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1 Introduction

Euler’s Formula for polyhedra has roots in the earliest days of topology. Its extension to a much broader class
of objects, called the Euler Characteristic, serves as a powerful tool for discussing more general topological
objects. Due to its usefulness as a topological property, the Euler Characteristic lends itself to powerful
applications. For example, Euler Characteristics can be used to determine the number of targets detected
by a system of sensors with minimal data.

2 Motivation: Graphs and Polyhedra

Definition 2.1. A Planar Graph is a set {vj} of points in R2 called vertices together with a set {{vi, vj}}
of undordered pairs of distinct vertices called edges such that no edges cross. A connected graph is a
graph for which for every pair of distinct vertices v0 and vn there is a sequence of edges {v0, v1}, {v1, v2}, ...
{vn−1, vn} which form a path from v0 to vn [5].

An obscure, but occasionally useful result, called the Jordan Curve Theorem, states that any simple closed
curve in the plane divides the plane into two open, simply connected sets, one bounded and one unbounded
[7]. The region bounded by a simple closed curve of edges is called face. If two distinct paths of edges
connect two vertices, then those edges form at least one face, and for every face there are at least two paths
connecting the vertices bordering the face.

Lemma 2.1. Let G be a connected graph, V be the number of vertices of G, E be the number of edges of
G, F be the number of faces of G, and χ(G) = E − V + F . Then χ(G) = 1.

Proof. If F > 0, remove an edge that borders a face of G. This leaves G connected, since every path between
vertices in G that went through the removed edge can go around the other path connecting the vertices of
that edge. This also reduces the number of faces of the graph by 1, so the quantity χ is unchanged. Repeating
this F times leaves a graph with no faces. Now there is a vertex which has only one edge connecting it to
the graph, because otherwise there would be a cycle in the graph. Removing that vertex and edge leaves the
graph connected and preserves χ. Eventually, there will be one edge left and, since the graph is connected,
two vertices. Thus χ(G) = V − E + F = 1.

This result can be used to produce a similar result for convex polyhedra (i.e. surfaces which are boundaries
of convex open sets in R3 composed of polygons).

Theorem 2.2. Let P be a convex polyhedron, V be the number of vertices of P , E be the number of edges
of P , and F be the number of faces of P . Then χ(P ) = V − E + F = 2.

Remark. This result is known as Euler’s Formula.
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Proof. For the sake of verbal clarity, position P such that there is one face F0 on top (i.e. parallel to the
x− y plane if the z axis is vertical).

Let F0 be contained in the plane z = a. Choose a point q above the interior of F0 and form a pyramid Q
by drawing rays from q through the vertices of F0 such that P is contained in Q. Then the intersection of
Q and the plane z = a is F0.

Q can be made to contain P by making the faces of Q have smaller slope than those adjacent to F0. Since
P is contained in Q, for any point on P there is a line through q contained in Q. This line exits P in exactly
one point, since P is convex. The point must be in F0, because the line must pass through the plane z = a.
Each such line passes through a distinct point of F0 because they all go through q as well. Thus there is a
one-to-one map f from the surface of P − F0 to F0. By labeling the images of the vertices of P under f
vertices, the images under f of the edges of P as edges, and the images under f of the faces of P as faces,
this construction forms a connected planar graph bordered by the edges of F0. Since V −E +F is the same
for that graph as P with the face F0 removed, χ(P ) = 2.

This result can be used to classify all regular polyhedra, i.e. all platonic solids [5].

Corollary 2.2.1. There are five regular polyhedra: the tetrahedron, the cube, the octahedron, the dodecahe-
dron, and the icosahedron.

Proof. Let R be a regular polyhedron, and V , E, and F be the vertices, edges, and faces of R, respectively.
Let each vertex be the junction of n edges, and each face be bordered by m edges. Then 2E = nV and
2E = mF . By Euler’s Formula,

2 = V − E + F = V − nV

2
+
nV

m

Therefore
4m = V (2m−mn+ 2n)

Since V and m are positive,
2m−mn+ 2n > 0

(2−m)(n− 2) + 4 > 0
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(m− 2)(n− 2) < 4

m > 2 and n > 2, so the possibilities are (m,n) = (3, 3), (3, 4), (4, 3), (5, 3), or (3, 5), which correspond with
the tetrahedron, the octahedron, the cube, the dodecahedron, and the icosahedron, respectively.

