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Abstract

In this paper, we will discuss graph sparsification. In particular, we study the construction of spectral
sparsifiers by Spielman and Srivastava [7]. In their paper, they show by sampling edges proportional to
the effective resistance, they are able to get a sparsifiers with size O(n logn/ε2) in nearly-linear time.

Instead of directly following their proof, we give a proof without argument of sampling with re-
placement. A key ingredient of our proof is a matrix version of Chernoff bound which we believe is of
independent interest.

Contents

1 Introduction 2

2 Preliminaries 3

2.1 Basic Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The Incidence Matrix and the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The Pseudoinverse and Square Root of Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Electrical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Matrix Chernoff Bounds 5

3.1 Preliminary of Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Proof of Matrix Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Main Result 10

4.1 Reduction to A Projection Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Number of Edges in H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 The Analysis of Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Computing the Resistance 14

1



1 Introduction

Given a weighted graph G = (V,E,w) where n = |V |, m = |E|, and w : E 7→ R+, the sparsification of
such graph is finding a sparser graph H = (V,E′, w′) to approximate the original graph while preserving
some characteristics. We can speed up algorithms whose runtime highly depend upon m by doing such
sparsification.

The characteristic we are interested in is the spectral one, which we consider two graph is similar if their
Laplacian matrices are close as linear operators. Here, we follow the notion of spectral sparsification intro-
duced by Spielman and Teng [9]:

Definition 1.1. The graph H is a κ-spectral approximation of G if for all x ∈ Rn,

x>LGx ≤ x>LHx ≤ κx>LGx,

where LG and LH are Laplacian matrices of G and H.

The main idea of this paper is constructing a random subgraph H of graph G by including each edge of G
in the new graph H with probability proportional to its effective resistance. To define effective resistance,
we can view the graph as a resistor network: Give a graph G = (V,E,w), we replace each edge e with
weights w(e) as an resistor with conductance w(e), i.e., a resistor with resistance 1/w(e). Then, the effective
resistance of edge e is the resistance of this network when unit current is injected at one end of the edge and
extracted at the other end. The algorithm could be stated as follows.

1: procedure Sparsify(G, q)
2: Let H be a empty graph.
3: for edges e ∈ G do
4: Add edge e to H with probability pe = min(1, Reff(e)weq) and weight we/pe.
5: end for
6: return H
7: end procedure

We modify the weight of sampled edges in this way to preserve the Laplacian matrix in expectation. Let Le
denote the elementary Laplacian on edge e, then

LG =
∑
e∈E

w(e)Le.

Thus,

E[LH ] =
∑
e∈E

pe(we/pe)Le = LG.

Now, we formally state the main theorem.

Theorem 1. Given a weighted connected graph G = (V,E,w) and H is the subgraph of G constructed by
the way described above, LG and LH be the Laplacian matrix of G and H respectively, and 1/

√
n < ε ≤ 1.

If q = C log n/ε2, where C is the constant in section 4.3 and if n is sufficiently large, then with probability
at least 1/2

∀x ∈ Rn (1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx.

It is worth noting that LH is also a cut sparsifier by letting x ∈ {0, 1}n.
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2 Preliminaries

2.1 Basic Linear Algebra

Definition 2.1. A symmetric matrix A is positive semi-definite (PSD) if x>Ax ≥ 0 for all x ∈ Rn. We
write A � B if A−B is a PSD matrix.

Theorem 2.2. If M1,M2 be two arbitrary symmetric matrices, if M1 � M2, then for any matrix A, we
have A>M1A � A>M2A.

Proof. For any vector x ∈ Rn,

x>A>M1Ax− x>A>M2Ax = (x>A>)M1(Ax)− (x>A>)M2(Ax) = y>M1y − y>M2y.

where y = Ax. Since M1 �M2, we have

y>M1y − y>M2y ≥ 0.

Thus,
x>A>M1Ax− x>A>M2Ax ≥ 0

for any x ∈ Rn, which implies A>M1A � A>M2A.

Theorem 2.3 (Spectral Theorem). For any symmetric matrix A, there are eigenvalues λ1, λ2, . . . , λn, with
corresponding eigenvectors u1, u2, . . . , un which are orthonormal. We can then wrtite

A =

n∑
i=1

λ1uiu
>
i = UDU>,

where U has ui as its ith column and D = diag(λ1, . . . , λn).

