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1 Introduction

Prime numbers have long been a fascination of mathematicians. Prime numbers
are positive integers whose factors are only one and itself. This paper will
introduce the reader to interesting limits, sequences, and series involving prime
numbers and the solutions giving insight into this realm of mathematics. At
the end there is a discussion about current research and more difficult problems
as well as connections to other areas of math. Finally there is a brief appendix
covering in introductory detail other areas of math that are often used with
these problems.

One of the first properties of this subset of the integers is that there are an
infinite amount of prime numbers. This was proven in Euclid’s Elements around
300 BC. The well known proof takes the form of contradiction, suppose that
there exists a finite amount of prime numbers and hence a largest prime. Index
each prime number, that is two is the first prime, three is the second, five is
the third, and so forth. The notation, pn will be used to notate the nth prime.
Suppose that the largest prime is the jth prime. Multiply all the prime numbers
together which is a finite number of elements so its product is also finite which
is

j∏
n=1

pn = q

. Now look at q + 1. This new number is also an integer which itself is either
prime or it has a prime factor greater than pj since no prime number less than
or equal to pj can divide q + 1. This proves that there is an infinite amount of
primes. The Chaitin book in the additional reading gives a radically different
proof of the infinity of the primes. While also using contradiction, Chaitin, a
computer scientist makes an argument that if there were finitely many primes
then it would be ”too efficient” for integers larger than some large number to
be represented. However the properties of this infinite set of prime numbers
has been and still is an extremely active area of mathematical interest. It is
helpful to establish some notation for the discussion of prime numbers, π(x) is
the number of primes less than x. The relation ∼ between two expression, f(n)
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and g(n), f(n) ∼ g(n) holds if

lim
n→∞

f(n)

g(n)
= 1

. This means that f(n) is asymptotic to g(n) and that the two functions are ap-
proximately equal for large enough n. An example is, 1

n2+n ∼
1
n2 which is easily

proved by L’Hôpital’s rule. Note that π(n) is locally irregular, it stays constant
for a while and then occasionally bumps up by one. A further discussion of
approximation theory is included at the end.

One interesting limit to look at is limn→∞
π(n)
n that is number of primes less

than or equal to n over n. This is looking at the density of the primes. Suppose
the limit existed and was equal to some number k. Take some very large number

n and it follows then that π(n)
n = k and π(2n)

2n = k. Note that the number of

primes between n + 1 and 2n is equal to π(2n) minus π(n). Consider
(

2n
n<4n

)
which holds as the total number of subsets, 22n = 4n, is less than the number
of n-subsets. Note that

(
2n
n

)
is an integer and by writing out it in factorial form

it is clear that all the prime numbers between n+ 1 and 2n are factors of
(
2n
n

)
.

Since each of these prime numbers is less than n it follows that nπ(2n)−π(n) <(
2n
n

)
< 4n. Taking the logarithm of both sides gives,

π(2n)− π(n) < log 4 · n

log n

. This can be expanded to

π(2k)− π(2k−1) < log 4 · 2k−1

(k − 1) log 2
=

2k

k − 1

. Now sum from k = 2 to k = 2m and noting that the left side telescopes and
doing some series and inequality manipulation to the right side gives,

π(22m)− π(2) < 2m+1 +
22m+1

m

. For any positive x there is an integer j such that 4j−1 < x ≤ 4j . This implies

j − 1 < log4(x) ≤ j. Note that π(4j) < 1 + 2j+1 + 22j+1

j . Combining this gives

π(x) ≤ π(4j) < 1 + 22+log4(x) +
22(1+log4(x))+1

log4(x)
= 1 + 4

√
x+

8x

log4(x)

. Then dividing by x gives,

π(x)

x
=

1

x
+

4√
x

+
8

log4(x)

which shows that

lim
x→∞

π(x)

x
= 0
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proving the density of primes is zero. This naturally leaves the reader to wonder
the behavior of π(n) which leads to the prime number theorem.[2]

Perhaps the most famous limit involving prime numbers is the prime number
theorem. As this theorem will be covered in this course through the methods of
complex analysis the proof and understanding is left to the classroom. Briefly
stated, π(n) ∼ n

log(n) . An elegant proof of the theorem is in the additional

reading section. A very brief but insightful sketch was given by Terence Tao.
Create a ”sound wave” (von Mangoldt function) which is noisy at primes but
quiet elsewhere. Take Fourier transforms, the recorded ”notes” are the zeros
of the Riemann zeta function. Further work using Fourier series and other
mathematical manipulations gives the prime number theorem. Below shows the
very slow convergence.

