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We provide a review of On Legendre’s Work on the Law of Quadratic Reciprocity, by Steven H.
Weintraub [1].
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1. Introduction

For sections 2, 3, and 4, see https://www.imomath.com/index.php?options=329&lmm=0. For section
6, see [3]. For sections 7,8, and 9, see [2].

Theorem 1 (Quadratic Reciprocity). Given distinct odd primes p and q, we have that(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 .

Using Quadratic Reciprocity, we can prove necessary conditions on primes being of the form x2 +ny2.
Using the Pigeonhole Principle, we can also prove sufficient conditions on a prime p being of the form
x2 + ny2 for n = 1, 2.

Definition 1. Given an integer a and a prime p, we say that a is a quadratic residue modulo b iff there
exists some integer p - x such that a ≡ x2 (mod p). We define the Legendre symbol as

(a
b

)
=


1 if a is a quadratic residue modulo p

−1 if a is a quadratic nonresidue modulo p

0 if p | a

2. Theorem A

Theorem A includes a formulation of Fermat’s Little Theorem and a formulation of Euler’s Criterion.

Theorem 2 (Fermat’s Little Theorem). If p is an odd prime, and a is an integer such that p - a, then
ap−1 ≡ 1 (mod p).

Proof. Since gcd(a, p) = 1, it follows that

{a · 1, a · · · 2, . . . , a · (p− 1)} = {1, 2, . . . , p− 1} (mod p)

Taking the product implies that ap−1 ·(p−1)! ≡ (p−1)! (mod p). Since gcd(p, (p−1)!) = 1, multiplying
the by the multiplicative inverse of (p− 1)! implies that ap−1 ≡ 1 (mod p).

Theorem 3 (Euler’s Criterion). Given an odd prime p and integer a such that p - a, we have that(
a

p

)
≡ a

p−1
2 (mod p).

Proof. We view xp−1−1 as a polynomial over Fp. By Fermat’s Little Theorem, it follows that xp−1−1 =

(x− 1)(x− 2)(· · · )(x− (p− 1)). Difference of squares implies that xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1).

• We claim that there are p−1
2 quadratic residues modulus p. This follows by considering the image

of the map x 7→ x2 over Zp. Note that x2 ≡ y2 (mod p) iff x ≡ ±y (mod p), by the difference
of squares factorization. This implies that

{
12, 22, . . . ,

(
p−1
2

)2}
is the set of quadratic residues

modulo p, with each term being distinct.

• We claim that if a is a quadratic residue, then a
p−1
2 ≡ 1 (mod p). If a is a quadratic residue, then

there exists x such that a ≡ x2 (mod p). Fermat’s Little Theorem implies that a
p−1
2 ≡ xp−1 ≡ 1

(mod p).

• We claim that if a is a quadratic nonresidue, then a
p−1
2 ≡ −1 (mod p). From the above fact, the

p−1
2 quadratic residues are roots of x

p−1
2 − 1 over Fp. Since the degree is p−1

2 , the set of roots of
x
p−1
2 − 1 is the set of quadratic residues. Since

(x− 1)(· · · )(x− (p− 1)) ≡ (x
p−1
2 − 1)(x

p−1
2 + 1) (mod p),
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the set of roots of x
p−1
2 + 1 is the set of quadratic nonresidues.

If a is a quadratic residue, then a
p−1
2 ≡ 1 (mod p). If a is a quadratic nonresidue, then a

p−1
2 ≡ −1

(mod p). So a
p−1
2 coincides with the Legendre symbol modulo p.

Corollary 4. Legendre’s symbol is multiplicative, i.e.,
(
ab
p

)
=
(
a
p

)(
b
p

)
for all primes p and all integers

a and b.

Corollary 5. Given an odd prime p, we have that
(
−1
p

)
= (−1)

p−1
2 , i.e., −1 is a quadratic residue

modulo odd prime p iff p ≡ 1 (mod 4).

3. Theorem B

Legendre used a formulation of the following fact about a certain diophantine equation to prove results
about Quadratic Reciprocity. Weintraub refers to this as Theorem B.

Theorem 6 (Legendre’s Diophantine Equation). Let a, b, and c be squarefree, relatively prime positive
integers. Then ax2 + by2 = cz2 has a nonzero solution in integers x, y, and z iff(

−ab
c

)
=

(
bc

a

)
=
(ca
b

)
= 1

We won’t prove this result, but we will show confirm the necessary condition. Since a, b, and c are
relatively primes and squarefree, some considerations of prime divisibility imply that

gcd(a, y) = gcd(a, z) = gcd(b, z) = gcd(b, z) = gcd(c, z) = gcd(c, y).

The constraints of the problem immediately imply that

−ab ≡ (byx−1)2 (mod c)

bc ≡ (byz−1)2 (mod a)

ca ≡ (axz−1)2 (mod b).

This implies that
(−ab

c

)
=
(
bc
a

)
=
(
ca
b

)
= 1 is a necessary condition.

4. Quadratic Reciprocity via Double Counting

In order to prove Quadratic Reciprocity, we will prove some lemmas.

Lemma 7 (Gauss’s Lemma). For integer a and odd prime p such that p - a, we have that
(
a
p

)
= (−1)S

where S =
∑ p−1

2

k=1

⌊
2ka
p

⌋
.

Proof. Let a be an integer and p be an odd prime such that p - a. For all k = 1, 2, . . . , p−12 , there is a
unique rk ∈ {−p−12 , . . . ,−2,−1, 1, 2, . . . , p−12 } such that ka ≡ rk (mod p). Note that |r1|, . . . |r p−1

2
|

are all distinct. Define εk ∈ {−1, 1} as satisfying rk = εk|rk|. Euler’s Criterion implies that(
a

p

)
≡ a

p−1
2 (mod p) (Euler’s Criterion)

≡
a · 2a · · · p−12 a

1 · 2 · · · p−12
(Expansion)

≡
ε1|r1| · ε2|r2| · · · ε p−1

2
|r p−1

2
|(

p−1
2

)
!

(Definition of εk)

≡ ε1ε2 · · · ε p−1
2

(Since {|r1|, . . . , |r p−1
2
|} is a permutation of {1, 2, . . . , p−12 })
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By definition, we have that ka ≡ rk (mod p) with −p−12 ≤ r ≤
p−1
2 and rk = εk|rk|. Note that εk = 1

iff the remainder of ka when divided by p is greater than p−1
2 . This is true iff⌊

2ka

p

⌋
= 2

⌊
ka

p

⌋
+ 1.

This implies that εk = (−1)b
2ka
p c, which gives Gauss’s Lemma.

Corollary 8. Given an odd prime p, we have that
(

2
p

)
= (−1)b

p+1
4 c,i.e., 2 is a quadratic residue modulo

p iff p ≡ ±1 (mod 8).

Proof. We will use Gauss’s Lemma with a = 2. By definition, note that

S =

p−1
2∑

k=1

⌊
4k

p

⌋
.

Note that
⌊
4k
p

⌋
is even iff there is some integer a such that 2ap ≤ 4k ≤ 2ap+p−1. Since 1 ≤ k ≤ p−1

2 ,

this is true iff 0 ≤ k ≤ p−1
4 . So

⌊
4k
p

⌋
is even for exactly

⌊
p−1
4

⌋
values of k. This implies that

⌊
4k
p

⌋
is odd for exactly p−1

2 −
⌊
p−1
4

⌋
=
⌊
p+1
4

⌋
values of k. Gauss’s Lemma implies that

(
2
p

)
= (−1)b

p+1
4 c.

Also, this is equivalent to (−1)
p2−1

8 .

Definition 2. Given distinct odd primes p and q, define S(p, q) =
∑ q−1

2

k=1

⌊
kp
q

⌋
.

Lemma 9. Given distinct odd primes p and q, we have S(p, q) + S(q, p) = p−1
2 ·

q−1
2 .

