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Introduction 
 

Finite groups are algebraic objects fundamental to the study of symmetry, and therefore 
widely applicable to most branches of mathematics concerned with finite objects. Their 
structures have been studied extensively for the last 200 years, and yet mathematicians are still 
unable to describe them all; at least not in the way that any natural number may be described 
as a string of digits, or any finite set a collection of elements. However, in 2004, mathematicians 
completed the classification of finite simple groups, a major step towards the classification of 
all finite groups. The Classification Project was a combined effort by nearly a hundred 
mathematicians over the course of 60 years. Its proof consists of hundreds of articles and 
thousands of pages, and is considered one of the greatest mathematical achievements of the 
twentieth century. 

This paper will not attempt to detail the classification project or its proof. Instead, it will 
introduce the theory of finite groups and help form an understanding of their structure for 
those unfamiliar with the subject. We shall then consider how some smaller groups may be 
built, understand the limitations of such constructions, and suggest how these limitations might 
be overcome. The exploration will build towards an appreciation of the classification project, 
and culminate in a brief description of its statement. For the early sections we shall follow text 
Theory of Finite Groups by Jansen and Boon [4], and the description of the classification 
theorem will follow the Yale Mathematical Monograph: The Finite Simple Groups and Their 
Classification summarizing Michael Aschbacher’s 1978 lectures of the same name on the then-
current state of the classification project. 
 

1. Groups 
 
 As young students become familiar with the calculations of arithmetic they take their 
first steps into algebra when they realize they can solve for unknowns in equations such as    
𝑥 + 5 = 7. These skills are not restricted to integers under addition, and the undergraduate 
reader has no doubt solved countless equations involving various types of numbers under both 
addition and multiplication. However, the full generalization of this process extends much 
further than arithmetic. 
 Consider this example equation of quarter turns: “two lefts and what is a right”, 
formalized as 2𝐿 + 𝑥 = 𝑅. In this case the elements of the equation to be solved are not 
numbers and the operation, despite being written as +, is not addition. Nonetheless we may 
intuit that 𝑥 must be 𝐿, as three lefts make a right. We shall call a set with a binary operation 
that one can “perform basic algebra on” a group, and the study of these is group theory.  
  

1.1 Defining Properties of Groups 
 

To motivate a precise definition of a group it will be beneficial to investigate the process 
of solving equations such as 𝑥 + 5 = 7. Here the group in question is the set of integers under 
the operation of addition, and while determining 𝑥 may be trivial, solving the equation explicitly 
requires making use of a number of properties of arithmetic. The following is one solution 
process expanded in extensive detail. 



Solve: 𝑥 + 5 = 7. 
 

1) (𝑥 + 5) + (−5) = 7 + (−5) = 2 
2) 𝑥 + -5 + (−5). = 2 
3) 𝑥 + 0 = 2 
4) 𝑥 = 2 

 
Note that addition is the only operation being considered, so subtraction must be 

interpreted as the addition of negatives. Parenthesis have been used extensively for clarity, but 
this practice will be dropped later. Underlying each step is a property necessary for solving the 
equation, and these are the properties that shall define a group. We consider them in reverse 
order for clarity. 

Step four isolates 𝑥 on the left side of the equation. This is only possible because there 
exists an integer, 0, with the property that 𝑥 + 0 = 𝑥 for all integers 𝑥. Without an integer with 
this property, 𝑥 could not be isolated and the equation could not be solved. In general, an 
element, 𝑒, of a set, 𝐺, under an operation,	∗, is called an identity if 𝑥 ∗ 𝑒 = 𝑥 for all 𝑥 ∈ 𝐺. 
Identities are usually denoted as 0, 1,	or 𝑒, depending on the context.  

Step three combines the integers 5 and −5 under addition to produce 0. Since 0 is 
necessary for isolating 𝑥, producing 0 in the equation is also necessary. In general, an element, 
𝑎, in a set, 𝐺, under an operation ∗ with an identity, 1, is called invertible if there exists a	𝑏 ∈ 𝐺 
such that 𝑎 ∗ 𝑏 = 1, and 𝑏 is called the inverse of 𝑎. Inverses are usually denoted as −𝑎 or 𝑎9: 
depending on context. If 5 did not have an additive inverse the equation could not be solved. 

Step two changes the order in which the addition operations are applied. Such a change 
is necessary to sum 5 and −5, and therefore to solve the equation. An operation, ∗, is 
associative over a set 𝐺, if for all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐). 