This result illustrates the power of the Euler Characteristic, in that Euler’s formula readily classifies
the convex polyhedra. Later, the Euler Characteristic will be used to classify surfaces. A generalization of
polyhedra and polygons to higher definitions is called convex polytopes. The following section describes how
to extend Euler’s Formula to all convex polytopes.

3 Convex Polytopes

Definition 3.1. The convex hull of a set A in Rn is the intersection of all convex sets that contain A;
that is, the convex hull of A is the smallest convex set containing A. The convex hull of a finite set of points
is called a convex polytope [3].

Segments, polygons, and polyhedra are special cases of convex polytopes.

Definition 3.2. For a finite set of points {x1, ..., xk} in Rn, x =
∑k
j=1 λjxj is an affine combination of

the x′is if
∑k
j=1 λj = 1. The affine hull of a set S in Rn is the set of all affine combinations of finite sets of

points in S [3].

The affine hull of a set in Rn is a translate of a subspace of Rn in the sense of linear algebra. Thus we
may define the dimension of a polytope to be the dimension of its affine hull. A polytope of dimension d
will be called a d-polytope.

Definition 3.3. A hyperplane is a translate of a subspace of Rn. A hyperplane H supports a subset S
of Rn if the distance between H and S is 0 (defined the same as in Folland) and the intersection of one of
the half-spaces determined by H and S is empty. If S is a convex subset of Rn and F is a subset of S such
that F is empty, equal to S, or there is a hyperplane H that supports S such that F = S ∩H, then F is a
face of S [3].

A face of a polytope is itself a polytope, so we can analogously call faces of dimension k k-faces. The
following theorem extends Euler’s Formula to general polytopes in Rn.

Theorem 3.1. Denote the number of k-faces of a d-polytope P by fk(P ). Then
∑d
i=0(−1)ifi(P ) = 1.

Equivalently, since fd(P ) = 1,
∑d−1
i=0 (−1)ifi(P ) = 1− (−1)d [3].

The proof of theorem 2.1 as given in [3] has several steps. The first two will be written as lemmas, and
the final step, which ties these together, will be the proof of the theorem. Used in the proof is the following
type of set:

Definition 3.4. A d-prismoid is a d-polytope which is the convex hull of two at most d − 1-dimensional
polytopes P1 and P2 such that for any d − 1-dimensional hyperplanes H1 and H2 containing P1 and P2,
respectively, (P1 ∪ P2) ∩ (H1 ∩H2) = ∅ [3].

For example, a tetrahedron is a prismoid formed from the convex hull of a triangle and a point.
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Lemma 3.2. Suppose that Theorem 2.1 holds for all polytopes up to dimension d − 1, and that P is a
d-prismoid which is the convex hull of P1 and P2. Let H1 and H2 be d− 1-hyperplanes through P1 and P2,
and H0 be a hyperlane through the interior of P such that H1 ∩H2 = H1 ∩H2 ∩H0, let P0 = P ∩H0. Then
Theorem 2.1 holds for P [3].

Proof. f0(P ) = f0(P1) + f0(P2) and fk(P ) = fk(P1) + fk(P2) + fk−1(P0) for all 1 ≤ k ≤ d− 1, since a k-face
of P is either a k-face of P1 or of P2, or corresponds with a k − 1-face of P0. Thus

d∑
k=0

(−1)kfk(P ) =

d−1∑
k=0

(−1)k(fk(P1)+fk(P2))−
d−2∑
k=0

(−1)k+1fk(P0)+(−1)dfd(P ) = 2−(1−(−1)d−1)+(−1)d = 1

so Theorem 2.1 holds for P.