Proof. Let ABCD be the rectangle with coordinates A = (0, 0), B = ( q−12 , 0), C = ( q−12 , p−12 ) and
D = (0, p−12 ) and let E be the point E = (q, p). Geometrically, for any naturals 1 ≤ k < q, note that⌊
kp
q

⌋
is the number of lattice points (k, l) such that 1 ≤ l < kp/q. So the construction means that

S(p, q) is the number of lattice points (k, l) such that 1 ≤ k ≤ q−1
2 and 1 ≤ l < kp/q. This implies that

S(p, q) is the number of lattice points lying lying either in the interior or on the boundary of ABCD
lying below the line AE. Similarly, S(q, p) is the number of lattice points lying either in the interior or
on the boundary of the rectangle ABCD that lie above the line AE. There are p−1

2 ·
q−1
2 lattice points

in the rectangle, none of which lie on AE. This implies that S(p, q) + S(q, p) = p−1
2 ·

q−1
2 .

Proof of Quadratic Recirprocity. Let p and q be distinct odd primes. Then

S(p+ q, q)− S(p, q) =

q−1
2∑

k=1

⌊
k(p+ q)

q

⌋
−
⌊
kp

q

⌋
=

q−1
2∑

k=1

k =
q2 − 1

8
.

This equation implies(
2

q

)(
p

q

)
=

(
2p

q

)
(Legendre Symbol is Multiplicative)

=

(
2(p+ q)

q

)
=

(
p+q
2

q

)
= (−1)S(p+q,q) (Gauss’s Lemma)

=

(
2

q

)
(−1)S(p,q) (Above Equation, Corollary

(
2
p

)
)

In particular, this implies that
(
p
q

)
= (−1)S(p,q). By symmetry, this implies

(
q
p

)
= (−1)S(q,p). Multi-

plying both together implies Quadratic Reciprocity.

Weintraub notes that we can also prove Quadratic Reciprocity by considering the Gauss sum
∑c−1
d=1

(
d
c

)
e2πid/c.
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5. Theorem C

Legendre uses what Weintraub refers to as Theorem C to prove
(
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

We will instead use Quadratic Reciprocity and Minkowski’s Theorem to prove Theorem C, which is a
special case regarding primes of the form x2 + ny2.

Lemma 10 (Minkowski’s Theorem over Zn). Suppose A is a bounded centrally symmetric convex body
in Rn having volume strictly larger than 2n. Then there is a lattice point in A different from the origin.

Proof. We proceed via the Pigeonhole Principle. Partition Rn into cubes of side length 2, such that the
coordinates of the centers of all the cubes are even. Then the interiors of the cubes are disjoint and the
cubes cover Rn. Since A is bounded, A intersects with a finite number of cubes, and the sum of the
volumes of the intersection of A with the interiors of these cubes is the volume of A. Via translation,
these cubes can be translated so that all of their centers are at the origin. Since translations preserve
volume and since the sum of the volumes is greater than 2n, this implies that two bodies intersect at
some point X. This implies that there are two distinct points x, y ∈ A such that x − y ∈ (2Z)n. This
implies that x−y

2 ∈ Zn. Since A is convex, this implies that x−y
2 ∈ A, implying that there is a nonzero

lattice point in A.

Theorem 11 (Minkowski’s Theorem). Let A be a convex body in Rn and let v1, . . . , vn be linearly
independent vectors in Rn. Consider the fundamental parallelepiped P = {

∑n
i=1 xivi | 0 ≤ xi ≤ 1}.

Denote by Vol(P ) its volume. If A has volume greater than 2n · Vol(P ), A must contain one point in
the lattice L = Zv1 + · · ·+ Zvn different from the origin.

Proof. Define the n× n matrix

M =

 | | · · · |
v1 v2 · · · vn

| | · · · |

 .
Every lattice point in L is of the formMv with v ∈ Zn. Note that Vol(P ) = |detM |. Define the bijective
linear transformation f : Rn → Rn by f(v) = M−1v. This implies that f(vi) = ei for i = 1, 2, . . . , n,
where e1, . . . , en is the canonical basis of Rn. By definition, f(L) = Zn. Since f is linear, f(A) is a
bounded centrally symmetric centrally symmetric body of volume Vol(A) · Vol(P )−1 > 2n. The lemma
above implies there is some nonzero p ∈ Zn such that p ∈ f(A). Since f(v) =M−1v, this implies that
Mp ∈ A, which is the desired result.

Theorem 12 (Theorem C). An odd prime p

(a) is of the form x2 + y2 iff p ≡ 1 (mod 4)

(b) is of the form x2 + 2y2 iff p ≡ 1, 3 (mod 8)

(c) is of the form x2 − 2y2 iff p ≡ ±1 (mod 8)

Proof. We are given an odd prime p. For any relatively prime, nonzero integer a and b satisfying p - a and
p - b, define the lattice L = {(x, y) | (p | bx − ay) and (x, y ∈ Z)}. Note that (p, 0), (0, p), (a, b) ∈ L.
Bézout’s Lemma implies that (k, 1) ∈ L for some integer k. This implies that the fundamental area of
L is at most p. For the following three parts, we will work over the lattice L.

(a) If p = x2 + y2, then the fact that
(
−1
p

)
implies that p ≡ 1 (mod 4). If p ≡ 1 (mod 4), then there

exists relatively prime integers p - a, b such that p | a2 + b2. Define the centrally symmetric convex
region D = {(x, y) | x2 + y2 < 2p}. Since 2pπ

p > 4, Minkowski’s Theorem implies that there is a
nonzero point (x, y) such that p | ax− by and x2 + y2 < 2p. Note the identity

(ax− by)(bx− ay) = ab(x2 + y2)− xy(a2 + b2).
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This implies p | x2 + y2. Since 0 < x2 + y2 < 2p, this implies p = x2 + y2.

(b) If p = x2 + 2y2, then the fact that
(

2
p

)
= (−1)

p2−1
8 and the fact that

(
−1
p

)
= (−1)

p−1
2 imply

that p ≡ 1, 3 (mod 8). If p ≡ 1, 3 (mod 8), then there exists relatively primes integers p - a, b such
that p | a2 +2b2. Define the centrally symmetric convex region D = {(x, y) | x2 +2y2 < 2p}. The
area of D is

√
2pπ. Since

√
2pπ
p > 4, Minkowski’s Theorem implies that there is a nonzero point

(x, y) such that p | ax− by and x2 + 2y2 < 2p. Note the identity

(ax− 2by)(bx− ay) = ab(x2 + 2y2)− xy(a2 + 2b2).

This implies that p | x2 + 2y2. Since 0 < x2 + 2y2 < 2p, this implies p = x2 + 2y2.

(c) If p = x2 − 2y2, then the fact that
(

2
p

)
= (−1)

p2−1
2 implies that p ≡ ±1 (mod 8). If p ≡ ±1

(mod 8), then there exists relatively primes integers p - a, b such that p | a2 − 2b2. Define the
centrally symmetric convex region D = {(x, y) | |x| <

√
2p and |y| < √p}. The area of D is

4
√
2p. Since 4

√
2p
p > 4, Minkowski’s Theorem implies that there is a nonzero point (x, y) such that

p | ax− 2by and (x, y) ∈ D. Note the identity

(ax+ 2by)(bx− ay) = ab(x2 − 2y2)− xy(a2 − 2b2).

This implies p | x2 − 2y2. Since |x| < √p and |y| <
√
2p, this implies that |x2 − 2y2| < 2p. Since

x2 6= 2y2, this gives p = |x2 − 2y2|. This implies that

p ∈ {x2 − 2y2, (x− 2y)2 − 2(x− y)2}.

This completes the proof.

6. Merten’s Theorem

The remaining results of this paper will rely on ideas from real analysis and complex analysis. In particular,
we will think about Abel summation and analytic functions. First, let’s discover two results on the
summation of prime numbers. This will help in bounding quadratic nonresidues.

Lemma 13.
∑
p≤n

ln p
p = lnn+O(1)

Proof. We will consider the p-adic valuation of n!. Note that ln(n!) =
∑
p≤n vp(n!) ln(p). By Legendre’s

formula, note that np−1 ≤ vp(n!) ≤
n
p−1 . By Stirling’s formula, note that ln(n!) = n[ln(n)−1]+O(lnn).

These facts implies

n
∑
p≤n

ln p

p
−
∑
p≤n

ln(p) ≤ n[ln(n)− 1] +O(lnn) ≤ n
∑
p≤n

ln p

p
+ n

∑
p≤n

ln p

p(p− 1)
.

Clearly
∑
p≤n

ln p
p converges. From the second lemma, note that

∏
p≤n p ≤ 4n−1. This implies∑

p≤n ln(p) is O(n). This implies that
∑
p≤n

ln p
p = ln(n) +O(1).