2 Analogies Between Integers and the Set of
Primes

With the knowledge that the set of primes is infinite and its density in the
integers goes to zero, it is interesting to look at previous problems and just
looking over the set of primes. The first example that might come to mind
is the harmonic series, which diverges when summed over all the integers but
converges for certain subsets like integers that are powers of two. This section
will focus on further defining properties of the set of prime numbers through
familiar problems.

2.1 Reciprocal of the Primes (Harmonic Series)

The famous harmonic series,
∑

1
n diverges when summed over the integers and

it can easily be shown from this summing the harmonic series over subsets that
do not have zero density in the integers will also diverge. However, certain
subsets will converge such as the powers of two. Consider

∑
1
p that is the sum

of the reciprocals of the primes. This proof is from Euler in 1731. Let

A1 =
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · ·

and

An =
1

2n
+

1

3n
+

1

5n
+

1

7n
+

1

11n
+ · · ·

. Euler proves early in the paper that 2·3·5·7·11···
1·2·4·6·10··· where the numerators are the

prime numbers and the denominators are one less than the prime number is the
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same as the sum of the harmonic series and diverges. A corollary of this is that
if ∞ is absolute infinity, then the value of the above expression is `∞ which
is the minimum among all powers of infinity. This is theorem seven for the
interested reader. Clearly An converges for n > 1 and since

∑
1
kn > An where

the sum 1
kn is over all the integers greater than one. It follows since

∑∞
2

1
k2 < 1

and An < (A2)n−1 that
∑∞

2
1
nAn converges. Note that

∞∑
1

1

n
An = `

2

1
+ `

3

2
+ `

4

3
+ · · ·

and so e
∑∞

1
1
nAn = 2·3·5·7·11···

1·2·4·6·10··· =
∑∞) 1

n
1 by theorem seven. Since

∑∞
2

1
nAn

converges it follows that A1, the sum of the reciprocal of the primes diverges.
It is easy to share by comparison to

∫∞
1

1
xdx that the harmonic series diverges

logarithmically. It is left as an exercise to the reader to show that the sum of the
reciprocal of the primes diverges as ln ln(n). Hint: theorem seven establishes an
important relationship and since

∑∞
2

1
nAn converges try to make an argument

for just an expression of eA1 . [4]

2.2 Prime Number Equidistribution Theorem

An interesting math problem is consider an irrational α and the sequence αn. In
the early twentieth century a number of mathematicians separately proved that
the sequence mod 1 is uniformly distributed on the interval [0, 1]. Uniformly
distributed means that amount of points of the sequence in a sub-interval divided
by the total number of points in the sequence is equal to the length of the sub-
interval divided by the length of the entire interval. It follows then that a
uniformly distributed sequence is dense in the interval.

Perhaps surprisingly, this property also holds for the sequence αpn mod 1,
where irrational number is only multiplied by the primes. This was proven
by I.M. Vinogradov in 1935 but in Russian. While it is easy to verify that αn
mod 1 is dense in [0, 1] using the pigeonhole principle the prime number sequence
is more nuanced and left to the reader to seek out. This paper will look at an
easier result to understand instead looking at log pn mod 1 and showing that
it is not uniformly distributed. Suppose it is uniformly distributed.

