
a2 − b2

With the power of theorem 3.1 and 3.2, we are now in a decent
position to pull out the formula for π which is highly suitable for com-
putation.

Theorem 3.3. With cn defined as in Section 1, namely cn =
√
a2n − b2n

,

π =
4M2(1, 1/

√
2)

1−
∑∞

n=1 2n+1c2n

Proof. We begin by recalling the relations of the elliptic integrals in
Sections 2 and 3, namely

I(a, b) =
1

a
K(x), E(x) =

1

a
J(a, b)

Letting x = x′ = 1/
√

2 in theorem 1, we have

2K

(
1√
2

)
E

(
1√
2

)
−K2

(
1√
2

)
=
π

2

Now if we let a = 1 and b = 1/
√

2 in theorem 2, we have

E

(
1√
2

)
=

(
1−

∞∑
n=0

2nc2n

)
K

(
1√
2

)
Moreover, with theorem 2.2 using the same setting for a and b as

above,

M(1, 1/
√

2) =
π

2K(1/
√

2)

Solving for π completes the proof.
Since, in Section 1, we’ve shown that the arithmetic-geometric mean

and thus cn converge quadratically, this formula computes π in a quadrat-
ical manner.

In fact, theorem 3.3 is the foundation of most of the modern algo-
rithms that efficiently compute π, and the current world record is 31 tril-
lion digits by Emma Haruka Iwao, in particular it’s 31,415,926,535,897
digits.
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Example 3.1 Notice the constant M(1, 1/
√

2) has been constantly
appearing in the context, which implies its close connections with π.
Gauss calculated it with accuracy up to 19 decimal places:

M(
√

2, 1) = 1.198140234735922074 . . .

with the following table in [7, vol. III, pp. 361-371]:

n a n b n
0 1.414213562373905048802 1.000000000000000000000
1 1.207106781186547524401 1.189207115002721066717
2 1.198156948094634295559 1.198123521493120122607
3 1.198140234793877209083 1.198140234677307205798
4 1.198140234735592207441 1.198140234735592207439

Moreover, Gauss’s constant in mathematics, which I believe is neces-
sary to specify, is defined as

G =
1

M(1,
√

2)
= 0.83462684167 . . .

which he discovered in 1799 that

G =
2

π

∫ 1

0

dt√
1− t4

4 Landen’s Transformation

In this section, we will explicitly show the Landen’s Transformation for
the complete elliptic integral of the first kind (Theorem 4.1). Then, we
will state other forms of Landen’s transformation.

We first present a series representation of K(x), the complete elliptic
integral of the first kind defined as (1):

Lemma 4.1.

K(x) =
π

2

∞∑
0

(
1
2

)2
k

(k!)2
x2k

where (α)k is defined by

(α)k = (α + 1)(α + 2) . . . (α + k − 1)
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Proof. Expanding the integrand of k(x) is a binomial series gives

(1− x2 sin2 ϕ)−1/2 =
∞∑
n=0

(
−1

2

n

)
(−1)nein sin2n ϕ

By Weierstrass M-Test, the series converges uniformly and absolutely.
Thus, we can integrate term by term, which gives

K(x) =
∞∑
n=0

(
−1

2

n

)
(−1)nein

∫ π/2

0

sin2n ϕdϕ

=
∞∑
j=0

(2j − 1)!!

(2j)!!
e2j

(2j − 1)!!

(2j)!!

π

2

=
π

2

∞∑
0

(
(2j − 1)!!

(2j)!!
ej
)2

=
π

2

∞∑
0

(
1
2

)2
k

(k!)2
x2k

Now, with the lemma in hand, we turn to show the Landen’s trans-
formation for the complete elliptic integral of the first kind,

Theorem 4.1 If 0 ≤ x < 1, then

K

(
2
√
x

1 + x

)
= (1 + x)K(x)

where K(x) is the complete elliptic integral of the first kind
Proof. Similar as proving the lemma, we expand the left hand side

by binomial series,

K

(
2
√
x

1 + x

)
=

1

2

∫ π

0

(
1− 4x

(1 + x)2
sin2 ϕ

)−1/2
dϕ

=
1

2

∫ π

0

(
1− 2x

(1 + x)2
(1− cos 2ϕ)

)−1/2
dϕ

=
1

2
(1 + x)

∫ π

0

(1 + x2 + 2x cos 2ϕ)−1/2dϕ

=
1

2
(1 + x)

∫ π

0

(1 + xe2iϕ)−1/2(1 + xe−2iϕ)−1/2dϕ

Now we are in good shape to employ the binomial expansion for the
integrand. Since the manipulations are cumbersome and similar to the
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proof of the lemma, we omit them here and conclude

K

(
2
√
x

1 + x

)
=
π

2
(1 + x)

∞∑
0

(
1
2

)2
k

(k!)2
x2k = (1 + x)K(x)

It may seem that Landen’s transformation is simply a change of vari-
able formula. However, its importance lies in its power to compute el-
liptic integrals in an iterative manner. Moreover, the transformation
made possible the theory of more general transformations, leading up to
the theories of modular equations, complex multiplication, and singular
moduli [9].