We can actually get rid of the ln(p) from ln p
p .

Theorem 14 (Merten’s Theorem). We have

∑
p≤n

1

p
= ln lnn+O(1).

6



Proof. Define

an =

 ln
n if n is prime

0 otherwise

Define Sn = a2 + a3 + · · ·+ an. Notice that

Sn =
∑
p≤n

ln p

p
= ln(n) + rn, (Since

∑
p≤n

ln p
p = ln(n) +O(1))

for some bounded sequence rn. This implies that

Sn − Sn−1
lnn

=

 1
n if n is prime

0 otherwise.

In particular, this implies

∑
p≤n

1

p
=

n∑
k=2

Sk − Sk−1
ln k

=
Sn
lnn

+

n∑
k=2

rn

(
1

ln k
− 1

ln(k + 1)

)
+

n∑
k=2

(
1− ln k

ln(k + 1)

)

= O(1) +

n∑
k=2

(
1− ln k

ln(k + 1)

)
.

Thus, it suffices to prove that
∑n
k=2

(
1− ln k

ln(k+1)

)
is ln ln(n) +O(1).

Lemma.
∑n
k=2

(
1− ln k

ln(k+1)

)
= ln ln(n) +O(1)

Proof. Note that
∫ k+1

k
1
t dt = ln(k + 1)− ln k. This implies that

0 ≤
∫ k+1

k

1

t ln t
dt−

[
1− ln k

ln(k + 1)

]
≤
∫ k+1

k

1

t ln t
− 1

t log(k + 1)
dt

≤
∫ k+1

k

ln(k + 1)− ln(t)

t ln(t)
dt

≤
∫ k+1

k

ln(k + 1)− ln(k)

t ln t
dt

≤ 1

k2 ln(2)2
.

This implies that

n∑
k=2

(
1− ln k

ln(k + 1)

)
=

∫ n

2

1

t ln t
dt+O(1)

= ln lnn+O(1).

This completes the lemma.

Since showing
∑n
k=2

(
1− ln k

ln(k+1)

)
= ln ln(n) +O(1) is sufficient, we are done.

There’s more extensive exposition in Section 1.10 of Additive Combinatorics.
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7. Some Facts About Characters

Since the legendre symbol is multiplicative, the function F×p → C× defined by x 7→
(
x
p

)
is a group

homomorphism from the multiplicative group of Fp to the multiplicative group of the complex numbers.
We will investigate this ideas in this section. I believe the contents of 7.1 and 7.2 can be found in
Abstract Algebra by Dummit and Foote.

7.1. Dual Group

Recall that if f is an integrable function over R, then the fourier transform is defined as

f̂ =

∫ ∞
−∞

f(y)e2πixy dy.

Definition 3. A character of G is a group homomorphism χ : G → C×. We say that χ(x + y) =

χ(x) · χ(y) for all x, y ∈ G. The character is trivial iff χ(g) = 1 for all g ∈ G.

Definition 4. Define Ĝ as the set of all characters of G. It is a group with respect to multiplication,
where we define (χ1 ·χ2)(g) = χ1(g) ·χ2(g). This is called the dual group of G. If n is the order of G,
then χ(g)n = 1, implying that |χ(g)| = 1.

Example 1. Let n ≥ 2 and let G = Z/nZ. Note that χ(1) is an n-th root of unity, and uniquely defines
χ. Note that each map χ(1) = ξ generates all possible maps. So Ĝ ∼= Z/nZ. This isomorphism depends
on the choice of a primitive nth root of 1.

Remark 1. Note that Ĝ×H = Ĝ × Ĥ for direct products. (Apparently this a easy). Using the
Fundamental Theorem of Abelian Groups, it follows that Ĝ ∼= G, since cyclic groups are isomorphic to
their dual groups.

• The number of elements in the dual group Ĝ is the number of elements in G.

• Suppose g ∈ G \ {0}. Then there exists χ ∈ Ĝ such that χ(g) 6= 1. Otherwise, χ(g) = 0 for all
χ ∈ Ĝ. Then 1 = χ(g)n = χ(gn) for all integers n. Note that χ(g)χ(h) = χ(gh).

Lemma 15. For any abelian groups B and C, we have that B̂ × C ∼= B̂ × Ĉ.

Proof. Let χ ∈ B̂ × C be a group homomorphism B × C → C×. Define χ1 : B → C× by χ1(b) =

χ(b, 1C). Define χ2 : C → C× by χ2(c) = χ(1B , c). Define the map ϕ : B̂ × C → B̂ × Ĉ by
ϕ(χ) = (χ1, χ2). This is a bijective group homomorphism, implying that the groups are isomorphic.

Lemma 16. Let G be an arbitrary abelian group. Then G ∼= Ĝ.

Proof. Note that G is the direct product of cyclic groups, by the Fundamental Theorem of Abelian
Groups. Let G =

⊕
H. Then

Ĝ ∼=
⊕̂

H (Fundamental Theorem of Abelian Groups)

∼=
⊕

Ĥ (Above Lemma)

∼=
⊕

H (Since H is Cyclic)

∼= G. (Definition of G)

This completes the lemma.

Lemma 17. Let G be any abelian group. For any x ∈ G \ {1G}, there exists χ ∈ Ĝ such that χ(x) 6= 1.
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Proof. Suppose that χ(g) = 1 for all χ ∈ Ĝ. Then |Ĝ| = |Ĝ/ 〈g〉|, since we can ignore g. But recall that
Ĝ ∼= G for all abelian groups G. This implies that | 〈g〉 | = 1. This implies that g = 1, a contradiction.

Theorem 18. G and ̂̂G are canonically isomorphic.

Proof. Define the map ϕ : G→ ̂̂
G by g 7→ (χ 7→ χ(g)).

• This is well-defined group homomorphism. Let g, h ∈ G. Then ϕ(g)ϕ(h) = ϕ(gh).

• This is injective. Suppose ϕ(g) = ϕ(h). Then χ(g) = χ(h) for all χ ∈ Ĝ. This implies that
χ(gh−1) = 1 for all χ ∈ Ĝ. This contradicts the previous lemma.

• This is surjective. Note that | ̂̂G| = |G|. There is a injective set function. This implies that the map
is surjective.

Thus, the maps is a canonical group isomorphism. This map realizes G as a subgroup of ̂̂G.
Definition 5. Define F (G,C) as the C-vector space of all maps f : G → C. It is a C-vector space of
dimension |G|. This fact is true since the map F (G,C) → C|G| sending f to the vector (f(g))g∈G of
|G| components is a C-linear isomorphism. If f, g ∈ F (G,C), then let

〈f, g〉 = 1

|G|
∑
x∈G

f(x)g(x).

Note that this is an inner product on the C vector space F (G,C). We will now prove the main theorem
of Fourier analysis on G.

Lemma. F (G,C) is a C vector space of dimension |G| over C.

Proof. Obviously, F (G,C) is a vector space over C, since af(g) + bh(g) defines another function, and
the axioms are satisfied. Define the map ϕ : F (G,C)→ C|G| by

ϕ(f) = (f(g1), f(g2), . . . , f(gn)),

where n is the order of G. This is a C linear maps since ϕ(cf − h) = cϕ(f) − ϕ(h). This is injective
since if ϕ(f) = ϕ(h), then f = h. This is surjective since we can construct the functions we want. So
F (G,C) is isomorphic to C|G|.

Lemma 19. The construction of 〈f, g〉 forms an inner product on the C-vector space F (G,C).

Proof. Clearly, it satisfies

• 〈af + h, bg〉 = ab 〈f, g〉+ 〈h, g〉.

• 〈f, g〉 = 〈g, f〉

• 〈f, f〉 > 0 iff f 6= 0, and is 0 otherwise.

It satisfies the axioms, so it’s an inner product.

Lemma 20. We have that 〈χ1, χ2〉 = 1χ1=χ2
.

Proof. If χ1 = χ2, then the norm is 1 since |χ1| = 1. Otherwise, χ1 6= χ2. This implies that

〈χ1, χ2〉 =
1

|G|
∑
x∈G

χ1(x)χ2(x)

=
1

|G|
∑
x∈G

χ1

χ2
(x)

=
1

|G|
∑
x∈G

χ(x). (Let χ = χ1

χ2
)

9



Define S = 1
|G|
∑
x∈G χ(x). This implies that χ(g)S = S for all g ∈ S since x 7→ gx is a permutation

of G. Since χ is nontrivial, there exists some g ∈ G such that χ(g) 6= 1. This implies that S = 0.