Nk = inf{ n : pn > ek} Mk = inf{ n : pn > ek−
1
2 }

F (x) = 1 x ∈ [0,
1

2
), F (x) = 0 x ∈ [

1

2
, 1)

F (x) is one periodic. Since it is assumed that it is uniformly distributed it
follows that,

1

Mk

∑
n≤Mk

F (log pn)
1

Nk

∑
n≤Nk

F (log pn)

have the same non-zero limit. By the prime number theorem

Nk = π(ek) ∼ ek

k
∼ ek

k − 1
2

∼
√
eMk
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This is a contradiction about them being equidistant and so log pn mod 1 is
not uniformly distributed. [1]

3 Familiar Mathematical Constants Come Up
Again

Perhaps the most famous mathematical constants, π, the ration between the
circumference of a circle and its diameter, comes up in seemingly unrelated
areas of math. One example of this is the Basel problem, whose solution shows

that
∑∞

1
1
n2 = π2

6 . Consider,

3 · 5 · 7 · 11 · 13 · 17 · · ·
4 · 4 · 8 · 12 · 12 · 16 · · ·

where the numerators are the product of the prime numbers greater than two
and the denominators are the closest factor of four (Euler calls these even-
even numbers) to the prime number. Using Leibniz’s formula for π, using the
Taylor series of arctan gives, π

4 = 1 − 1
3 + 1

5 −
1
7 + 1

9 − · · · . It follows that,
1
3 ·
π
4 = 1

3−
1
9+ 1

15−
1
21+· · · and then summing gives, 4

3 ·
π
4 = 1+ 1

5−
1
7−

1
11+ 1

13+· · · .
Multiplying by 1

5 gives 1
5 ·

4
3 ·

π
4 = 1

5 + 1
25−

1
35−

1
55 · · ·+ and then with subtraction

gives, 4
5 ·

4
3 ·

π
4 = 1− 1

7 −
1
11 + 1

13 + · · · Note that this series has no denominators
that are divisible by either three or five. This same process can be continued by
multiplying by 1

7 and doing the same process to get 8
7 ·

4
5 ·

4
3 ·
π
4 = 1− 1

11+ 1
13+ 1

17 · · · .
Note that this process which are divisible by a prime number of from 4n−1 are
removed through addition and a new factor is added, 4n

4n−1 . The subtraction
part gets rid of prime numbers of the form 4n + 1 in the denominators while
adding a factor of 4n

4n+1 . This process continued gives denominators that are
prime numbers and numerators that are the closest multiple of four. Since the
original series for π

4 converges and each process removes a term to the right of
the 1 it follows that

4 · 4 · 8 · 12 · 12 · 16 · · ·
3 · 5 · 7 · 11 · 13 · 17 · · ·

· π
4

= 1 · · ·

but as each process removes a term to the left of the 1 the sum of the remaining
terms go to zero as it convergent and hence Cauchy. It follows after inverting
the fraction that

3 · 5 · 7 · 11 · 13 · 17 · · ·
4 · 4 · 8 · 12 · 12 · 16 · · ·

=
π

4
.

Another interesting ratio is

3 · 5 · 7 · 11 · 13 · 17 · · ·
2 · 6 · 6 · 10 · 14 · 18 · · ·

where the numerators are the odd primes and the denominators are the nearest
”odd-even” number to the prime. That is the closest even number when divided
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by two is an odd number. Through previous work in Euler’s 1744 paper,

π2

8
=

3 · 3 · 5 · 5 · 7 · 7 · 11 · 11 · · ·
2 · 4 · 4 · 6 · 6 · 8 · 10 · 12 · · ·

where the numerators are twice the odd prime numbers and the denominators
are the numbers one greater and one less than the prime. Coupled with the
expression for pi

4 gives

π2

8
pi
4

=
π

2
=

3·3·5·5·7·7·11·11···
2·4·4·6·6·8·10·12···
3·5·7·11·13·17···
4·4·8·12·12·16···

=
3 · 5 · 7 · 11 · 13 · 17 · · ·
2 · 6 · 6 · 10 · 14 · 18 · · ·

.
One of Euler’s most famous formulas involves a generalization of the Basel

problem.