Step one introduces addition of the integer −5 to the equation. Doing so is necessary 
for isolating 𝑥, and is guaranteed to be well defined on the left side of the equation because it is 
the inverse of 5, but it is also necessary 7 + (−5) be defined for the introduction to be valid. Of 
course, addition is defined for every pair of integers. In general, we call an operation, ∗, closed 
on a set 𝐺 if 𝑎 ∗ 𝑏 is defined for every 𝑎, 𝑏 ∈ 𝐺 and 𝑎 ∗ 𝑏 ∈ 𝐺.   

With these concepts understood, we are prepared to define a group. In the preceding 
explanation we have used the symbols + and ∗ to represent our operations, but this is not 
necessary. In fact, most of the remainder of this paper will use concatenation to signify the 
operation. 
 
Definition: A group (𝐺,∗) is a set 𝐺 under a binary operation ∗ that satisfies the following 
properties: 

 
i. 𝐺 is closed under ∗. 
ii. ∗ is associative over 𝐺. 
iii. 𝐺 possesses an identity under ∗. 
iv. Every 𝑔 ∈ 𝐺 has an inverse under ∗ in 𝐺. 

 
 



We may abuse notation and refer to a group (𝐺,∗) simply as 𝐺 when the operation is 
clear from context. Note that the integers have many other properties that are not used in the 
solving process and not included in the definition of a group. In particular, a group does not 
need to be commutative. That is, there is no requirement that 𝑎𝑏 = 𝑏𝑎 for 𝑎, 𝑏 ∈ 𝐺, despite 
this being true for many classes of numbers. A group that is commutative is called abelian. 

While these four properties define groups, additional properties may be derived from 
them. Five in particular will be important for our investigation1. 
 
Theorem 1: Inverses commute.  
 
Proof: Let 𝐺 be a group with identity 𝑒, and 𝑎 ∈ 𝐺. Since 𝐺 is a group, 𝑎 has an inverse, 𝑎9:, 
and 𝑎9: has an inverse, (𝑎9:)9:. Thus 𝑎𝑎9: = 𝑒, 𝑎9:(𝑎9:)9: = 𝑒, and 
 

𝑎9:𝑎 = 𝑎9:𝑎𝑒 = 𝑎9:𝑎𝑎9:(𝑎9:)9: = 𝑎9:(𝑎9:)9: = 𝑒. 
 
Therefore 𝑎9:𝑎 = 𝑎𝑎9: = 𝑒. Note that this also means that 𝑎 is an inverse of 𝑎9:.																					∎ 
 
Theorem 2: Identities commute. 
 
Proof: Let 𝐺 be a group with identity 𝑒	and 𝑎 ∈ 𝐺. The proof follows from Theorem 1 as       
𝑎𝑒 = 𝑎𝑎9:𝑎 = 𝑒𝑎.          										∎ 
 
Theorem 3: Inverses are unique. 
 
Proof: Let 𝐺 be a group with identity 𝑒	and 𝑎 ∈ 𝐺, and let 𝑏 and 𝑐 be inverses of 𝑎.	Then 
𝑎𝑏 = 𝑎𝑐 = 𝑒, and by Theorem 1, 𝑏 = 𝑏𝑎𝑐 = 𝑐. Therefore, the inverse of an element of a group 
is uniquely defined and (𝑎9:)9: = 𝑎.       										∎ 
 
Theorem 4: Identities are unique. 
 
Proof: Let 𝐺 be a group with identities 𝑒: and 𝑒>. Then 𝑒:𝑒> = 𝑒: because 𝑒> is an identity, and 
𝑒:𝑒> = 𝑒>𝑒: = 𝑒> because identities commute and : is an identity. Thus 𝑒: = 𝑒>, so the 
identity of a group is unique.         										∎ 
 
Theorem 5: Given a group 𝐺, for any 𝑎 ∈ 𝐺, 𝛼:𝐺 → 𝐺 such that 𝛼(𝑥) = 𝑎𝑥, or 𝛼(𝑥) = 𝑥𝑎, is a 
bijection. 
 
Proof: Let 𝐺 be a group with 𝑎 ∈ 𝐺, and 𝛼: 𝐺 → 𝐺 such that 𝛼(𝑥) = 𝑎𝑥 for 𝑥 ∈ 𝐺. For any 𝑏 ∈
𝐺, 𝛼(𝑎9:𝑏) = 𝑎𝑎9:𝑏 = 𝑏 so 𝛼 is surjective. If 𝛼(𝑥) = 𝛼(𝑦) = 𝑏, then 𝑎𝑥 = 𝑎𝑦 = 𝑏, and 
 
 

1. The properties of identities and inverses are closely related. There are a number of ways to prove the 
following theorems in various orders, and it is important to be careful not to be circular when doing so! 
The structure of these theorems in this paper follow the form of Jansen and Boon’s Theory of Finite 
Groups [4]. 