Lemma 21. Consider an g ∈ G \ {1}. Then we have that
∑
χ∈Ĝ χ(x) = 0.

Proof. Define the sum S =
∑
χ∈Ĝ χ(g). Note that χ(g)Ĝ = Ĝ. This implies that χ(g)S = S. Since

there exists some χ ∈ Ĝ such that χ(g) 6= 1, this implies that S = 0.

Theorem 22. The elements of Ĝ form an orthonormal basis of F (G,C).

Proof. We split the proof into three steps.

• 〈χ1, χ2〉 = 1χ1=χ2
. This follows from the previous lemma.

•
∑
χ∈Ĝ χ(x) = 0 for all x ∈ G \ {1G}.

• This implies that the set (χ)χ∈Ĝ is linearly independent. Taking the dual gives 〈
∑
aiχi, χ1〉 = a1.

This set also has the same cardinality a the dimension of the vector space F (G,C). In particular,
the cardinality is |G|. Facts about vector spaces (this seems sketchy, but whatever) implies that
(χ)χ∈Ĝ is a basis for F (G,C).

So we have an orthonormal basis for F (G,C) This basis is the set of elements of Ĝ.

Now we have the following result.

Theorem 23. For any finite abelian group G, the following relations hold.

1. (Orthogonality) For all χ, χ1, χ2 ∈ Ĝ and all g, h ∈ G, we have that

1

|G|
∑
x∈G

χ1(x)χ2(x) = 1χ1=χ2 ,
1

|G|
∑
χ∈Ĝ

χ(g)χ(h) = 1g=h.

2. (Fourier Inversion) For all f ∈ F (G,C), we have that f =
∑
χ∈Ĝ 〈f, χ〉χ.

3. (Planceral’s Identity) For all f ∈ F (G,C),

1

|G|
∑
x∈G
|f(x)|2 =

∑
χ∈Ĝ

|〈f, χ〉|2 .

Proof.

1. The first equation is 〈χ1, χ2〉 = 1χ1=χ2
, which is true from our above theorem. Define

S =
1

|G|
∑
χ∈Ĝ

χ(g)χ(h).

Note that χ(g)χ(h)S = S. For the sake of contradiction, suppose χ(g)χ(h) = 1 for all χ ∈ Ĝ. This
implies that χ(gh−1) = 1 for all χ ∈ Ĝ. Since gh−1 6= 1, this is a contradiction. This completes
part (1).

2. Note that we have the expansion∑
χ∈Ĝ

〈f, χ〉χ

 (x) =
1

|G|
∑
χ∈Ĝ

χ(x)
∑
y∈G

f(y)χ(y) (Definition of Inner Product)

=
1

|G|
∑
y∈G

f(y)
∑
χ∈Ĝ

χ(x/y) (Switching Order of Summation)

=
∑
y∈G

f(y)1x=y (Part (1))

= f(x).
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This gives part (2).

3. Now we can show that

1

|G|
∑
x∈G
|f(x)|2 = 〈f, f〉 (Definition of Inner Product)

=

〈∑
χ1∈Ĝ

〈f, χ1〉χ1,
∑
χ2∈Ĝ

〈f, χ2〉χ2

〉
(Part (2))

=
∑

χ1,χ2∈G
〈〈f, χ1〉χ1, 〈f, χ2〉χ2〉 (Distributive Property)

=
∑

χ1,χ2∈G
〈f1, χ1〉 〈f, χ2〉 〈χ1, χ2〉 (Property of Inner Product)

=
∑
χ1,χ2

〈f1, χ1〉 〈f, χ2〉1χ1=χ2 (Since (χ)χ∈Ĝ is an Orthonormal Basis)

=
∑
χ∈Ĝ

|〈f, χ〉|2 .

This establishes Planceral’s Identity.

Remark 2. Recall the following formula f̂(n) = 1
2π

∫ 2π

0
f(y)e−iny dy. We have the analogous formula

f̂(χ) = 〈f, χ〉. Basically, note that einx : R→ C forms a basis for 2π-periodic functions R→ C just like
how χ forms a basis for functions G→ C.

7.2. Finite Fields

Recall the following facts from algebra.

• Every field has an algebraic closure.

• The algebraic closure of a field is unique, up to isomorphism

• Every finite field is Fpe where the characteristic is p for some prime p and has order pe for some
integer e. Any two finite fields of the same order are isomorphic.

• Also, we denote Fq as the algebraic closure of Fq. By definition, for any f(x) ∈ Fq[x], there exists
some a ∈ Fq such that f(a) = 0.

Proposition 24 (Freshman’s Dream). A ring A with characteristic p satisfies

(a1 + · · ·+ an)
q = aq1 + · · ·+ aqn.

Proof. Induction or the generalized binomial theorem. Not too much here.

Let q be a power of p. Define

Fq = {x ∈ Fp | xq = x}.

Theorem 25. Fq is the unique field with q elements contained in Fp.

Proof. By our proposition, it is a field. It has q elements since it has q roots and the derivative is −1,
implying there are no double roots. For the sake of contradiction, suppose L is a field other that Fp with
q − 1 elements. The multiplicative group L× is q − 1 elements. The product is 1. This implies that
xq = x forall x ∈ L. So L ⊆ Fq, implying that L = Fq, a contradiction.

Theorem 26 (Subtle Theorem of Gauss). Let F×q is a cyclic group of order q − 1. Let K be a field and
let G be a finite subgroup of K×. Then G is cyclic.

11



Proof. Let’s just prove the general version. So we have a field K. We let G be a subgroup of K×. Let
g be the element of maximal order in G. Let this maximal order by d. Our first claim is that hd = 1 for
all h ∈ G. Otherwise, we have that he = 1 for some e - d. This implies that |gh| = lcm(e, d) > d, a
contradiction. This implies that xd− 1 = 0 for all x ∈ G. This implies that there are at most d elements
G, implying that g generated G.

Let’s also consider a slightly tricky fact.

Remark 3. Fpm ⊆ Fpn iff xp
m−1− 1 | xpn−1− 1 which is true iff pm− 1 | pn− 1 which is true iff m | n.

Proof. So suppose that Fpm ⊆ Fpn . This actually follows from our weird definition of fields, which is
pretty unnatura, but whatever. Our definition says Fpn = {x ∈ Fp | xp

n

= x}. Since each root is simple,
this implies that it’s a subsets iff xp

n − x | xpm − x, which gives the result.

Definition 6. The following map is pretty important. Let q be a prime. Then define

Frq : Fqn → Fqn ,Frq(x) = xq.

Note that Frq is an automorphism of Fqn and fixes Fq.

Some additional facts are that every automorphism is a composition of Frobenius maps are there
exactly n automorphisms. In other words, we’re saying that

Gal(Fqn/Fq) ∼= Z/qZ

and is generated by the Frobenius map Frq. This follows from our subtle theorem of Gauss. Also, if
we have a root of an irreducible polynomial over Fq, then we can find the other roots by applying the
Frobenius map successively. Let’s investigate this.

Theorem 27. Let f ∈ Fq[x] be a monic irreducible polynomial of degree n. Let r ∈ Fp be a root of f .
Then the root of f are r, rq, . . . , rq

n−1

. So f(x) =
∏n−1
i=0 (x− rq

i

).

Proof. Note that the field generated by r over Fq has qn elements. So the field of Fqn . Note that Frq
generates Aut(Fqn/Fq) ∼= Z/nZ. This implies that 0 = Frq(0) = Frq(f(r)) = f(Frq(r)). So Frq(r)

is another root. We will show that the roots are distinct. Suppose otherwise. Then rq
a

= 1 for some
a < n, implying that r ∈ Fqa . Note that [Fqa : F] = a, implying that r is the root of some polynomial
g(x) ∈ F[x] of degree at most a. This implies that f(x) | g(x), implying that g(x) = 0, a contradiction.
So those are the roots.

sectionIntroduction Recall the following facts from algebra.

• Every field has an algebraic closure.