Definition 2.4. The trace of a square matrix A, denoted as Tr(A), is defined to be the sum of elements on
the main diagonal of A.

Theorem 2.5. The trace of symmetric matrix A ∈ Rn×n is equal to the sum of its eigenvalues.

Proof. By definition of trace

Tr(A) =

n∑
i=1

e>i Aei,

where ei is the ith vector of standard basis. Using spectral theorem, we can write

Tr(A) =

m∑
i=1

e>i

 n∑
j=1

λju
>
j uj

 ei

=

n∑
i=1

n∑
j=1

λje
>
1 uju

>
j ei

=

n∑
i=1

n∑
j=1

λj(e
>
i uj)

2

=

n∑
j=1

n∑
i=1

(e>i uj)
2

=

n∑
j=1

λj .
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The last identity uses the fact that for any vector uj ,
∑n
i=1(e>i uj)

2 = ‖uj‖2.

2.2 The Incidence Matrix and the Laplacian

Let G = (V,E,w) be a connected weighted undirected graph with n vertices and m edges and edge weights
we > 0. If we orient the edges of G arbitrarily, we can write its Laplacian as L = B>WB, where Bm×n is
the signed edge-vertex incidence matrix, given by

B(e, v) =

 1 if v is e’s head
−1 if v is e’s tail
0 otherwise

and Wm×m is the diagonal matrix with W (e, e) = we. It is immediate that L is a PSD matrix since:

x>Lx = x>B>WBx = ‖W 1/2Bx‖22
=

∑
(u,v)∈E

wu,v(xu − xv)2 ≥ 0, for every x ∈ Rn.

and that G is connected if and only if ker(L) = ker(W 1/2B) = span(1). Then, rank(L) = n − 1, which
implies L has n− 1 nonzero eigenvalues.

2.3 The Pseudoinverse and Square Root of Matrix

Since L is symmetric we can diagonalize it and write

L =

n−1∑
i=1

λiuiu
>
i

where λ1, . . . , λn−1 are the nonzero eigenvalues of L and u1, . . . , un−1 are a corresponding set of orthonormal
eigenvectors. The Moore-Penrose Pseudoinverse of L is then defined as

L+ =

n−1∑
i=1

1

λi
uiu
>
i .

Notice that ker(L) = ker(L+) and that

LL+ = L+L =

n−1∑
i=1

uiu
>
i ,

which is simply the projection onto the span of the nonzero eigenvectors of L (which are also the eigenvectors
of L+). Thus, LL+ = L+L is the identity on im(L) = ker(L)⊥.

We can define the square root of matrix in a similar way: for a symmetric matrix L, which can be diagonalized
as L =

∑n−1
i=1 λiuiu

>
i , we define its square root as

L1/2 =

n−1∑
i=1

λ
1/2
i uiu

>
i
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2.4 Electrical Flow

We describe the electrical flow of graphs by the following notations: for vector iext(u) of currents injected
at the vertices, let i(e) be the currents induced in the edges and v(u) the potential induced on the vertices.
By Kirchoff’s law, the currents entering a vertex is equal to the amount injected at the vertex:

B>i = iext.

By Ohm’s law, the current flow in an edge is equal to potential difference across its ends times its conductance:

i = WBv.

Combining these two facts, we have
iext = B>(WBv) = Lv.

Then, if iext ⊥ span(1), we can write
v = L+iext.

Definition 2.6. The effective resistance between two vertices u and v is defined as the potential difference
between u and v when a unit is injected at one and extracted at another. We denote the effective resistance
across edge by

Reff(a, b) = (δa − δb)>L+
G(δa − δb),

where δk is the unit vector which have 1 in kth coordinate.

3 Matrix Chernoff Bounds

In the original paper [7], Spielman and Srivastava use a concentration bound of Rudelson [6], which requires
an argument of sampling with replacement. Here, we avoid the replacement by using the an matrix analogy
of the Chernoff bound [10].