2n · 3n · 5n · 7n · 11n · · ·
(2n − 1)(3n − 1)(5n − 1)(7n − 1)(11n − 1) · · ·

=

∞∑
k=1

1

kn

Let x =
∑∞
k=1

1
kn hence 1

2nx = 1
2n + 1

4n + 1
6n + 1

8n + · · · hence, 2n−1
2n x =

1 + 1
3n + 1

5n + 1
7n + · · · hence, 2n−1

2n · 1
3nx = 1

3n + 1
9n + 1

15n + 1
21n + · · · hence,

(2n−1)(3n−1)
2n·3n x = 1 + 1

5n + 1
7n .... This procedure can be continued for each

prime number and the sum of the remaining terms after 1 on the right side are
eliminated as it extends to all primes giving,

(2n − 1)(3n − 1)(5n − 1)(7n − 1)(11n − 1) · · ·
2n · 3n · 5n · 7n · 11n · · ·

x = 1

Finally solving for x and writing x out gives the desired result.
These above solutions and problems are from Euler’s seminary work published
in 1737. An enjoying aspect of this paper is the language of Euler’s time such
as multiples of four being called even-even numbers. It was the first proof
that reciprocal of the primes diverges however there was some ambiguity in his
remarks about the rate of divergence and if he meant that it grew as ln lnn. It
would not be until 1874 when Franz Mertens gave a more formal proof that it
was considered to be justified. While Euler’s problems are tricky, his paper is
highly accessible to undergraduates and as seen in the worked out proofs often
the same sort of tricks are used. It is helpful to remember that a convergent
series is also Cauchy. While not the focus of this paper, many of the problems
in this paper have pushed the boundaries of approximation theory and have led
to a cross over into probability. One area of current research is the distribution
of the last digit of prime numbers. For large primes it must be either one,
three, seven, or nine. It is a mostly open question as to this overall distribution
and recently in 2016 progress was made on the distribution of the last digit
given the last digit of the previous prime. This paper is located in additionally
reading section. Just as complex analysis does not have an obvious immediate
connection to prime numbers but holds as the backbone for a common proof
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of the prime number theorem perhaps there are more connections to be found
between the primes and other fields of math. [4]

Another famous constant is e. First define

θ(x) =
∑
p≤x

log p

This is known as Chebyshev’s function. In a proof given by Dusart in 1999
proved pn = n(log n + log log n − 1) + n · θ(n) to an order of magnitude. Let
f(n) = log n+ log log n− 1.

log pn −
pn
n

= log (nf(n) + nθ(n))− f(n)− θ(n) =

log (1 +
log log n− 1 + θ(n)

log n
) + 1− θ(n)→ 1

Note that relies on a previously proven limit of log logn−1+θ(n)
logn )→ 0

Importantly though it shows that

log pn −
pn
n
→ 1

It was proven in a 1962 paper that there is a constant c > 0 that for all positive
x,

|θ(x)− x| < c
x

log2 x

Now consider
An =

pn
n
√
p1 · · · pn

logAn = log pn −
1

n
θ(pn) = log pn −

pn
n

+
1

n
(pn − θ(pn))

Examining the second part, 1
n (pn − θ(pn))→ 0 since |θ(n)−n|n < c x

n log2 x
and so

by the prime number theorem it goes to zero. This means,

logAn → 1

which implies,

lim
n→∞

pn
n
√
p1 · · · pn

= e

[3]

4 Current Research and Fields of Exploration

4.1 Theorems

Below are a few theorems with reference to dates give a scale of the development
of the field as well as why these particular theorems are interesting or important.
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Bertrand’s postulate: For all n > 3 there is a prime number in between n
and 2n− 2. Or for all integers there is a prime in between n and 2n. This was
first conjectured in 1845 by Joseph Bertrand and then proven by Chebyshev in
1852. Some consequences of this is that every integer can written as the sum of
primes and one using each number at most once. It also follows from this that
one is the only harmonic integer. Suppose

∑n
k=1

1
k is an integer for some n > 1.

There is a prime, p between n and n
2 . Apart from 1

p every term in the sum 1
k

where k is divisible only by primes smaller than p, hence,
∑n
k=1

1
k = 1

p + a
b and

b is not divisible by p and so the sum is not an integer since then b
p + a would

be an integer.
The twin prime conjecture is that there are infinitely many prime such that

pn+1 = pn + 2. This is an extremely famous open problem first formally stated
by de Polignac in 1849. Recent progress on this problem includes Yitang Zhang’s
work in 2013 which proved, limn→∞ inf(pn+1 − pn) < 7 ∗ 107. [5]

While the twin prime conjecture is open, it has been shown that the recipro-
cal of the sum of the twin primes converges by Viggo Brun in 1919. If the twin
prime conjecture is true this constant is irrational and if false then rational. The
convergence is extremely slow. This result helped advance the construction of
sieve methods.