• The algebraic closure of a field is unique, up to isomorphism

• Every finite field is Fpe where the characteristic is p for some prime p and has order pe for some
integer e. Any two finite fields of the same order are isomorphic.

• Also, we denote Fq as the algebraic closure of Fq. By definition, for any f(x) ∈ Fq[x], there exists
some a ∈ Fq such that f(a) = 0.

Proposition 28 (Freshman’s Dream). A ring A with characteristic p satisfies

(a1 + · · ·+ an)
q = aq1 + · · ·+ aqn.

Proof. Induction or the generalized binomial theorem. Not too much here.
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Let q be a power of p. Define

Fq = {x ∈ Fp | xq = x}.

Theorem 29. Fq is the unique field with q elements contained in Fp.

Proof. By our proposition, it is a field. It has q elements since it has q roots and the derivative is −1,
implying there are no double roots. For the sake of contradiction, suppose L is a field other that Fp with
q − 1 elements. The multiplicative group L× is q − 1 elements. The product is 1. This implies that
xq = x forall x ∈ L. So L ⊆ Fq, implying that L = Fq, a contradiction.

Theorem 30 (Subtle Theorem of Gauss). Let F×q is a cyclic group of order q − 1. Let K be a field and
let G be a finite subgroup of K×. Then G is cyclic.

Proof. Let’s just prove the general version. So we have a field K. We let G be a subgroup of K×. Let
g be the element of maximal order in G. Let this maximal order by d. Our first claim is that hd = 1

for all h ∈ G. Otherwise, we have that he = 1 for some e - d. This implies that |gh| = lcm(ed) > d, a
contradiction. This implies that xd− 1 = 0 for all x ∈ G. This implies that there are at most d elements
G, implying that g generated G.

Let’s also consider a slightly tricky fact.

Remark 4. Fpm ⊆ Fpn iff xp
m−1− 1 | xpn−1− 1 which is true iff pm− 1 | pn− 1 which is true iff m | n.

Proof. So suppose that Fpm ⊆ Fpn . This actually follows from our weird definition of fields, which is
pretty unnatura, but whatever. Our definition says Fpn = {x ∈ Fp | xp

n

= x}. Since each root is simple,
this implies that it’s a subsets iff xp

n − x | xpm − x, which gives the result.

Definition 7. The following map is pretty important. Let q be a prime. Then define

Frq : Fqn → Fqn ,Frq(x) = xq.

Note that Frq is an automorphism of Fqn and fixes Fq.

Some additional facts are that every automorphism is a composition of Frobenius maps are there
exactly n automorphisms. In other words, we’re saying that

Gal(Fqn/Fq) ∼= Z/qZ

and is generated by the Frobenius map Frq. This follows from our subtle theorem of Gauss. Also, if
we have a root of an irreducible polynomial over Fq, then we can find the other roots by applying the
Frobenius map successively. Let’s investigate this.

Theorem 31. Let f ∈ Fq[x] be a monic irreducible polynomial of degree n. Let r ∈ Fp be a root of f .
Then the root of f are r, rq, . . . , rq

n−1

. So f(x) =
∏n−1
i=0 (x− rq

i

).

Proof. Note that the field generated by r over Fq has qn elements. So the field of Fqn . Note that Frq
generates Aut(Fqn/Fq) ∼= Z/nZ. This implies that 0 = Frq(0) = Frq(f(r)) = f(Frq(r)). So Frq(r)

is another root. We will show that the roots are distinct. Suppose otherwise. Then rq
a

= 1 for some
a < n, implying that r ∈ Fqa . Note that [Fqa : F] = a, implying that r is the root of some polynomial
g(x) ∈ F[x] of degree at most a. This implies that f(x) | g(x), implying that g(x) = 0, a contradiction.
So those are the roots.
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7.3. Characters over Finite Fields

A choice of a basis implies that Fpn ∼= Fp×· · ·×Fp as a group isomorphism. (Also F×pn is cyclic). Recall
that the character group of an abelian group G is Ĝ = HomGrp(G,C×), and that G ∼= Ĝ as groups.

Proposition 32 (Dual Group Lifting). Suppose q = pn is a power of. prime p. Then there is an
isomorphism of groups ϕ : Fq → F̂q where a 7→ ψa and where we define

ψa = e
2πi
p TrFq/F(ax).

Proof. I feel like we’ve proven this already, but let’s do it anyways.
We have. Just recall the dual group properties from before.

Definition 8. The next result will help with examining the zeta function of diagonal hypersurfaces. This
is a fancy way of describing a set of solutions satisfying a0xm0 + · · ·+ akx

m
k over some finite field.

Proposition 33. Let d be a divisor of q − 1. The map χ → χn where χn(x) = χ(NFqn/Fq (x)) is a
bijection between characters of order d of F×q and characters of order d of F×qn .

Proof. We prove the map is well-defined, the map is injective, and the map is surjective.

• Suppose χ is a character of Fq of order d. Then χ(NFqn/Fq (x)) is a character since the norm is
multiplicative. Also, it has order d, since χ has order d. So the map is well-defined.

• Recall that N is a surjective map from Fqn to Fq. This means that if χ1(N(x)) = χ2(N(x)) for
all x ∈ Fqn , then χ1(x) = χ2(x) forall x ∈ Fq, implying that χ1 = χ2. So it’s injective.

• Suppose f : Fqn → C× is a character. Let u generate F×qn . We want a character χ : Fq → C×

such that χ(N(x)) = f(x). Since everything is multiplicative, this is true iff χ(N(u)) = f(u).
This is true iff χ(u1+q+···+q

n−1

) = f(u). Note that ζ = u1+q+···+q
n−1

generates F×q . So we want
χ(ζ) = f(u). This is sufficient, since it implies that χ has order d and that χ(N(x)) = f(x).

This completes the proof.

Definition 9. Let’s say a thing about making characters more useful.

• If χ is trivial, then define χ(0) = 1.

• If χ is nontrivial, then define χ(0) = 0.

Proposition 34 (Equation Enumeration). Suppose d | q− 1. Suppose x ∈ Fq. The number of solutions
of the equation yd = x with y ∈ Fq is

∑
χd=1 χ(x) where the sum is taken over the multiplicative

characters with order that divides d.

Proof. Let’s consider cases.

• x = 0. Then yd = 0 has 1 solution. Note that
∑
χd χ(0) = 1, by our convenient definition.

• x ∈ F×q . Let u generate F×q . Then x = ur for some r. Let y = uk where k is a parameter. Then
yd = x iff du ≡ r (mod q − 1).

– d - r. Then there are no solutions. Note that the dual group of F×q is cyclic of order q − 1.
Since d | q − 1, there are exactly d solutions χ to χd = 1. They are χ, χ2, . . . , χd = 1. This
implies that the sum is

d∑
i=1

χ(u)ri = χ(u)r
χdr(x)− 1

χr(x)− 1
= 0. (Geometric Series Formula)

This is the desired result.
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– d | r. Then there are d solutions. Since F×q is cyclic, the dual group is also cyclic of order
q − 1. So there are exactly d characters χ with order d. They evaluate to χ(x) = 1, implying
that the sum is one.

By casework, we are done.

There’s something called the Davenport Hasse relation which is apparently important. For example, this
theorem can help in counting the number of solutions to an equation of the form a0x

m+ · · ·+akxmk = 0

over a projective space Pk, which is basically Fk+1
p /F×. In essence, it is the set of solutions, modded

out by the multiplicative group F×p . Also, this next result helps with it I guess. Basically, thinking about
vector spaces is good for us.

Proposition 35. Suppose x ∈ Fqn . Let the minimal polynomial of x over Fq be

f = Xd − a1Xd−1 + · · ·+ (−1)dad ∈ Fq[X].

Then d | n and
∏n−1
j=0 (x− xq

j

) = f
n
d . In particular, this implies that NFqn/Fq (x) = a

n
d

d and TrFqn/Fq =
n
d a1.

Proof. Note that [Fqn : Fq(x)][Fq(x) : Fq] = [Fqn : Fq] = n. This implies that d | n.
Supose h ∈ Fq[X] is irreducible and that h(X) |

∏n−1
j=0 (X − xq

j

). This implies that there is some
j such that h(xq

j

) = 0. Also since f(x) = 0, this implies that f(xq
j

) = 0. This implies that h
and f share a common factor, implying that h = f since f and h are irreducible. This implies that∏n−1
j=0 (X − xq

j

) = f(X)
n
d by considering the degree.