Theorem 2. (Matrix Chernoff Bound) Let X1, . . . ,Xm be independent random n-dimensional symmetric
positive semidefinite matrices so that ‖Xi‖ ≤ R almost surely. Let X =

∑
i Xi and let µmin and µmax be the

minimum and maximum eigenvalues of

E[X] =
∑
i

E[Xi].

Then,

Pr

[
λmin(

∑
i

Xi) ≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

, for 0 < ε < 1 and

Pr

[
λmax(

∑
i

Xi) ≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax/R

, for 0 < ε.

3.1 Preliminary of Matrix Analysis

Before we start the proof of Matrix Chernoff Bound, we need some basic concepts and facts.

Definition 3.1. (Spectral mapping) Let f : R 7→ R be a function. We extend f to a new function f(A) on
symmetric matrices by applying f to eigenvalues of A. Recall that we can diagonalize A into

A = UDU>,

Define f(A) = Uf(D)U>, where f(D) is the diagonal matrix with f(D)i,i = f(Di,i).
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We can extends concepts of monotonicity and concavity to matrices as follows.

Definition 3.2. A function f : R 7→ R is

• Operator monotone is f(A) � f(B) where A � B.

• Operator concave if f((1− α)A+ αB) � (1− α)f(A) + αf(B) for all α ∈ [0, 1] and all A,B.

It’s worthy note that function f monotone does not imply that f is operator monotone. For a counter
example, consider

f(X) = x2, A =

[
1 1
1 1

]
, B =

[
2 1
1 1

]
,

where f is monotone on R≥0 and A � B, but f(A) 6� f(B). Similarly, f concave does not imply that f
is operator concave. For a counter example, consider f(x) = −x3, the same matrices A and B provides a
counter example with x = 0.5.

To get around these problems, we using the following inequalities that are known to hold.

Theorem 3.3. Let f : R 7→ R and g : R 7→ R satisfy f(x) ≤ g(x) for all x ∈ [l, u]. Suppose A is symmetric
and all the eigenvalues of A are in the interval [l, u]. Then f(A) � g(A).

Proof. Let A = UDU>, then

g(A)− f(A) = Ug(D)U> − Uf(D)U> = U(g(D)− f(D))U>.

Since the diagonal entries of D are exactly eigenvalues of A, which falls in the interval [l, u], then g(Di,i) ≥
f(Di,i) for all i. Therefore, the diagonal matrix g(D)−f(D) has non-negative entries on the diagonal, which
implies g(D)−f(D) is PSD. By Theorem 2.2, then U(g(D)−f(D))U> is also PSD. Hence f(A) � g(A).

Theorem 3.4. If X and Y are random matrices and X � Y , then E[X] � E[Y ].

Proof. This is a easy cor of linearity of expectation. If X � Y , then Y − X is a PSD matrix, then
E[Y −X] = E[Y ]− E[X] is also PSD.

Theorem 3.5 (Weyl’s Monotonicity Theorem). Suppose A and B are symmetric, n×n matrices. Let λi(A)
be the ith largest eigenvalue of A. If A � B, then λi(A) ≤ λi(B) for all i.

Proof. 1 We use the variational characterization of eigenvalues for symmetric matrices:

λi(A) = max{min{RA(x) | x ∈ U \ {0}} | U ⊂ V,dim(U) = i},

where RA(x) =
xTAx

xTx

To see this, consider the decomposition of Rn into the eigenspaces E1, . . . , En of A, where Ej = span{vj},
and vj is a unit eigenvector of A with eigenvalue λj(A). By taking U = Si =

∑i
j=1Ej , we see the RHS

above is ≥ RA(vi) =
λiv

T
i vi

vTi vi
= λi, since vi minimizes RA(x) for x ∈ Si.

On the other hand, let P be the orthogonal projection onto Si, let U be any subspace with dimension i and
consider P |U , the restriction of P to U . If P |U has trivial kernel, then rank(P |U ) = dim(U) = rank(P ),
so we conclude U = im(P ) = Si. Otherwise, say x ∈ kernel(P |U ), x 6= 0. Then x is a linear combination of
eigenvectors vj with j > i, so

1I follow the proof of [2]
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xTAx

xTx
=

∑n
j=i+1 α

2
jλj∑n

j=i+1 α
2
j

≤
∑n
j=i+1 α

2
jλi+1∑n

j=i+1 α
2
j

= λi+1 ≤ λi,

thus the minimum of RA over U is less than or equal to the minimum of RA over Si, and the RHS above is
≤ λi.