𝑥 = 𝑦 = 𝑎9:𝑏. Therefore 𝛼 also injective, so it is bijective. An identical argument applies for 
right multiplication.                   ∎ 

 
1.2 Examples of Groups 

 
Integers under addition form a group, as do the rationals, reals, and complex numbers. 

However, none of these sets form a group under multiplication since 0 does not have an 
inverse. The rationals, reals, and complex numbers are groups under multiplication when 0 is 
excluded, but the integers are not1. Groups may similarly be formed by the equivalence classes 
of modular arithmetic under addition. Still more abstract are nonarithmetic examples of 
groups. 
 
Example 1.1: Quarter turns form a group 
 
 The previously mentioned example of lefts and rights form a group. Specifically, the set 
of counter-clockwise rotations of 90° (Left-L), 180° (Back-B), 270° (Right-R), and 0° (Forward-
F), with composition of rotations as the operation, which may be thought of as addition of 
angles modulo 360. The operation is closed because the composition of any of these quarter 
turns is again a quarter turn. The operation is associative by the associativity of addition. The  
set has an identity, F, and each element has an inverse, with L and R being each other’s inverse, 
and B and F each being their own inverse. 
 
Example 1.2: The symmetries of a square form a group.  
 
 The idea of rotations may be expanded by considering the symmetries of a geometric 
object. By symmetries we refer to transformations that map a geometric object to itself. For a 
square the symmetries are the reflections along the four lines of symmetry and rotations of 
90°, 180°, 270°, and 0°. The group operation on these eight transformations is composition. 
Again, we can confirm this is a group by confirming each property individually. Since the image 
of each transformation is a square that may again be transformed, the symmetries are closed 
under composition. Composition of transformations is associative because the composition of 
any functions is associative2. The 0° rotation is the identity, and every element is its own 
inverse, except for 90° and 270° which are each other’s inverse. Note that this is not an abelian 
group3.  
 
Example 1.3: The permutations on three elements form a group. 
 
 Given three elements in an arrangement, they may be permuted in six ways. 
Transposing two elements (three ways), cycling all three elements (two ways), or the identity  
 
 

1. J Why is this? Consider what the identity would be.  
2. K Why is this true? 
3. J Confirm that there are at least two symmetries that don’t commute. 



permutation. These permutations with the operation of composition may be shown to be a 
group1. 
 
Example 1.4: Invertible 𝑛 × 𝑛 real matrices form a group under matrix multiplication. 
 
 The group properties follow from the definition of matrix multiplication. Note that it is 
necessary to exclude non-invertible matrices because, of course, they do not have inverses. 
This group is known as the general linear group, and is denoted as 𝐺𝐿J(ℝ). 
 
 Some of these examples contain infinite elements, while others are finite. It is possible 
to make statements about the structure of a group based on the how many elements it 
contains. The number of elements in a group is called the order of the group, and is often 
denoted |𝐺| for a group 𝐺. The remainder of this paper will exclusively be concerned with 
groups of finite order. 
 

2. Cayley Tables 
 

For small groups it is possible to consider the operation on every pair of elements in the 
group. When formatted in a table it is known as a Cayley table in honor of the British 
mathematician Arthur Cayley. The Cayley tables for the group of quarter turns and the groups  
of integer addition modulo 3 and 4 are given below. For consistency we shall always order the 
elements with the identity first. 
 

Table 1.1   Table 1.2   Table 1.3 
 
 

 
 
 
 
 

2.1 Group Isomorphism Classes 
 

Notice the similarity of the Cayley tables in tables 1.1 and 1.3. The group of quarter 
turns (𝐹, 𝐿, 𝐵, 𝑅) and the group of integers under addition modulo 4 can be seen to have 
identical structure by equating 𝐿 with 1, 𝐵 with 2, 𝑅 with 3, and 𝐹 with 0. We shall call two 
groups isomorphic if their Cayley tables can be shown to be identical by a relabeling of 
elements. Groups that are isomorphic are said to belong to the same group isomorphism class. 
Rather than study these groups separately, it is sufficient to study a single representative group 
of the isomorphism class. To simplify the study of groups shall now focus almost entirely on  
isomorphism classes, and avoid distinguishing between groups in the same class.  
 

1. J Do this by demonstrating all four properties. 

+𝟑 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

* F L B R 
F F L B R 
L L B R F 
B B R F L 
R R F L B 

+Q 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 



Definition: A cyclic group is a group 𝐺 in which there exists an 𝑎 ∈ 𝐺 such that for every 𝑔 ∈ 𝐺, 
𝑔 = 𝑎R for some 𝑘 ∈ ℤ, where 𝑎9R = (𝑎9:)R and 𝑎U = 1. Such a group is said to be generated 
by 𝑎. 
 