We can extend these ideas to say things about zeta function of a variety. This is basically just a formal
series, but related to the number of solutions of a system of polynomial equation over finite fields Fpn
where we make n bigger.

8. Bounds on Quadratic Nonresidues

Now that we’re comfortable with finite fields and characters over finite fields, we can think about how to
solve hard problems related to characters and finite fields. In particular, since the legendre function acts
as a character of F×p extended to Fp, it’s possible to place a nontrivial bound on the minimal nonquadratic
residue. First, let’s explore how characters can help over finite fields. Once we see the power of this
approach, we will prove that the minimal quadratic residue is O(p

1
2
√
e (ln p)2) using ideas from analytic

number theory.

Theorem 36. Let q be a prime power. Let d be a positive integer. Let A ⊂ Fdq be a subset of of
d-tuples, where the terms are elements of the field Fq. Suppose |A| > q

d+1
2 . Let x be an element in the

multiplicative group F×q . Then there exists a, b ∈ A such that a · b = x, where · denotes the standard
inner product in Fdq .

Proof. Define n(x) to be the number of solutions to a · b = x with a, b ∈ A. Note that n(x) =∑
a,b∈ 1ab=x.

Lemma 37. Suppose q is prime power. Suppose Fq is a field. Let χ be a nontrivial character of the
additive group F+

q . Then the set F̂+
q is set of maps {x 7→ cχ(x)}c∈F is

Proof. Note that |{x 7→ cχ(x)}c∈F| = q. Note that each map x 7→ cχ(x) is a unique group homomor-
phism. Since F̂+

q
∼= F+

q , their sizes are the same. Since the sizes are the same, and one is contained in
the other, they are the same sets.
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Let χ be a nontrivial character of the additive group F+
q . Using the Orthogonality Relations of the

additive group of Fq, this implies that

n(x) =
∑
a,b∈A

1

q

∑
c∈F

χ(c(a · b− x)) (Orthogonality Relations, Above Lemma)

=
|A|2

q
+

1

q

∑
a,b∈A

∑
c∈F×q

χ(c(a · b− x)) (Expansion)

Define R = 1
q

∑
a,b∈A

∑
c∈F×q χ(c(a · b− x)). We obtain the upper bound

R2 =
1

q2

∑
a∈A

∑
b∈A

∑
c∈F×q

χ(c(a · b− x))

2

(Definition of R)

≤ |A|
q2

∑
a∈A

∣∣∣∣∣∣
∑
b∈A

∑
c∈F×q

χ(c(a · b− x))

∣∣∣∣∣∣
2
 (Cauchy Schwarz Inequality)

≤ |A|
q2

∑
a∈Fdq

∑
b1,b2∈A

∑
c1,c2∈Fdq

χ(c1(a · b1 − x))χ(c2(a · b2 − x)) (Trivial Inequality, Expansion)

=
|A|
q2

∑
a∈Fdq

∑
b1,b2∈A

∑
c1,c2∈Fdq

χ(a(c1b1 − c2b2))χ(x(c2 − c1))

(Rearrangment with χ(x− y) = χ(x)/χ(y))

= |A|qd−2
∑

b1,b2∈A

∑
c1,c2∈Fdq

χ(x(c2 − c1))
1

qd

∑
a∈Fdq

χ(a · (c1b1 − c2b2))

(Switching Order of Summation)

= |A|qd−2
∑

b1,b2∈A

∑
c1,c2∈Fdq

χ(x(c2 − c1))1c1b1=c2b2 .

(Orthogonality Relation, Hasn’t Been Justified, But the Proof is the Same)

Now define s1 = c1/c2 and s2 = c2. See that∑
b1,b2∈A

∑
c1,c2∈Fdq

χ(x(c2 − c1))1c1b1=c2b2

=
∑

b1,b2∈A

∑
s1∈F×q

1s1b1=b2
∑

c1,c2∈Fdq

χ(xs2(1− s1)) (Substitution)

=
∑

b1,b2∈A

(q − 1)1b1=b2 +
∑

b1,b2∈A

∑
s1 6=1

1s1b1=b2
∑
s2∈F×q

χ(xs2(1− s1))

(Case when s1 = 1 and when s1 6= 1)

=
∑

b1,b2∈A

(q − 1)1b1=b2 −
∑

b1,b2∈A

∑
s1 6=1

1s1b1=b2 (Orthogonality Relation, since x 6= 0)

≤
∑

b1,b2∈A

(q − 1)1b1=b2 (Trivial Inequality)

< q|A|.
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Thus implies that R2 < |A|2qd−1, which gives |R| < |A|q d−1
2 . This implies that

n(x) =
|A|2

q
+R (Above Equation)

≥ |A|
2

q
− |A|q

d−1
2 (Bound on R)

> 0. (Since |A| > q
d+1
2 )

This gives the desired result.

Now we prove a basic result in analytic number theory.

Theorem 38 (Polya-Vinogradov). Let χ be a primitive character modulo N . Then for all positive integer
m,n, we have ∣∣∣∣∣∣

∑
m≤j<n

χ(j)

∣∣∣∣∣∣ ≤ √N lnN.

Proof. Let ξ = e
2πi
N be a primitive root of unity of order N . Recall that Fourier’s Inversion formula

implies that

χ(j) =
∑

gcd(a,N)=1

χ̂(a)ξja.

This implies that∣∣∣∣∣∣
∑

m≤j<n

χ(j)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

m≤j<n

∑
gcd(a,N)=1

χ̂(a)ξja

∣∣∣∣∣∣ (Fourier Inversion Formula)

=

∣∣∣∣∣∣
∑
a,N

χ̂(a) · ξ
an − ξam

ξa − 1

∣∣∣∣∣∣ (Geometric Series Formula)

≤ 1√
N

∑
gcd(a,N)

∣∣∣∣ 2

ξa − 1

∣∣∣∣ (Triangle Inequality)

=
1√
N

∑
gcd(a,N)

1∣∣sin (πaN )∣∣ . (Since e2θi − 1 = 2i sin(θ)eiθ)

Note the following bound.

Lemma 39. For 0 ≤ x ≤ π
2 , we have that sinx ≥ 2

πx.

Proof. Define f(x) = sinx − 2
πx. Note that f(π/2) = 0 and f(0) = 0. Note that f ′′(x) = − sin(x).

By convexity, it follows that f(x) ≥ 0 for 0 ≤ x ≤ π
2 .

This lemma implies that sin πa
N ≥

2a
N if a ≤ N

2 , by letting x = πa
N and implies that sin πa

N ≥
2(N−a)
N

if a > N
2 by letting x = π(N−a)

N . This implies that∣∣∣∣∣∣
∑

m≤j<n

χ(j)

∣∣∣∣∣∣ ≤ 2√
N

∑
a≤N2

1∣∣sin (πaN )∣∣
≤
√
N
∑
a≤N2

1

a
(Bound From Our Lemma)

≤
√
N lnN (Comparision Test)
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This gives the desired bound.

Theorem 40 (Vinogradov). Suppose p is a sufficiently large prime number. Then there exists 1 ≤ a <

p
1

2
√
e (ln p)2 such that a is a quadratic nonresidue.

Proof. Define m =
⌊√

p(ln p)2
⌋
. Define N as the number of quadratic nonresidues among {1, 2, . . . ,m}.

This implies that m − 2N =
∑m
x=1

(
x
p

)
. For the same of contradiction, suppose that

(
a
p

)
= 1 for all

1 ≤ a ≤ X =
⌊
p

1
2
√
e (ln p)2

⌋
. Note that the map x 7→

(
x
p

)
is a primitive character mod p, since p is

prime, and since it’s not the trivial character. The Polya-Vinogradov Inequality implies that

|m− 2N | =

∣∣∣∣∣
m∑
x=1

(
x

p

)∣∣∣∣∣ ≤ √p ln p.
This inequality implies that

N >
m

2
− 1

2

√
p ln p.

Any quadratic nonresidue mod p must have a prime factor q that is a quadratic nonresidue mod q,
implying that q > X as well. This gives the upper bound

N ≤
∑

X<prime q≤m

m

q
.