To illustrate another form of Landen’s transformation, we introduce
Gauss ordinary hypergeometric series,

Definition 4.1.

F (a, b; c;x) =
∞∑
0

(a)k(b)k
(c)kk!

xk, |x| < 1

where a, b, and c denote arbitrary complex number
then the Landen’s transformation for hypergeometric series is given

as

F

(
a, b; 2b;

4x

(1 + x)2

)
= (1 + x)2aF

(
a, a− b+

1

2
; b+

1

2
;x2
)

(7)

where when a = b = 1
2
, we obtain the special case by Theorem 2.1

and 4.1,

F

(
1

2
,
1

2
; 1;

4x

(1 + x)2

)
= (1 + x)F

(
1

2
,
1

2
; 1;x2

)
We will see the importance of these transformation in the next section

when we derive the exact by not simple formulas for the perimeter of
ellipse.

5 Approximation for the perimeter of ellipse

In this section, we will explore the relation between arithmetic-geometric
mean and elliptical perimeter. As mentioned in the abstract, we will first
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examine the exact but not simple formulas, and then the simple but not
exact ones, among which Indian mathematician Ramanujan’s result has
been one of the most accurate.

Definition 5.1. If an ellipse is parameterized by x = a cosϕ and
y = b sinϕ, 0 ≤ ϕ ≤ 2π, then from elementary calculus,

L(a, b) =

∫ 2π

0

(a2 cos2 ϕ+ b2 sin2 ϕ)1/2dϕ = 4J(a, b)

where J(a, b) is as defined (6).
Now we can immediately see from theorem 2.1 and 3.2 that arithmetic-

geometric mean and elliptical perimeter are intrinsically related. But be-
fore presenting the relation, let’s first take a look at two exact formulas.

Theorem 5.1. Let x = a cosϕ and y = b sinϕ, 0 ≤ ϕ ≤ 2π, e =
(1/a)

√
a2 − b2, the eccentricity of the ellipse. Then the perimeter of the

ellipse can be expressed in terms of Gauss’s hypergeometric series

L(a, b) = 2πaF

(
1

2
,−1

2
; 1; e2

)
(8)

= π(a+ b)F

(
−1

2
,−1

2
; 1;λ2

)
(9)

where

λ =
a− b
a+ b

Proof. Similarly, for (8), we expand of the integrand of L(a, b) in a
binomial series, and integrate term by term,

L(a, b) = 4a

∫ π/2

0

(1− e2 cos2 ϕ)1/2dϕ

= 4a
∞∑
n=0

(−1/2)n
n!

e2n
∫ π/2

0

cos2n ϕdϕ

= 2πaF

(
1

2
,−1

2
; 1; e2

)
Moreover, we show (9) by first setting the Landen’s transformation

defined as (7) a = −1/2, b = 1/2, x = λ, then

F

(
−1

2
,
1

2
; 1; e2

)
= F

(
1

2
,−1

2
; 1; e2

)
=
a+ b

2a
F

(
−1

2
,−1

2
; 1;λ2

)
13
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Then, plugging (8) into the above formula, we prove (9).
Clearly, the above two formulae for the perimeter of ellipse involve

the hypergeometric series and are thereby hard to compute. But with
theorems 2.1’ and theorem 3.2, we are able to generate approximations
to the perimeter. Combining the two theorems gives,

L(a, b) = 4J(a, b) =
2π

M(a, b)

(
a2 − 1

2

∞∑
n=0

2nc2n

)
Now one of the simple approximations can be found by replacing

M(a, b) by a2 and neglecting the terms with n ≥ 2,

L(a, b) ≈ 2π

a2

(
a2 − c20

2
− c21

)
=

2πa21
a2

= 2π

(
a+ b
√
a+
√
b

)2

As you may notice, when we only consider the first two terms with
n < 2, the formula is simple enough but exhibiting the complicate sign
of taking the square root. It is reasonable to expect that the higher order
approximations of this method is not suitable in a computational sense
anymore.

Now we want to examine the second highlight of this paper, namely
the highly accurate approximation formula given by India’s mathemati-
cian S. Ramanujan.

Theorem 5.2 Ramanujan, 1914: Suppose L(a, b) denotes the cir-
cumference of the ellipse with major axis a and minor axis b, and λ =
(a− b)/(a+ b), then

L(a, b)

π(a+ b)
≈ 1 +

3λ2

10 +
√

4− 3λ2
(10)

which Ramanujan himself claimed that the formula was found empir-
ically, and exactly how he discovered it still remains a mystery. However,
we are able to appreciate how marvellous this approximation is by look-
ing closely at the error.