Theorem 6: If 𝐺 is a cyclic group of order 𝑛 ∈ ℕ	generated by 𝑎, then 𝐺 = {𝑎U, 𝑎:, … , 𝑎J9:}. 
 
Proof: Every element of 𝐺 may be written as 𝑎R  and 𝑎R ∈ 𝐺 for all 𝑘 ∈ ℤ because 𝐺 is closed. 
By the pigeon hole principle {𝑎U, 𝑎:,… , 𝑎J} contains a pair of expressions that are equal. If 
𝑎Z[ = 𝑎Z\	with 0 ≤ 𝑚: < 𝑚> ≤ 𝑛, then  𝑎Z\9Z[ = 1, and 𝑎R = 𝑎R	`abc\dc[. Therefore 𝐺 ⊂
{𝑎U, 𝑎:, … , 𝑎Z\9Z[}. Since 𝐺 has 𝑛	elements 𝑚> −𝑚: ≥ 𝑛, but 𝑚> − 𝑚: ≤ 𝑛 as well, so 𝐺 ⊂
{𝑎U, 𝑎:, … , 𝑎J}. Finally, since |𝐺| = 𝑛 and 𝑎J = 𝑎	Z\9Z[ = 𝑎U = 1, 𝐺 = {𝑎U, 𝑎:, … , 𝑎J9:}.       ∎ 
 
Theorem 7: Cyclic groups of the same order are isomorphic. 
 
Proof: Let 𝐺 be a cyclic group of order 𝑛 generated by 𝑎 ∈ 𝐺. Then 𝐺 = {𝑎U, 𝑎:,… , 𝑎J9:}. 
Arrange the elements of the Cayley table of 𝐺 in order of their exponent. Then the table is 
uniquely determined since 𝑎R[𝑎R\ = 𝑎R[gR\	`abh. If 𝐺′ is a cyclic group of order 𝑛 generated by 
𝑎′ ∈ 𝐺′, then a uniquely determined Cayley table may be obtained in the same manner, and is 
isomorphic to 𝐺 by relabeling 𝑎R  as 𝑎jR .                ∎ 
 

Since the group of quarter turns and the group of integer addition modulo 4 both have 
four elements and can be generated by repeated applications of turning left and adding 1 
respectively, they belong the isomorphism class of cyclic groups of order 4, denoted 𝐶Q. 

 
Table 1.4: Representative group of isomorphism class 𝐶Q 

 
 
 
 
 

 
 

We now turn to the driving question of this paper: what are the finite group 
isomorphism classes? We have already encountered a number of them. Specifically, we have 
considered 𝐶Q, but this is not the only cyclic group. 
 
Theorem 8: There is a cyclic group isomorphism class of every order. 

 
Proof: The integers modJ form a group under addition of order 𝑛 and may be generated by 
repeatedly adding 1. Hence, they are a cyclic group of order 𝑛, so the isomorphism class exists. 
 
 
 

* 1 a b c 
1 1 a b c 
a a b c 1 
b b c 1 a 
c c 1 a b 



A symmetric group is the group of permutations of an ordered set. Two symmetric 
groups of the same order may be seen to be isomorphic simply by relabeling the elements of 
the set being acted upon. The class of symmetric groups on 𝑛 elements is denoted 𝑆J1,2. 

These two families of group classes are nowhere near exhaustive of the finite group 
isomorphism classes, and it can be very difficult to identify some of the others. In the following 
sections we shall outline a process that works for groups of small order. 

 
2.2 Valid Cayley Tables 

 
Identifying the finite group isomorphism classes is equivalent to asking which binary 

operation tables are Cayley tables, and our initial investigation shall consist of constructing all 
possible tables for groups of small order. It is very easy to construct a table for an operation 
that is closed and contains an identity and inverses. Associativity is far more difficult to verify, 
and is responsible for the lion’s share of the complexity of groups. While the number of tables 
of closed binary operations over even a small set grows very quickly, 𝑂-𝑛J\., we shall use the 
properties of a group to restrict the number of valid Cayley tables to a much more manageable 
number. The following properties of Cayley tables will allow us to narrow the focus our search 
substantially. 
 
Cayley Table Property 1: The first row and column of a Cayley table are uniquely determined.  
 
Proof: This follows directly from the existence and uniqueness of the identity, and our decision 
to index it first. 
 
Cayley Table Property 2: Each row and each column must contain each element exactly once.  