Merten’s Theorem implies that

N ≤
∑

X<prime q≤m

m

q
= m ln

(
lnm

lnX

)
+O

( m

lnX

)
.

Since m is defined m =
⌊√

p(ln p)2
⌋
and since X =

⌊
p

1
2
√
e (ln p)2

⌋
, note that m

lnX = O(
√
p · ln p). We

also have that

ln

(
lnm

lnX

)
= ln

(
1
2 ln p+ 2 ln ln p
1

2
√
e
ln p+ 2 ln ln p

)
+O

(
1

X ln p

)
(Definitions of m and X)

= ln

(
1 + 4 ln ln p

ln p

1 + 4
√
e ln ln p

ln p

)
+O

(
1

X ln p

)
(Algebraic Manipulation)

=
1

2
− 4(

√
e− 1) ln ln p

ln p
+O

(
1

ln p

)
(Taylor Expansion ln(1 + x) = 1 + x+O(x2))

Our inequality above implies that

m

2
− 1

2

√
p ln p <

m

2
− 4(

√
e− 1)m ln ln p

ln p
+O

(
m

ln p

)
.

Since m =
⌊√

p(ln p)2
⌋
, this is false for sufficiently large primes p.

Terry Tao notes in his blog that we can use something called Burgess’s Amplification Trick to improve
the bound to Oε(p

1
4
√
e
+ε
). At the time that blog article was posted, this was the best known bound.

Apparently, it’s possible to get better bounds assuming the Riemann hypothesis is true. Also, there is a
quick argument to show that the minimal quadratic nonresidue is at most 1 +

√
p using without any of

our machinery.
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9. Dirichlet’s Theorem

Now using facts about characters, facts about complex analysis, and facts about the sums of primes
numbers, it will be possible to prove the following claim.

Theorem 41 (Dirichlet’s Theorem). Let a and B be relatively prime integers. Then as s→ 1+, we have

∑
p≡a (mod N)

1

ps
=

1

ϕN
ln

(
1

s− 1

)
+O(1).

We will prove this with machinery.

Definition 10. We define the L function of a Dirichlet character χ mod N as

L(s, χ) =
∑
n≥1

χ(n)

ns
.

Lemma 42. Let D be a compact subset of Re(s). Then L(s, χ) is uniformly convergent on D.

Proof. We proceed via the Weierstrass M-Test. Note that m = mins∈D ReS exists and there is some
s ∈ D such that m = Re s, since D is compact. This implies that m > 1. This implies that

∣∣∣χ(n)ns

∣∣∣ ≤ 1
nm ,

since |χ(n)| = 1. Note that
∑∞
n=1

1
ns < ∞, by the integral test. The Weierstrass M-Test implies that∑∞

n=1
χ(n)
ns converges uniformly.

Lemma 43. L(s, χ) is holomorphic on any compact subset of Re(s) > 1.

Proof. Each of the function χ(n)
ns is holomorphic. Since the sum of these functions converges uniformly,

they converges uniformly to an analytic function.

Basically, the idea comes from generating functions. Note that χ is a multiplicative function over Z,
i.e., χ(a)χ(b) = χ(ab) for all a, b ∈ Z. By intuition (fundamental theorem of arithmetic) it follows that

∑
n≥1

χ(n)

ns
=

∏
p prime

(
1 +

χ(p)

ps
+
χ(p)2

p2s
+ · · ·

)

Note that 1
1−x = 1 + x+ x2 + · · · . This equation suggests that

∑
n≥1

χ(n)

ns
=

∏
p prime

1

1− χ(p)p−s
.

Let’s prove this claim.

Lemma 44. The infinite product
∏∞
i=1(1 + ai) converges absolutely iff

∑∞
i=1 |an| converges.

Proof. https://cornellmath.wordpress.com/2008/01/26/convergence-of-infinite-products/
Taking the logarithm of the product gives the series

∑
ln(1 + |ai|). The converges is this series is

equivalent to the convergence of
∏
(1 + |ai|). Assume, |ai| → 0. Otherwise, both the product and the

sum diverge. Note that limx→0 ln(1 + x)/x = 1. This implies that limn→∞ ln(1 + |an|)/|an| = 1. By
the limit comparision test, we are done.

Lemma 45. For Re s > 1, we have that

1

L(s, χ)
=

∏
p prime

(
1− χ(p)

ps

)
.
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Proof. (Proof from Gamelin)
Note that the series the series

∑
1/px+yi converges absolutely for any x > 1. It converges uniformly

in any half-plane {x ≥ 1 + ε}. This implies that the product converges absolutely, implying that it
converges. Now consider the geometric series

1

1− χ(p)p−s
= 1 + χ(p)p−s + χ(p2)p−2s + · · · , Re s > 1 (Since χ is multiplicative)

Multiplying the m series corresponding to primes p1, . . . , pm gives

1

(1− χ(p1)p−s1 )(· · · )(1− χ(pm)p−sm )
=

∞∑
k1,...,km=0

χ(pk11 · · · pkmm )(pk11 · · · pkmm )−s.

By the Fundamental Theorem of Arithmetic, every integer n ≥ 1 has a unique representation as a product
of powers of distinct primes. A summand χ(n)n−s appears at most once in the series. The sum is a
subsum of

∑
χ(n)n−s. As we incorporate more terms into the product, for every N , we eventually

capture all terms n−s with n ≤ N . By absolute convergence, in the limit we have

∏
p prime

1

1− χ(p)p−s
=

∞∑
n=1

χ(n)n−s = L(s, χ).

This completes the proof.

Now choose a branch of the complex logarithm ln(z). From the product expansion of L(s, χ), this
implies that

ln(s, χ) = −
∑
p prime

ln(1− χ(p)p−s) (Product Expansion of L(s, χ))

=
∑
p prime

∑
n≥1

χ(pn)p−ns

n
. (Taylor Expansion, Converges since |χ(p)p−s| < 1)

Now we will use our results to expression the condition n ≡ a (mod N) in an analytic way. Again, we
are working over the group G = (Z/NZ)×. Let a be some integer satisfying gcd(a,N) = 1. Using the
extension of primitive character mod N over the integers, this implies that

1

ϕ(N)

∑
χ∈Ĝ

χ(a) lnL(s, χ) =
1

ϕ(N)

∑
χ∈Ĝ

∑
p prime

∑
n≥1

χ(a)χ(pn)p−ns

n
(Above Expansion)

=
∑
p prime

∑
n≥1

p−ns

n
· 1

ϕ(N)

∑
χ∈Ĝ

χ(pn)χ(a) (Switching Order of Summation)

=
∑
p prime

∑
n≥1

p−ns

n
· 1

ϕ(N)

∑
χ∈Ĝ

χ(pn)χ(a)

=
∑
p prime

∑
n≥1

p−ns

n
· 1a≡pn (mod N)

(Fourier Inversion Formula, Extension of χ over Z)

=
∑
p prime

∑
n≥1

pn≡aModN

1

npns

=
∑

p≡aModN

1

ps
+
∑
p prime

∑
n≥2

pn≡aModN

1

npns
.
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Note the bound ∣∣∣∣∣∣∣∣
∑
p prime

∑
n≥2

pn≡aModN

1

npns

∣∣∣∣∣∣∣∣ ≤
∑
p prime

∑
n≥2

1

pnRe s
(Triangle Inequality)

≤
∑
p prime

∑
n≥2

1

pn
(Since Re s > 1)

=
∑
p prime

1

p(p− 1)
(Geometric Series)

< 1. (Telescoping)

This implies that

1

ϕ(N)

∑
χ∈Ĝ

χ(a) lnL(s, χ) =
∑

p≡aModN

1

ps
+O(1).

If χ is the trivial character, than L(s, χ) is not the zeta function, since χ(n) = 0 when gcd(n,N) 6= 1.
If χ is a nontrivial character, then (apparently) lnL(s, χ) is bounded, even as s→ 1+.

Theorem 46. Let χ be a character mod N . Then L(s, χ) extends to a function on Re s > 0 which is
holomorphics expect possibly for s = 1.

• If χ is nontrivial, then this function is holomorphic at s = 1.

• If χ is trivial (χ(n) = 1 when gcd(n,N) = 1 and χ(n) = 0 when gcd(n,N) 6= 1), then

lim
s→1+

(s− 1)L(s, 1) =
∏
p|N

(
1− 1

p

)

Proof. We will use Abel summation.