Denote the right hand side of (10) as A(λ), then we can examine the
accuracy by comparing the approximation A(λ) with the exact series
expansion, namely

A(λ)− L(a, b)

π(a+ b)
= A(λ)− F

(
−1

2
,−1

2
; 1;λ2

)
(11)
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where for convenience we can simplify the hypergeometric series as

F

(
−1

2
,−1

2
; 1;λ2

)
= 1 +

1

4
λ2 +

1

43
λ4 +

1

44
λ6 +

25

47
λ8 +

49

48
λ10 + . . .

Then, it can be found that the first nonzero term of the series on the
right hand side of (11) is − 3

217
λ10. Moreover, since

λ =
a− b
a+ b

=
1−
√

1− e2

1 +
√

1− e2
≈ e2

4

the error for A(λ) is

π(a+ b)
3λ10

217
≈ 3πa(1 +

√
1− e2)(e2/4)10

217
< 2πa

e20

237
= 3πa

e20

236

Clearly, the approximation is really good when the eccentricity is not
too large, in other words more circular.

For example, for the orbit of Mercury (e = 0.206), the error of this
approximation is about 1.5 × 10−13 meters. Taking Pluto, whose orbit
used to be the most elliptic (e = 0.250) in our solar system, the error
is still less than 10−6 meters. The approximation blows up when we
consider a very extreme case of the orbit of the Halley’s comet, which
has eccentricity e = 0.967, and still yields a decent error of 2585 meters,
Cook [6].

6 Jacobi Elliptic Functions

This concluding section serves as an exploration of some of the topics
discussed above. We will give a definition of Jacobi elliptic function,
examine some of its interesting properties, and explore its further impli-
cations. Most of the contents in this section is due to [4].

The motivation of elliptic functions comes from the well-defined trigono-
metric functions that arise from inverting with reference to the circle.
It is then reasonable to expect that elliptic functions are a generalized
version of trigonometric functions with respect to conic sections, in par-
ticular ellipse.

Indeed, consider the function

f(t) =
1√

1− t2
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From elementary calculus class, we define the inverse sine function
by

F (x) =

∫ x

0

1√
1− t2

dt = sin−1 x, −1 ≤ x ≤ 1

i.e. F (sinϕ) = ϕ. In a similar sense, we first define a corresponding
elliptic version of F , namely the incomplete elliptic integral of the first
kind.

Definition 6.1 Let the elliptic modulus k satisfy 0 ≤ k2 ≤ 1, and
0 ≤ ϕ ≤ π/2. The incomplete elliptic integral of the first kind is defined
as:

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
(1− t2) (1− k2t2)

(12)

where the second equality follows from a change of variable x = sinφ
from the first one.

Notice, the only difference between the complete version defined in
Section 2 and this incomplete version is that we now have another free-
dom of variable φ. In fact, this upper bound of integration is referred to
as the Jacobian amplitude (amp).

Since there are three distinctive trigonometric functions, with the ex-
tra freedom in hand, it is reasonable to expect that there are more in the
case of elliptic functions. In fact, there are twelve Jacobi elliptic func-
tions, which we will be only presenting three of them as representatives.

Definition 6.2 Let u = F (φ, k) where F is defined as in (12), then
the inversion the elliptic integral gives

φ = F−1(u, k) = amp(u, k)

and from this we can define

sinφ = sin (amp(u, k)) = sn(u,k)

cosφ = cos (amp(u, k)) = cn(u,k)√
1− k2 sin2 φ =

√
1− k2 sin2 (amp(u, k)) = dn(u,k)

where sn(u,k), cn(u,k), and dn(u,k) are known as the elliptic sine,
cosine, and delta functions respectively.
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By definition, these functions satisfy the properties as the normal
sine and cosine functions. Namely,

sn2(u, k) + cn2(u, k) = 1, dn2(u, k) + k2sn2(u, k) = 1

and when k = 0, sn(u, 0) = sinu, cn(u, 0) = cosu, dn(u, 0) = 1. Thus,
they serve as nice generalizations of the trigonometric functions.

In general, this is where this paper ends, but we want to make a
few marks here: Following our discussion, we will be entering a whole
new world of elliptic function, in which a lot of substantial connections
and practical results can be found. For example, another way to define
elliptic functions is to consider them in the complex plane, where they
are characterized by doubly periodic meromorphic functions [10].

Moreover, the ordinary nonlinear differential equation that describes
the motion of a simple pendulum is also closely related to elliptic func-
tions. In fact, we will not only be able to produce an exact solution
[2] but also give a fast convergence approximation based on the relation
between AGM and elliptic integral [5].

There is another interesting question that occurs to the author ”is
there a generalized version of arithmetic-geometric mean?” Namely, given
n constants, can we construct n series that converge to the same limit?

Last but not the least, the transformation in Section 4 that is named
after the English mathematician John Landen (1719-1790). He certainly
is not as well-known as some of his contemporaries such as Gauss and
Legendre. However, for those readers who are interested in his history
and works, they definitely would find Watson’s paper enjoyable to read
[11].
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