 
Proof: Each row (resp. column) corresponds to the image of right (resp. left) multiplication by 
an element, and such multiplication is a bijection by theorem 5. 

 
Cayley Table Property 3: The identity entries must be symmetric across the diagonal. 
 
Proof: This follows directly from theorem 1 and theorem 3. 
 
 By restricting ourselves to tables with properties 1-3 we need to consider far fewer 
tables, and each table that satisfies these three properties is guaranteed to have both an 
identity and inverses. However, these are still not sufficient to guarantee associativity and we 
will consider algorithms that are able to confirm an operation’s associativity later. 
 
 
 
 
 

1. J What is the order of 𝑆J? 
2. K Show that there is a symmetric group on a set of any finite set of elements. Consider example 3. 



 2.3 Constructing Small Finite Groups 
 

We now have the tools to exhaustively identify groups of small order. We shall detail 
the construction of groups of orders 1 through 5, and outline the process for the groups of  
 
order 6. After this the description of the process becomes tedious to write, but may continue to 
be effectively implemented by hand for larger groups, and implemented by a computer for 
groups that are far larger still. 

 
Groups of order 1 

 
Since all groups must have an identity, the smallest group must have at 

least one element, and the element of the group of order 1 must be the identity. 
The Cayley table is therefore easily derived, and is known as the trivial group or 
𝐶:.              Table 2.1 
             
Groups of order 2 

 
 The case with two elements is not significantly more complicated. All 

but one entry are determined by property 1, and the final entry is determined 
by property 2. Hence, there is only one isomorphism class of order 2. This 
group is cyclic and is known as 𝐶>. 
  Table 2.2 
Groups of order 3 

 
The table with three elements is also uniquely determined. After 

applying property 1, the entry for 𝑎𝑏 must be 1 by property 2, and the rest 
of the table follows easily. This group is cyclic and is known as 𝐶q. 
 
          
                    Table 2.3 
Groups of Order 4 

 
The table with four elements is not uniquely determined. Following the identity 

property, we have table 2.4.1, but multiple valid tables may be built from this. At first glance 
there appear to be three possibilities for the value 𝑎𝑎, 𝑎𝑎 = 1, 𝑎𝑎 = 𝑏, or 𝑎𝑎 = 𝑐. However,  
at this point 𝑏 and 𝑐 are indistinguishable elements. The tables where 
𝑎𝑎 = 𝑐 could be obtained from the tables with 𝑎𝑎 = 𝑏 by a relabeling of 
elements, so they are isomorphic. It is therefore sufficient to consider 
only 𝑎𝑎 = 1 and 𝑎𝑎 = 𝑏. The choice of 𝑎𝑎 = 𝑏 then uniquely 
determines a Cayley table, the familiar 𝐶Q in table 2.4.2, but 𝑎𝑎 = 1 
leads to an additional decision. Either 𝑏𝑏 = 1 or 𝑏𝑏 = 𝑎.  
                    Table 2.4.1 

* 1 
1 1 

* 1 a 
1 1 a 
a a 1 

* 1 a b 
1 1 a b 
a a b 1 
b b 1 a 

* 1 a b c 
1 1 a b c 
a a    
b b    
c c    



The case of 𝑏𝑏 = 1 yields another group of order 4 (table 2.4.3), named the Klein-4 
group in honor of German mathematician Felix Klein, and is usually denoted 𝐾Q. Table 2.4.4 
shows the case where 𝑏𝑏 = 𝑎, which is isomorphic to 𝐶Q as the original 𝐶Q table may be 
obtained from it by permuting the elements 𝑎 and 𝑏. 

Thus, there are two groups of order four with different structure. 𝐾Q is often 
characterized by its elements having the property that each is its own inverse. This is certainly 
not the case for 𝐶Q. 

 
 

 
 
 
 
          Table 2.4.2           Table 2.4.3          Table 2.4.4 
 
Groups of Order 5 

 
There is only one group of order 5 up to isomorphism1. We shall prove this easily later, 

but to be thorough we derive it here as well. After applying Cayley table property 1, there are 
two possibilities up to isomorphism for 𝑎𝑎, 𝑎𝑎 = 1 and 𝑎𝑎 = 𝑏. 
 
Case 1: 𝑎𝑎 = 1.  
 