Now we prove the claim. Suppose SA maximizes the expression min{RA(x) | x ∈ SA \ {0}} among all
subspaces with dimension i, and SB is similiarly the maximizer for B. We have:

λi(B)− λi(A)

= min{RB(x) | x ∈ SB \ {0}} −min{RA(x) | x ∈ SA \ {0}}
≥ min{RB(x) | x ∈ SA \ {0}} −min{RA(x) | x ∈ SA \ {0}}
(1)

≥ min{RB(x)−RA(x) | x ∈ SA \ {0}}
(2)
= min{RB−A(x) | x ∈ SA \ {0}}
≥ min{RB−A(x) | x ∈ Rn \ {0}}
= λn(B −A)

(3)

≥ 0

To obtain (1), say xA, xB are the minimizers for A,B in SA respectively. Then RA(xA) ≤ RA(xB), so

RB(xB)−RA(xA) ≥ RB(xB)−RA(xB) ≥ min{RB(x)−RA(x) | x ∈ SA \ {0}},

establishing (1).
For (2), note

RB(x)−RA(x) =
xTBx

xTx
− xTAx

xTx
=
xT (B −A)x

xTx
= RB−A(x)

(3) follows by the fact that B −A is PSD.

Corollary 3.6. If f is monotone, then Tr f is monotone.

Proof. This follows directly from Theorem 3.5. Suppose symmetric matrices A � B, then

Tr f(A) =

n∑
i=1

f(λi(A)) ≤
n∑
i=1

f(λi(B)) = Tr f(B).

Theorem 3.7 (Löwner-Heinz Theorem). 2 log is operator concave.

Another annoyance of matrix analysis is that matrix multiplication is not commutative, hence we define a
commutative multiplication.

Definition 3.8. If A,B are positive definite matrices, then we define A�B = exp(log(A) + log(B)).

2See Theorem 2.6 in [3] for the proof
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Note that the logarithm and exponential of matrix are defined by power series, where

exp(A) ≡
∞∑
n=0

An

n!
, log(A) ≡

∞∑
n=1

(−1)n+1 (A− I)n

n
.

Theorem 3.9 (Lieb’s Theorem [5]). Fix any symmetric H. The map A 7→ Tr exp
(

log(A) +H
)

is concave
on positive definite matrices.

Corollary 3.10. Tr(A�B) is concave in A.

Proof. By definition of �, Tr(A� B) = Tr exp(logA+ logB), then it suffices to apply Lieb’s theorem with
H = logB.

Corollary 3.11. Let B be fixed, and A a random matrix. Then E[Tr(A�B)] ≤ Tr(E[A�B]).

Proof. Since Tr(A�B) is concave in A, then apply Jensen’s inequality, we have

E[Tr(A�B)] ≤ Tr(E[A�B]).

Corollary 3.12. Let A1, . . . , Ak be independent random positive definite matrices. Then

E[Tr(A1 � . . .�Ak)] ≤ Tr(E[A1]� . . .� E[Ak])

Proof. This could be proved by induction and combining Corollaries 3.10 and 3.11.

3.2 Proof of Matrix Chernoff Bound

Lemma 3.13.

Pr

[
λmax(

k∑
i=1

Xi) ≥ t

]
≤ e−θt · Tr

[
k⊙
i=1

E[exp(θXi)]

]

Proof.

Pr

[
λmax(

k∑
i=1

Xi) ≥ t

]
= Pr

[
λmax(

k∑
i=1

θXi) ≥ θt

]

= Pr

[
expλmax(

k∑
i=1

θXi) ≥ exp(θt)

]

≤ e−θt · E[expλmax(

k∑
i=1

θXi)].

The last inequality follows by the Markov’s inequality.

Notice that

expλmax(

k∑
i=1

θXi) = λmax(exp

k∑
i=1

θXi) ≤ Tr

(
exp

k∑
i=1

θXi

)
.
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The inequality follows by Theorem 2.5 and the sum of eigenvalues is greater than the maximum eigenvalue.