Lemma 47. Suppose χ is a nontrivial character. Then for all n, we have that |χ(1) + · · ·+ χ(n)| ≤ N .

Proof. Recall that the orthogonality relations imply that∑
gcd(n,N)

χ(n) = 0.

This implies that |
∑n
k=1 χ(k)| =

∣∣∣∑n (mod N)
k=1 χ(k)

∣∣∣. Since |χ| ≤ 1, the triangle inequality implies that
this is at most N .

Just believe that (apparently it’s an easy computation)

n−s − (n+ 1)−s = sn−s−1 +O(ns−2)

over s in compact sets. In particular, this is uniform as n→∞ over s in compact sets of Re s > 0.

Lemma 48. We have that n−s − (n+ 1)−s = sn−s−1 +O(ns−2). This is uniform as n→∞ over s in
compact sets.

Proof. It is equivalent to show that 1 − (n/(n + 1))s = sn−1 + O(n−2). Let A = minRe(s) on our
domain and let B = max Im(s) on our compact domain. Then jsut bound using the binomial theorem,
and bound using the binomial theorem like we did in homework 2. This will prove uniform convergence
on our compact domain.
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Since |χ(1) + · · · + χ(n)| is bounded and since n−s − (n + 1)−s converges uniformly to sn−s−1 on
compact subsets of Re s > 0, this implies that the series∑

n≥1

(χ(1) + · · ·+ χ(n))(n−s − (n+ 1)−s)

also converges uniformly on compact subsets of Re s. By Abel Summation, this series telescopes to
L(s, χ) if Re s > 1. This means that the above sum is a holomorphic extension of L(s, χ) to Re s > 0.
Suppose χ is trivial. By definition,

χ(n) =

1 if gcd(n,N) = 1

0 if gcd(n,N) 6= 1.

Recall that we define ζ(s) =
∑
n≥1

1
ns =

∏
p prime

1
1−p−s . (Gamelin) Since L(s, χ) =

∏
p-N

1
1−p−s , this

implies that L(s, χ)
∏
p|N

1
1−p−s = ζ(s). In essence, we have

L(s, χ) =
∏
p|N

(
1− 1

ps

)
· ζ(s).

Note the identity ∫ n+1

n

(n−s − t−s) dt = 1

ns
+

(n+ 1)1−s − n1−s

s− 1
.

Summing over n ∈ N implies that

∑
n≥1

∫ n+1

n

(n−s − t−s) dt =
∑
n≥1

1

ns
+
∑
n≥1

(n+ 1)1−s − n1−s

s− 1
(Our equation above)

= ζ(s)− 1

s− 1
.

In particular, this implies that

ζ(s) =
1

s− 1
+
∑
n≥1

∫ n+1

n

(n−s − t−s) dt.

For t ∈ [n, n+ 1], note that we have the bound

∣∣t−s − n−s∣∣ = ∣∣∣∣∫ t

n

−sx−s−1
∣∣∣∣

≤
∫ t

n

|s|
xRe s+1

dx (Triangle Inequality for Integrals)

≤ |s|
n1+Re s

(Since n ≤ t ≤ n+ 1)

In particular, this implies that ∣∣∣∣∫ n+1

n

(n−s − t−s) dt
∣∣∣∣ ≤ |s|

n1+Re s
.

This implies that on any compact subsets if Re s, we have the uniform convergence of the series

g(s) =
∑
n≥1

∫ n+1

n

(n−s − t−s) dt.
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This implies that g is holomorphic on Re s > 0. Recall that ζ(s) = 1
s−1 + g(s). Substitution implies that

(s− 1)L(s, χ) = (1 + (s− 1)g(s))
∏
p|N

(
1− 1

ps

)
.

Letting s→ 1+ gives the limit.

Let’s prove the following theorem. Apparently it’s harder.

Theorem 49. Suppose χ is a nontrivial character mod N . Then L(1, χ) 6= 0. In particular, L(s, χ) is
bounded as s→ 1+.

Proof. Recall that we found for all s > 1, the equation

1

ϕ(N)

∑
χ∈Ĝ

χ(a) lnL(s, χ) =
∑
p prime

∑
n≥1

pn≡a (mod N)

1

npns
.

In particular, this value is at least 0. Letting a = 1 implies that
∏
χ∈Ĝ L(s, χ) ≥ 1. Our previous theorem

states that if χ is nontrivial, then L(s, χ) is holomorphic at s = 1. Also, L(s, χ) has a simple pole at
s = 1, from the second part. This implies that either at most one of the nontrivial characters χ satisfies
χ(1, χ) = 0. For the sake of contradiction, supose χ is that character. This implies that χ is another
such character. This implies that χ = χ, since there’s at most one.
Now we know that χ takes on values in {1,−1, 0} over Z. Let’s make some magic. Define the function

f(x) =
∑
n≥1

χ(n)
xn

1− xn
.

Note that x ∈ [0, 1) means absolute convergence (not uniform convergence though). Due to absolute
convergence, we can rearrange terms to obtain

f(x) =
∑
n≥1

∑
j≥1

χ(n)xnj

=
∑
a≥1

xa
∑
d|a

χ(d).

Let’s define cn =
∑
d|n χ(d). Since χ is multiplicative, it also follows that if n has factorization n =

pe11 · · · p
ek
k , then cn = cpe11 · · · cpekk . There are two cases to consider.

• p | N . Then cpk =
∑
d|pk χ(p) = 1, since χ(n) = 0 when gcd(n,N) = 0, and χ(1) = 1.

• p - N . Then cpk =
∑
d|pk χ(p).

– Suppose χ(p) = 1. Then cpk = k + 1.

– Suppose χ(p) = −1. Then cpk = 1 if k is even and cpk = 0 if k is odd.

This implies that cpk ≥ 0 for all primes p and integers k, implying that cn ≥ 0 for all naturals n.
Note that there are infinitely many cn such that cn = 1. This implies that f(x) goes to ∞ as x → 1.
Recall that we assume for the sake of contradiction that L(1, χ) =

∑
n≥1

χ(n)
n = 0. This implies that

L(1, χ) · 1
1−x =

∑
n≥1

χ(n)
(1−x)n = 0 for all x < 1. Now now that

L(1, χ)− f(x) =
∑
n≥1

χ(n)

1− x

[
1

n
− xn

1 + x+ · · ·+ xn−1

]
.

Now let’s think about the coefficients of χ(n). Define

bn(x) =
1

n(1− x)
− xn

1− xn
.
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Note that

bn(x)− bn+1(x) =
1

1− x

(
1

n(n+ 1)
− xn

(1 + x+ · · ·+ xn−1)(1 + x+ · · ·+ xn)

)
≥ 0

(AM-GM Inequality)

So we know that bn(x) is monotonically decreasing with respect to n and b1(x) = 1 for all x. Recall
that |

∑n
k=1 χ(k)| is bounded. By Abel Summation, this implies that L(1, χ) − f(x) is bounded, a

contradiction. This implies that L(1, χ) 6= 0 for all χ nontrivial. So this implies that as s→ 1+ we have
that lnL(s, χ) is bounded.

Based on this theorem, it follows that as s → 1+, we have that 1
ϕ(N)

∑
χ∈Ĝ χ(a) lnL(s, χ) only

depends on the trivial character χ = 1, since lnL(s, χ) is bounded otherwise. But recall that lims→1+(s−
1)L(s, 1) =

∏
p|N

(
1− 1

p

)
. In particular, we have that as s→ 1+,

1

ϕ(N)

∑
χ∈Ĝ

χ(a) lnL(s, χ) =
1

ϕ(N)
lnL(s, 1) +O(1) (Since lnL(s, χ) is bounded if χ is nontrivial)

=
1

ϕ(N)
ln

(
1

s− 1

)
+O(1). (From the Theorem Before the Hard One)

But this is also equal to

∑
p≡aModN

1

ps
+O(1).

So we can conclude that as s→ 1+, we have that

∑
p≡aModN

1

ps
=

1

ϕ(N)
ln

(
1

s− 1

)
+O(1)

In particular, there are infinitely many primes p such that p ≡ a (mod N).

10. Hypotheses A and B

Weintraub notes that with Dirichlet’s Theorem and the Chinese Remainder Theorem, it easier to prove
Hypotheses A and B.
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