We may determine the second row up to isomorphism since 𝑐 
and 𝑑 are indistinguishable (table 2.5.1). There are now two possibilities 
for the entry of 𝑏𝑎: 𝑏𝑎 = 𝑐 or 𝑏𝑎 = 𝑑. Note that 𝑐 and 𝑑 are no longer 
indistinguishable since they have been used differently in the row 
above! If 𝑏𝑎 = 𝑐 then we derive table 2.5.2. However, in this table it is 
impossible to assign the identity to entries in each row and column 
without violating Cayley table property 32. Therefore, it is not a valid 
Cayley table.                    Table 2.5.1 
 If 𝑏𝑎 = 𝑑 then we may determine 
the rest of the table to be table 2.5.33, which 
satisfies all three Cayley table properties. 
However, the table describes an operation 
that is not associative since (𝑏𝑏)𝑐 = 𝑐, while 
𝑏(𝑏𝑐) = 𝑑, so this is also not a valid Cayley 
table. Therefore, we can conclude that  
𝑎𝑎 ≠ 1.       Table 2.5.2             Table 2.5.3 

 
 

1. J What isomorphism class must this be? 
2. K How else could we confirm this is not a Cayley Table? 
3. J Confirm this. 

* 1 a b c 
1 1 a b c 
a a b c 1 
b b c 1 a 
c c 1 a b 

* 1 a b c 
1 1 a b c 
a a 1 c b 
b b c 1 a 
c c b a 1 

* 1 a b c 
1 1 a b c 
a a 1 c b 
b b c a 1 
c c b 1 a 

* 1 a b c d 
1 1 a b c d 
a a 1 c d b 
b b     
c c     
d d     

* 1 a b c d 
1 1 a b c d 
a a 1 c d b 
b b d 1 a c 
c c b d 1 a 
d d c a b 1 

* 1 a b c d 
1 1 a b c d 
a a 1 c d b 
b b c d   
c c d    
d d b   c 



Case 2: 𝑎𝑎 = 𝑏. 
 We immediately come to a second decision as to the value of 𝑎𝑏. Up to isomorphism 
either 𝑎𝑏 = 1 or 𝑎𝑏 = 𝑐. In the case that 𝑎𝑏 = 1 we may determine the table to be that of 
table 2.5.4, but property 2 implies that 𝑏𝑏 = 𝑐 and 𝑏𝑏 = 𝑑, which is a contradiction. If 𝑎𝑏 = 𝑐 
the table may be determined to be the familiar 𝐶u,	which must exist (table 2.5.5). 
 
 
   
 
 
 
 
 
     Table 2.5.4         Table 2.5.5 
 
Groups of Order 6 
 
 The groups of order 6 are more complicated but are still straightforward to derive by 
hand. A description of such a derivation would be tedious, however, so for brevity we shall only 
highlight the results. Motivated readers are encouraged to verify the construction themselves1. 
To simplify the process, it is recommended to begin by splitting the tables into three cases 
based on their possible skeletons. The skeleton of a Cayley table is the position of the identities 
up to isomorphism. In the case of groups of order 6 there are three possibilities, every element 
is its own inverse, one pair of elements are inverses, or two pairs of elements are inverses2. 
 

 
  
 

             Table 2.6.1            Table 2.6.2             Table 2.6.3 
 
 The result of the constructions will be two groups. We are guaranteed that 𝐶v will be 
one of them, and the previously mentioned symmetric group 𝑆q will be the other. Below are 
their Cayley tables, note that 𝑆q is not symmetric about the diagonal, so it is not commutative. 
 
 
 

1. Be careful with indistinguishable elements in table 2.6.2 and table 2.6.3 since the skeletons immediately 
distinguish some elements. For instance, in table 2.6.2 elements b and d are clearly distinguishable since 
one is its own inverse, and the other is not. 

2. J Why are these the only possibilities? 

* 1 a b c d 
1 1 a b c d 
a a b 1 d c 
b b 1    
c c d    
d d c    

* 1 a b c d 
1 1 a b c d 
a a b c d 1 
b b c d 1 a 
c c d 1 a b 
d d 1 a b c 

* 1 a b c d e 
1 1      
a  1     
b   1    
c    1   
d     1  
e      1 

* 1 a b c d e 
1 1      
a  1     
b    1   
c   1    
d      1 
e     1  

* 1 a b c d e 
1 1      
a  1     
b   1    
c    1   
d      1 
e     1  



 
 
 
 

 
 

 
 

  Table 2.6.4: 𝐶v     Table 2.6.5: 𝑆q 
 

2.3 Associativity 
 
 It is not surprising that associativity is more difficult to confirm than the other 
operations. It is a statement about every ordered triple of elements in the table, so naively 
confirming associativity will have complexity 𝑂(𝑛q). Even after reducing the number of tables 
to be checked, this is still prohibitive for moderately large 𝑛. There are a couple of algorithms 
that help organize the process and optimize the average time. See Light’s Algorithm and Jansen 
and Boon’s Property IV of Cayley Tables [4, pg. 11]. Neither of these reduce the worst case 
𝑂(𝑛q) scenario though. If we hope to be able to identify large finite groups we will need a 
method other than building them directly. 
 