Thus, we have

Pr

[
λmax(

k∑
i=1

Xi) ≥ t

]
≤ e−θt · E[Tr exp(

k∑
i=1

θXi)]

= e−θt · E[Tr exp(

k∑
i=1

log(exp θXi))]

= e−θt · E[Tr(e−θX1 � e−θX2 � . . .� e−θXk)] by definition of �

≤ e−θt · Tr

[
k⊙
i=1

E[exp(θXi)]

]
bf Corollary 3.12

Lemma 3.14. Let X be a random symmetric matrix such that 0 � X � I, then

E[eθX] � I + (eθ − 1)E[X].

Proof. For x ∈ [0, 1], eθx ≤ 1 + (eθ − 1)x by convexity. Since 0 � X � I, λmin(X) ≥ 0 and λmax(X) ≤ 1,
then by Theorem 3.3,

eθX � I + (eθ − 1)X.

Then, by Theorem 3.4,
E[eθX] � I + (eθ − 1)E[X].

Proof of Theorem 2. We only prove the upper bound. WLOG, we assume R = 1. By the operator concavity
of the log function (Löwner-Heinz Theorem),

k∑
i=1

logE[eθXi ] = k

k∑
i=1

1

k
logE[eθXi ] � log

(
k∑
i=1

1

k
E[eθXi ]

)
. (1)
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Then, we have

Tr

[
k⊙
i=1

E[exp(θXi)]

]

= Tr

(
exp

k∑
i=1

log(E[eθXi ])

)
by definition of �

≤ Tr

(
exp

(
k log

(
k∑
i=1

1

k
E[exp(θXi)]

)))
by inequality 1 and Corollary 3.6

≤ d · λmax

(
exp

(
k log

(
k∑
i=1

1

k
E[exp(θXi)]

)))
by
∑

λi ≤ dλmax

= d · exp

(
k log λmax

(
k∑
i=1

1

k
E[exp(θXi)]

))

≤ d · exp

(
k log λmax

(
I + (eθ − 1)

k∑
i=1

1

k
E[exp(θXi)]

))
by 3.14 and Weyl’s Monotonicity Theorem

= d · exp

(
k log

(
1 +

1

k
(eθ − 1)λmax

(
k∑
i=1

E[Xi]

)))
≤ d exp[(eθ − 1)µmax] by log(1 + x) < x.

Thus, by plugging the inequality above to Lemma 3.13 and let t = (1 + δ)µmax and θ = log(1 + δ), we have

Pr

[
λmax(

k∑
i=1

Xi) ≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1 + δ)1+δ

)
.

4 The Main Result

4.1 Reduction to A Projection Matrix

Theorem 4.1. For positive semidefinite matrices A and B, we have

A 4 (1 + ε)B ⇐⇒ B−1/2AB−1/2 4 (1 + ε)I.

Proof. It’s a easy corollary of Theorem 2.2.

The same things holds for singular semidefinite matrices that have the same nullspace:

LH 4 (1 + ε)LG ⇐⇒ L
+/2
G LHL

+/2
G � (1 + ε)L

+/2
G LGL

+/2
G ,

where L
+/2
G is the square root of the Pseudoinverse of LG. Let

Π = L
+/2
G LGL

+/2
G ,
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which is the projection onto the range of LG.

As multiplication by a fixed matrix is a linear operation and expectation commutes with linear operations,
we have

E
[
L

+/2
G LHL

+/2
G

]
= L

+/2
G (ELH)L

+/2
G = L

+/2
G LGL

+/2
G = Π.

Hence, it suffices to show

∀x ∈ Rn (1− ε)x>Πx ≤ x>L+/2
G LHL

+/2
G x ≤ (1 + ε)x>Πx,

with probability at least 0.5.

Lemma 4.2 (Lemma 3 in [7]). The eigenvalues of Π are 1 with multiplicity n − 1 and 0 with multiplicity
m− n+ 1.