Lemma 3.3. Let P be a d-polytope and H0 be a hyperplane through the interior of P and containing one
vertex of P . Let H+ and H− be the two closed half-planes with boundary H0, and let P0 = P ∩ H0,
P1 = P ∩H+, and P2 = P ∩H−. If Theorem 2.1 holds for P0, P1 and P2, then Theorem 2.1 holds for P [3].

Proof.
f0(P ) = f0(P1)f0(P2)− 2f0(P0) + 1

since a vertex of P1 or P2 distinct from all but one of those of P0. Likewise,

f1(P ) = f1(P1) + f1(P2)− 2f1(P0)− f0(P0) + 1

because an edge of P is either an edge of P1 or P2 distinct from those of P0, or is an edge of P divided by
the shared vertex with P0 into an edge of P1 and P2. For 2 ≤ k ≤ d− 2,

fk(P ) = fk(P1) + fk(P2)− 2fk(P0)− fk−1(P0)

since for 2 ≤ k ≤ d − 2, a k-face of P is a k-face of P1 or P2 but not of P0, or is divided by a k − 1-face of
P0 into a k-face of P1 and a k-face of P2. Lastly,

fd−1(P ) = fd−1(P2)− 1− fd−2(P0)
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because a d− 1-face of P is a d− 1-face of P1 or P2 distinct from P0, or else is divided by a d− 2-face of P0

into a d− 1-face of P1 and a d− 1 face of P2. Therefore

d∑
k=0

(−1)kfk(P ) = f0(P )− f1(P ) +

d−2∑
k=2

(−1)kfk(P ) + (−1)d−1fd−1(P ) + (−1)dfd(P )

= f0(P1) + f0(P2)− 2f0(P0) + 1

− (f1(P1) + f1(P2)− 2f1(P0)− f0(P0) + 1)

+

d−2∑
k=2

(−1)k[fk(P1) + fk(P2)− 2fk(P0)− fk−1(P0)]

+ (−1)d−1[fd−1(P1)− 1 + fd−1(P2)− 1− fd−2(P0)]

+ (−1)dfd(P )

Since Theorem 2.1 holds for P0, P1, and P2,

d∑
k=0

(−1)kfk(P ) = 2(1− (−1)d)− (1− (−1)d−1) + (−1)d = 1

so Theorem 2.1 holds for P .

With these lemmas, we can now prove Theorem 2.1 for all convex polytopes.

Proof. Theorem 2.1 holds for 0-, 1-, 2-, and 3-polytopes. Suppose P is a d-polytope and Theorem 2.1 is
established for all polytopes up to dimension d − 1. Let H be a hyperplane such that every hyperplane
parallel to H contains at most one vertex of P (which exists since P has finitely many vertices), and H1, ...
, Hf0(P ) be hyperplanes parallel to H and each containing distinct vertices of P , such that Hj separates Hi

and Hk for i < j < k. Denote by Ki the part of P between Hi and Hi+1 (including Hj ∩ P and Hi+1 ∩ P )
for 1 ≤ i ≤ f0(P ) − 1. Each Ki is a d-prismoid, i.e. the convex hull of (Hi ∩ P ) ∪ (Hi+1 ∩ P ), so each Ki

satisfies
∑d
k=0(−1)kfk(Ki) = 1. Set Qj =

⋃j
i=1Ki for 1 ≤ j ≤ f0(P )− 2. Then Qj+1, Hj+1, Qj , and Kj+1

satisfy the conditions of lemma 2.2 with P = Qj+1, H0 = Hj+1, P1 = Qj , and P2 = Kj+1. Q1 = K1, and
each Ki satisifies Theorem 2.1, so each Qi satisfies Theorem 2.1. Qf0(p)−1 = P , so Theorem 2.1 holds for all
d-polytopes P . By induction, Theorem 2.1 holds for all convex polytopes.