3.  Subgroups and Homomorphisms 
 
Just as integers may be characterized by their factors, groups have a similar, though not 

quite analogous property. How to use this “factorization” to define groups remains an 
unanswered question in mathematics, known as the Group Extension Problem, but the 
potential of this characterization has driven the classification effort for the last for the last 100 
years. 

 
3.1 Subgroups 

 
Definition: A subgroup of a group (𝐺,∗) is a subset 𝐻 ⊂ 𝐺 that is also a group under ∗. We 
denote this as 𝐻 ≤ 𝐺. 
 
Theorem 9: A subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if and only if it is closed and contains 
inverses. 
 
Proof: If 𝐻 is a subgroup of 𝐺 then it is a group, so it is closed and contains inverses. In the 
converse direction, 𝐻 is closed and contains inverses by hypothesis. Therefore, for ℎ ∈ 𝐻, 
ℎ9: ∈ 𝐻 and ℎℎ9: = 1y ∈ 𝐻, so 𝐻 contains an identity. Finally, since every ordered triple in 𝐻 
is in 𝐺 and 𝐺 is associative, 𝐻 is associative.                ∎ 
 
Example 3.1: The group of quarter turns is a subgroup of the group of symmetries of a square.  
 

* 1 a b c d e 
1 1 a b c d e 
a a 1 d e b c 
b b e 1 d c a 
c c d e 1 a b 
d d c a b e 1 
e e b c a 1 d 

* 1 a b c d e 
1 1 a b c d e 
a a b c d e 1 
b b c d e 1 a 
c c d e 1 a b 
d d e 1 a b c 
e e 1 a b c 1 



Example 3.2: The even integers are a subgroup of the integers under addition1. 
 
Example 3.3: For every group 𝐺, the identity element 1y and 𝐺 itself are subgroups. These are 
known as the trivial subgroups of 𝐺. 
 
Example 3.4: Given an element 𝑎 ∈ 𝐺 for a group 𝐺, 〈𝑎〉 = {𝑎R	|	𝑘 ∈ ℤ} is a subgroup of 𝐺. It is 
closed since 𝑎|𝑎} = 𝑎|g} ∈ 〈𝑎〉, and contains inverses because (𝑎|)9: = (𝑎9:)| = 𝑎9| ∈ 〈𝑎〉. 
〈𝑎〉 is called the subgroup of G generated by 𝑎. 
 

3.2 Cosets 
 
 Given a subset 𝐻 ≤ 𝐺 we may consider the set of elements 𝑎𝐻 = {𝑎ℎ	|	ℎ ∈ 𝐻}. Such a 
set is called a left coset of 𝐻. Similarly 𝐻𝑎 = {ℎ𝑎	|	ℎ ∈ 𝐻} is a right coset. For simplicity we shall 
make and prove statements about left cosets, but there are equivalent statements for right 
cosets. If 𝑎 ∈ 𝐻 then 𝑎𝐻 = 𝐻 by the closure of 𝐻 and Theorem 5. However, if 𝑎 ∉ 𝐻 then 
𝑎𝐻 ≠ 𝐻. We shall occasionally write 𝐴𝐵 to signify {𝑎𝑏	|	𝑎 ∈ 𝐴	and	𝑏 ∈ 𝐵}2. 
 
Theorem 10: Cosets of a subgroup 𝐻 ≤ 𝐺 partition 𝐺. 
 
Proof: For every 𝑔 ∈ 𝐺, 𝑔 ∈ 𝑔𝐻 and 𝑔𝐻 ⊂ 𝐺, so 𝐺 = ⋃{𝑔𝐻	|	𝑔 ∈ 𝐺}. Suppose 𝑔 ∈ 𝑎𝐻	and 𝑔 ∈
𝑏𝐻.	Then 𝑔 = 𝑎ℎ: for some ℎ: ∈ 𝐻, and 𝑔 = 𝑏ℎ> for some ℎ> ∈ 𝐻. Let 𝑏ℎ ∈ 𝑏𝐻. Then 𝑏ℎ =
𝑔ℎ>9:ℎ = 𝑎ℎ:ℎ>9:ℎ, so 𝑏ℎ ∈ 𝑎𝐻. Similarly, for any 𝑎ℎj ∈ 𝑎𝐻, 𝑎ℎj = 𝑔ℎ:9:ℎj = 𝑏ℎ>ℎ:9:ℎj, so 
𝑎ℎ ∈ 𝑏𝐻. Therefore 𝑏𝐻 = 𝑎𝐻, and each 𝑔 ∈ 𝐺 is a member of exactly one coset. Since 𝐺 is 
equal to the union of the cosets, they form a partition.              ∎ 
 
 This leads us to one of the most useful theorems of finite groups. 
 