Proof. First, we show that Π2 = Π. Notice that we can rewrite the matrix Π as W 1/2BL+
GB

TW 1/2. Then,

Π2 = (W 1/2BL+
GB

TW 1/2)(W 1/2BL+
GB

TW 1/2)

= W 1/2BL+
GB

TWBL+
GB

TW 1/2

= W 1/2BL+
GLGL

+
GB

TW 1/2

= W 1/2BL+
GB

TW 1/2

= Π.

Then, we have
im(Π) = im(W 1/2BL+BTW 1/2) ⊆ im(W 1/2B).

To show the inclusion of another direction, assume y ∈ im(W 1/2B). Then we can choose x ⊥ ker(LG) such
that W 1/2Bx = y. Then,

Πy = W 1/2BL+
GB

TW 1/2W 1/2Bx

= W 1/2BL+
GLGx

= W 1/2Bx x ∈ im(L+
G)

= y.

This means y ∈ im(Π). Thus, we have

dim(im(Π)) = dim(im(W 1/2B)) = n− dim(ker(W 1/2B)).

Since we show dim(ker(W 1/2B)) = 1 in section 2.2, dim(im(Π)) = n − 1. We have Π2 = Π, which means
eigenvalues of Π are either 1 or 0, so the eigenvalues of Π are 1 with multiplicity n−1 and 0 with multiplicity
m− n+ 1.

Now, we try to give a bound on the expected number of edges Y in the subgraph H.
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4.2 Number of Edges in H

We have

E[Y ] =
∑
e∈E

pe

=
∑
e∈E

min(1, qweReff(e))

≤
∑
e∈E

qweReff(e)

= q
∑
e∈E

weReff(e)

= q
∑

(u,v)∈E

w(u,v)(δu − δv)TL+
G(δu − δv)

= q
∑

(u,v)∈E

w(u,v) Tr(L+
G(δu − δv)(δu − δv)T )

= qTr

 ∑
(u,v)∈E

w(u,v)L
+
G(δu − δv)(δu − δv)T


= qTr

(
L+
G

∑
e∈E

weLe

)
= qTr(L+

GLG)

= qTr(Π)

= q(n− 1) (by Lemma 4.2)

=
C log n(n− 1)

ε2
.

This shows graph H only have Cn log nε−2 many edges in the expectation. Then, we can use the Chernoff
bound (for the real number) to show that the number of edges in graph H will almost be multiple of its
expectation.

Pr[Y > kE[Y ]] ≤ exp

(
− (k − 1)2E[Y ]

k + 1

)
≤ exp

(
Ckn log n

ε2

)
By let k = 10, we have Y < 10E[Y ] with probability less than 10−3.

4.3 The Analysis of Deviation

We define

Xe =

{
we/peL

+/2
G LeL

+/2
G with probability pe

0 o.w.

First, we show that Xe has small norms, so that we could apply matrix Chernoff bound later.
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Similar to the equation above, we have∥∥X(u,v)

∥∥ = (w(u,v)/p(u,v))
∥∥∥L+/2

G L(u,v)L
+/2
G

∥∥∥
= (w(u,v)/p(u,v)) Tr(L+

G(δu − δv)(δu − δv)>)

=
w(u,v)Reff(u, v)

p(u,v)
.

Recall that we define
pe = min(1, qweReff(e)),

we have ∥∥X(u,v)

∥∥ ≤ q−1 =
ε2

C log n
. (2)

It is easy to find that

E

[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] = Π.

Before using the matrix Chernoff bound, we use the following approximation to make life easier.(
e−ε

(1− ε)1−ε

)
≤ e−ε

2/2, for 0 < ε < 1, and(
eε

(1 + ε)1+ε

)
≤ e−ε

2/3, for 0 ≤ ε < 1.

Then, we can obtain the following bound by combining matrix Chernoff bound (Theorem 2) and the ap-
proximation above:

Pr

[
λmin(

∑
i

Xi) ≤ µmin − εµmax

]
≤ n exp

(
−1

2

(
εµmax

µmin

)2

µmin/R

)

= n exp

(
−ε

2

2

(
µmax

µmin

)
µmax/R

)
≤ n exp

(
−ε

2

2
µmax/R

)
.