4 ∆-Complexes and Simplicial Homology

Definition 4.1. An n-simplex is the convex hull of n+ 1 points in Rm that do not all lie in a hyperplane
of dimension less than n [4].
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A 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc. The points determining an n-simplex, {vi},
are called its vertices, and the simplex is denoted [v1, ..., vn]. It is important in what follows to consider this
to be an order set of vertices. For example, [v0, v1, v2] may be drawn as

A face of a simplex is a subsimplex whose vertices are any nonempty subset of the original simplex, ordered
the same way.

Definition 4.2. A ∆-complex is an object obtained by gluing disjoint simplices along common faces [4].

The orientations of the edges of a ∆-complex are determined by the orderings of the vertices in its
component simplices. Since the construction of a ∆-complex X never involves gluing two points in the
interior of a face of X, a δ-complex can be thought of as a collection of open simplices {enα}, where n is the
dimension of enα [4]. In order to describe simplicial homology, I will first give a brief summary of basic group
theory.

4.1 Intermezzo: Group Theory

Definition 4.3. A group [2] is a set G and an operation ∗ : G×G→ G satisfying these properties:

1. Identity: There is an element e of G such that, for any g ∈ G, e∗g = g ∗ e = g. e is called the identity
of G.

2. Associativity: For all f , g, and h ∈ G, f ∗ (g ∗ h) = (f ∗ g) ∗ h.

3. Inverses: For every g ∈ G there is an element g−1 ∈ G, called the inverse of g, such that g ∗ g−1 =
g−1 ∗ g = e [2].

A group is called abelian [2] if a ∗ b = b ∗ a for all a, b ∈ G.

A subgroup [2] H of a group G is a subset which satisfies the group axioms with operation ∗ restricted to H.

A homomorphism [2] is a function φ : G→ H, whereG andH are groups, such that ϕ(a∗Gb) = ϕ(a)∗Hϕ(b)
for all a and b in G. The kernel [2] of ϕ is the subset kerϕ = ϕ−1(eH) of G. A homomorphism is called
an isomorphism [2] if it is bijective as a set function. If an isomorphism exists between two groups, the
groups are called isomorphic, and can be treated as the same group.

If H is a subgroup of a group G, the sets of left and right cosets of H are

{gH = {gh : h ∈ H} : g ∈ G}

and
{Hg = {hg : h ∈ H} : g ∈ G}

respectively. H is normal [2] if gH = Hg for all g in G. This is equivalent to the statement ghg−1 ∈ H
for all g ∈ G and h ∈ H. The kernel of any homomorphism is a normal subgroup of the domain. If H is a
normal subgroup of G, the quotient group [2] G/H is the set of cosets of H with operation

(aH) ∗ (bH) = abH

This is well defined, since if a′ = ah and b′ = bh′, then

a′b′H = ahbh′H = abb−1hbH = abh′′H = abH

7



for some h′′ ∈ H. That G/H satisfies the group axioms follows from the fact that G does.
A free abelian group [2] on a set S is the set of formal sums∑

s∈S
αss

with αs ∈ Z and operation given by summing corresponding components of αs. The set S is said to generate
the free abelian group on S.

4.2 Homology: Motivation

Simplicial comlexes are assigned simplicial homology groups to formalize the number of holes of different
dimensions these objects have. To motivate the definition of homology groups (see [4]), consider the following
oriented graph, G1:

Let C1 be the free abelian group on the edges a, b, and c, identified with chains of edges for which a positive
coefficient represents a traversal from x to y. A cycle is a chain of edges such that x and y are entered as
many times as they are exited. Expressed algebraically, the number of times a chain

ka+ lb+mc

enters y is
k + l +m

and the number of times a chain leaves y is
−k − l −m

since each time a chain leaves y an edge is traversed backwards. Likewise, the chain enters x

−k − l −m

times and leaves x
k + l +m

times. Thus a chain is a cycle iff
k + l +m = 0

Let C0 be the free abelian group on {x, y} and define a homomorphism, called the boundary homomorphism

∂ : C1 → C0

which sends a, b, and c to y − x, i.e. each edge is sent to an oriented sum of its endpoints. This gives