Seemingly connected to probability theory, it has been shown that all large
primes have digits 1, 3, 7, 9 with equal probability showing the randomness of
primes. This was proven in a paper by Carl Ludwig Siegel and Arnold Walfisz
in 1963.

4.2 Further Exploration

There are two main areas of further exploration that would be suitable for the
intended audience. The first option for which math has done an exceptionally
good job at over the past centuries of understanding the macroscopic properties
of the prime numbers with theorems such as the prime number theorem. Just
as the primes are a subset of the integers, there might and can be value in
looking at a subset of the primes. For example, consider the ”primes of the
primes” that is where the prime index is a prime number. This set would be
{ 3, 5, 11, 17, 31 · · · } . One could continue to define subject of primes further
refining them with each iteration. For example, the primes would be a1, the
above set would be a2 and so forth. In each iteration the terms get larger and
larger which leads back to the classic harmonic series problem. Is there an an
for which the reciprocals do converge? This is similar to Brun’s constant.

As this paper is not focused on number theory or encryption, the fields of
probable primes or prime generating functions will be omitted but clearly those
fields have a strong connection with the topics. While the large scale behavior
of π(x) is relatively unknown, its local behavior is unknown and of extreme
interest. Of course there are deep connections to the Riemann Hypothesis and
Twin prime conjecture. What would make a good launching point is trying to
uncover a relationship between the estimated number of primes by the prime
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number theorem and actual number of primes. Perhaps it is more likely for
twin primes to occur when π(n) is behind the estimate. If this paper were to be
expanded, the next launching point would be to understand more of asymptotic
theory and attempt to try to come up with a formula both in magnitude and
sign between π(n) and the prime number theorem. This might lead to a weaker
conjecture than the twin primes but along the lines of given an N where you
know π(N) and N very large one can make an estimate for the range in the
number of primes between N and N+m where m is large but much smaller than
N . This might be a lost cause though as there is a strong amount of literature
written about the local randomness of primes but perhaps there are connections
between the percent error of expected primes and when primes show up. As
Euclid proved thousands of years about, not only are the primes infinite, but
perhaps they hold an infinite amount of deep math connections waiting to be
discovered.

As this paper has shown, prime numbers connect to many areas of math,
sometimes converging to familiar constants or providing a new solution to a
known problem. This paper serves as a launching point to think about prime
numbers beyond just isolating oneself to number theory problems. In particular,
this paper has shied away from most complex analysis to look at this in a
different light from class but certainly there are strong connections between the
prime numbers and complex analysis.

5 Index

5.1 Approximation Theory

As mentioned, π(x) is locally irregular and highly unpredictable. Famously,
Erdos said, ”God may not play dice with the universe, but something strange
is going on with the prime numbers.” The local randomness of the prime is
a subject with deep connections to probability theory. Another way to think
about this asymptotic convergence is that for every number k there is an N

such that | f(x)−g(x)g(x) | < k for x greater than k is bounded. This means that the

percent error is bounded.
One real world example of this is consider N radioactivity isotopes with N

super large, that is you have many moles and the half life is t. Define g(t) to be
the expected amount of particles left. g(t) is the classic example of exponential
decay. At t = 0 the rate of radiation is very close to expected by the large
number theorem. Consider g

′
(t) which is the amount of radiation. For t such

that N
2t is no longer sufficiently large the actual number of particles left will

be extremely close the expected value in comparison to N yet the difference
between the actual radiation level and the expected radiation level will be much
higher. This is an intuitive example where a function is locally irregular yet still
has a convergent function. The logarithmic integral is an extension of finding
a more accurate fit for π(x) and a good launching point to learn more about
fitting locally irregular asymptotic functions.
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5.2 π(x)

5.3 Additional Readings

G. Chaitin, Meta Math! The Quest for Omega, 2011
R.J.L. Oliver and K. Soundarara, Unexpected biases in the distribution of con-
secutive primes, PNAS, 113 (2016), E4446-E4454
D. Zagier, Newman’s Short Proof of the Prime Number Theorem, The American
Mathematical Monthly, 104 (1997), 705-708
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