Then, using the bound of inequality 2, we get

Pr[
∑
e∈E

Xe � (1 + ε)Π] ≤ n exp(−ε2Cε−2 log n/3) = n−C/3+1,

and
Pr[
∑
e∈E

Xe � (1− ε)Π] ≤ n exp(−ε2Cε−2 log n/2) = n−C/2+1.

We can let C = 20, which gives us probability less than 10−4 for both sides.

For the edges which have pe = 1, we can deal with them by split the corresponding matrix into K copies for
some large K. This will not change the expectation, and since each copy Xe/K has a small norm, we can
apply the matrix Chernoff bound again.
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5 Computing the Resistance

Here, we show how to compute the approximate effective resistance in nearly-linear time by using Spielman
and Tengs’s fast Laplacian solvers [8] and the Johnson-Lindenstrauss dimension reduction [4].

Theorem 3 (theorem 2 in [7]). There is an Õ(m(log r)ε−2) time algorithm which on input ε > 0 and

G = (V,E,w) with r = wmax/wmin computes a (24 log nε−2)× n matrix Z̃ such that with probability at least
1− 1/n

(1− ε)Reff(u, v) ≤
∥∥∥Z̃(δu − δv)

∥∥∥2

≤ (1 + ε)Reff(u, v)

for every (u, v) ∈ V × V .

Notice that we can rewrite the effective resistance as

Reff(u, v) = (δu − δv)TL+
G(δu − δv).

Then, we have

Reff(u, v) = (δu − δv)TL+
G(δu − δv)

= (δu − δv)TL+
GLGL

+
G(δu − δv)

= (δu − δv)TL+
G(BTWB)L+

G(δu − δv)
= ((δu − δv)TL+

GB
TW 1/2)(W 1/2BL+

G(δu − δv))

=
∥∥∥W 1/2BL+

G(δu − δv)
∥∥∥2

2

This shows we can treat effective resistance as square of the pairwise Euclidean distance after do the pro-
jection into W 1/2BL+

G. By Johnson-Lindenstrauss Lemma, we can preserve the pairwise Euclidean distance
by projecting these vector into a subspace spanned by O(log n) random vectors. Here, we using a modified
version of Johnson-Lindenstrauss Lemma [1].

Lemma 5.1. Given fixed vectors v1, . . . , vn ∈ Rd and ε > 0, let Qk×d be a random ±1/
√
k matrix (i.e.

independent Bernoulli entries) with k > 24 log nε−2. Then with probability at least 1− 1/n

(1− ε) ‖vi − vj‖22 ≤ ‖Qvi −Qvj‖
2
2 ≤ (1 + ε) ‖vi − vj‖22

for all pairs i, j ≤ n.

Then, instead of computing the projection matrix, we are interested in computing the project {QW 1/2BL+
Gδv}.

Actually, we will use the fast Laplacian solver of Spielman and Teng [8] to find the projection.

Theorem 5.2. There is an algorithm x = STSolve(L, y, δ) which takes a Laplacian matrix L, a column
vector y, and an error parameter δ > 0, and returns a column vector x satisfying∥∥x− L+y

∥∥
L
≤ ε

∥∥L+y
∥∥
L
,

where ‖y‖L =
√
yTLy. The algorithm runs in expected time Õ(nnz(L) log(1/δ)), where nnz(L) is the number

of nonzero entries of L.

Let Z = QW 1/2BL+
G, we compute its approximation Z̃ by using STSolve to approximate row of Z. For

matrix X, we use xi to denote the ith row of matrix X. Now, we construct the matrix Z̃ in the following
steps:

14



1. Let Q be a random ±1/
√
k matrix of dimension k × n where k = 24 log nε−2.

2. Compute Y = QW 1/2B.

3. For 1 ≤ i ≤ k, compute z̃i = STSolve(L, yi, δ).

3It suffices to call STSolve with

δ =
ε

3

√
2(1− ε)wmin

(1 + ε)n3wmax
.

Note the second steps only takes 2m × 24 log nε−2 + m time, since B only has 2m entries and W is an
diagonal matrix.

Thus, the construction of Z̃ takes Õ(m log(1/δ)ε−2) = Õ(m log rε−2). Then,to query the approximate
effective resistance, we only need to subtract the corresponding column in O(log nε−2) time.
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