∂(ka+ lb+mc) = (k + l +m)y − (k + l +m)x

so the set of cycles in C1 is the kernel of ∂. If k+l+m = 0, then l = −k+m, and ka+lb+mc = k(a−b)−m(b−c)
so (a− b) and (b− c) generate the subgroup of cycles of C1. That the subgroup of cycles in C1 i generated
by two cycles expresses the fact that there are two holes in the graph.
Consider now a new diagram G2 obtained from G1 by filling in the region bounded by a− b:
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(a−b) no longer encloses a hole, since (a−b) can be continuously deformed to a point. This may be expressed
by forming the quotient group

C1/ < (a− b) >

If C2 is the group generated by A and ∂2(A) = a− b then the quotient of C1 by the subgroup generated by
a− b is

ker∂1
Im∂2

which is defined as the homology group H1(X2).

4.3 Simplicial Homology

Let X be a ∆-complex and ∆n(X) be the free abelian group generated by the open n-simplices enα of X.
The boundary homomorphism [4]

∂n : ∆n(X)→ ∆n−1(x)

is defined to be

[v0, ..., vn]→ [v1, ..., vn] +

n−1∑
i=1

(−1)i[v0, ..., vi−1, vi+1, ..., vn] + (−1)n[v0, ..., vn−1]

An explicit calculation shows that, for all n,

∂n∂n+1 = 0

Thus
Im∂n+1 ⊂ ker∂n

so the nth homology group [4], Hn, may be defined as

ker∂n/Im∂n+1

For a complex X we can define the Euler Characteristic χ(X) to be∑
n

(−1)nrankHn(X)

where rankHn(X) denotes the number of generators of Hn(X). The nth Betti Number of X is defined to
be rankHn(X), so one can equivalently write the Euler Characteristic of a complex as an alternating sum of
the Betti Numbers of X. This is equivalent to the sum of the n-faces of X. Homology groups are topological
invariants, so this definition of Euler Characteristic shows that it is topologically invariant [4].

5 Surfaces

Definition 5.1. A compact surface [6] is a connected, compact set for which for every point there is a
neighborhood in the surface homeomorphic to the open disk in R2.

Definition 5.2. A triangulation [6] of a compact surface X is a collection of subsets {T1, ..., Tn} of X
homeomorphic to triangles in R2 that satisfy
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1.
⋃
i Ti = X

2. Either Ti = Tj , or Ti ∩ Tj is empty, a vertex, or an edge.

If X is a triangulated surface, the Euler Characteristic χ(X) is defined as before as V −E +F , where V
is the number of vertices, E the number of edges, and F the number of faces of a triangulation of X. The
Euler Characteristic of a surface is independent of the triangulation of the surface used to determine it [6].
For example, the sphere S2 has Euler characteristic 2, since it is homeomorphic to convex polyhedra. As
another example, the torus T 2 has Euler Characteristic 0.

Definition 5.3. If S1 and S2 are compact surfaces, the surface S1#S2, called the connected sum [6] of
S1 and S2, is constructed by by removing a small open disk from S1 and S2 and gluing the boundaries of
the holes.

Theorem 5.1. If S1 and S2 are two surfaces [6], then

χ(S1#S2) = χ(S1) + χ(S2)− 2

Proof. Triangulate both surfaces, and remove the interior of a triangle from each. This reduces the Euler
Characteristic of both surfaces by 1. Joining the boundaries of these two triangles forms the connected sum
of the surfaces, and preserves the sum of the Euler Characteristics since three vertices and three edges are
removed. Consequently, the Euler Characteristic of the connected sum is 2 less than the sum of the Euler
Characteristics of the surfaces.

The Euler Characteristic provides a way of classifying all compact surfaces [6]:

Theorem 5.2. If S and T are two compact surfaces with the same Euler Characteristic, and S and T
are both orientable or both non-orientable, then S and T are homeomorphic. Further, if S and T are the
connected sum of n tori, then χ(S) = χ(T ) = 2− 2n.

6 Target Enumeration via Euler Characteristic Integrals

The idea is to use the Euler Characteristics of the ”fields of vision” of each sensor in an array for which each
sensor counts the number of objects it sees in order to determine the total number of objects detected. For
example, consider the case where each sensor is a point of R2 which detects object within a radius R. If h
is the number of objects counted by the sensor at each point, then the total number of objects is

1

πR2

∫
R2

hdA

since each object is detected by a region of sensors of area πR2 [1].

Definition 6.1. Let A = {Ak} be a collection of families of subsets of Rn , each closed under intersections
and complements, such that A is closed under products and projections, and A1 is the family of all finite
unions of points and open intervals. A set in An is called definable [1]. A function is called definable if its
graph is definable.

An important result, called the triangulation theorem [1], states that definable sets are homeomorphic to
simplicial complices and thus have well-defined Euler Characteristics.
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Definition 6.2. Suppose X is a simplicial complex and CF (X) is the abelian group of functions having
finite range and definable level-sets {φ : X → Z} with basis 1σ → 1 for each simplex σ of X. The Euler
Integral [1] is the homomorphism ∫

X

dχ : CF (X)→ Z

given by ∫
X

∑
α

cα1σα
dχ =

∑
α

cαχ(α)

Consider the problem of enumerating the number of targets in X given

1. The height function, h, giving the number of targets detected by the sensor at each location in X.

2. For each set Uα consisting of all sensors that detect object α, χ(Uα) = N 6= 0

Theorem 6.1. Let a be the number of targets of the problem stated above [1]. Then the problem above is
solved by

1

N

∫
X

hdχ =
1

N

∫
X

∑
α

(1Uα
)dχ =

1

N

∑
α

∫
X

1Uα
dχ =

1

N

∑
α

χ(Uα) = a

This theorem looks similar to the first example of this section. Note that exchanging the summation and
the integral is fine since there are assumed to be a finite number of targets. This result is difficult to apply
in practice, however, since real sensors can only be implemented in discrete arrays. To circumvent this issue,
one can use a system of discrete sensors as an approximation to the structure of the target space [1].

Lemma 6.2. Let h ∈ CF (X), and write {h = s} = {x : h(x) = s} and similarly for {h > s}, {h ≥ s},
{h < s}, and {h ≤ s}. Then [1] ∫

X

hdχ =

∞∑
s=−∞

sχ{h = s}

=

∞∑
s=0

χ{h > s} − χ{h < s}

Proof. The first equality follows from the definition of the Euler Integral. For the second part, write

∞∑
s=−∞

sχ{h = s} =

∞∑
s=0

s(1{h≥s} − 1{h>s}) +

−∞∑
s=0

s(1{h≤s} − 1{h<s})

=
∞∑
s=0

s(1{h>s−1} − 1{h>s}) +
−∞∑
s=0

s(1{h<s+1} − 1{h<s})

=

∞∑
s=0

1{h>s} −
−∞∑
s=0

1{h<s}

which follows from the fact that h is integer valued and the sums telescope.

This gives a new way of calculating the Euler Integral which is somewhat more robust to perturbations
of the sensor field [1].

Definition 6.3. A function is called upper semicontinuous [1] if

f(x) ≤ f(x0) + ε

for all x sufficiently close to x0 in the domain.

Proposition 6.1. Let h : R2 → N be upper semicontinuous and have finite range and definable {h = s},
and G be a graph in R2 with vertices N such that the restriction of h to N is known but not necessarily the
coordinates of the points in N . If G is dense enough to give the right connectivity of the sets {h < s} and
{h > s} for each s in the range of h, then the number of targets is given by Lemma 6.2 [1].
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7 Conclusion

The Euler Characteristic is an important topological property that is useful in classifying many objects.
By studying its description at several levels of sophistication, one attains a deeper understanding of the
connections between geometry, topology, and algebra. Because of its usefulness as a topological property,
the Euler Characteristic can be used to determine information about certain data without exact geometric
information, such as in the case of target enumeration via Euler Integrals.
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