Theorem 11 (Lagrange’s Theorem): For any finite group 𝐺, if 𝐻 is a subgroup of 𝐺 then |𝐻| 
divides |𝐺|. 
 
Proof: By Theorem 10, the cosets of 𝐻 partition 𝐺. By Theorem 5, |𝑎𝐻| = |𝐻| for all 𝑎 ∈ 𝐺. 
Therefore |𝐺| = |𝐻||𝐺:𝐻| where 𝐺:𝐻 is the set of 𝐻 cosets in 𝐺.             ∎ 
 
Corollary: For any prime 𝑝, all groups of order 𝑝 are isomorphic. 
 
Proof: Let |𝐺| = 𝑝. Since |𝐺| ≠ 1, 𝐺 has a non-identity element 𝑎. By Lagrange’s Theorem, |〈𝑎〉| 
divides 𝑝, so |〈𝑎〉| = 𝑝. Therefore 〈𝑎〉 = 𝐺, so 𝐺 is isomorphic to the cyclic group of order 𝑝 by 
Theorem 7. 
 
 This confirms our investigations into groups of orders 2, 3, and 5, and hints at the utility 
of Lagrange’s Theorem.  
 

1. J What are the other subgroups of (ℤ, +)? 
2. J For a group 𝐺, what is 𝐺𝐺? 



3.3 Homomorphisms 
 
 In our discussions of isomorphism classes, we considered informally how some groups 
may be transformed into others. This section looks to formalize this concept, and investigate 
how it may be used to develop our understanding of the structure of groups. 
 
Definition: A homomorphism is a function 𝜑:𝐺 → 𝐻, where 𝐺 and 𝐻 are groups and 𝜑(𝑎𝑏) =
𝜑(𝑎)𝜑(𝑏) for any 𝑎, 𝑏 ∈ 𝐺. 
 
 Intuitively, the property 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) to some extent preserves the group 
structure, formalizing our method of relabeling elements in a Cayley table. However, 
homomorphisms do not necessarily describe isomorphisms, i.e. preserve all of the group 
structure. The constant function 𝜑:𝐺 → 𝐺  such that 𝜑(𝑔) = 1 for all 𝑔 ∈ 𝐺 is a 
homomorphism since it is certainly true that 𝜑(𝑎𝑏) = 1 = 1 ∗ 1 = 𝜑(𝑎)𝜑(𝑏), but 𝐺 need not 
be isomorphic to {1}. If a homomorphism 𝜑 does not discard any information of the group, 
specifically if 𝜑(𝑎) = 1 iff 𝑎 = 1, then 𝜑 will agree with our previous description of 
isomorphisms. Explicitly, a bijective homomorphism is an isomorphism. An isomorphism from a 
group to itself is called an automorphism. This question of what 𝜑	maps to the identity leads to 
an important property of homomorphisms. 
 
Definition: The kernel of a homomorphism 𝜑, denoted ker(𝜑), is the subset 𝑋	of the domain of 
𝜑 such that 𝜑(𝑋) = 1. 
 
 As discussed above, the size and structure of the kernel of a homomorphism indicate 
how much of the original group structure is preserved. Understanding homomorphisms of 
groups and their kernels will help us understand the structure of the isomorphism classes of 
groups.  
 
Lemma 1: If 𝜑: 𝐺 → 𝐻 is a homomorphism then 1y ∈ 𝐾𝑒𝑟(𝜑). 
 
Proof: For any 𝑎 ∈ 𝐺, 𝜑(𝑎) = 𝜑(𝑎1y) = 𝜑(𝑎)𝜑(1y), so 𝜑(1y) = 1� and 1y ∈ 𝐾𝑒𝑟(𝜑).										∎ 
 
Theorem 12: The kernel of a homomorphism 𝜑: 𝐺 → 𝐻 is a subgroup of 𝐺. 
 
Proof: Let 𝜑:𝐺 → 𝐻 be a homomorphism. If 𝑎, 𝑏 ∈ 𝐾𝑒𝑟(𝜑), then 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) =
1�1� = 1�, so 𝑎𝑏 ∈ 𝐾𝑒𝑟(𝜑) and 𝐾𝑒𝑟(𝜑) is closed. If 𝑎 ∈ 𝐾𝑒𝑟(𝜑), then 

𝜑(𝑎9:) = 1�𝜑(𝑎9:) = 𝜑(𝑎)𝜑(𝑎9:) = 𝜑(𝑎𝑎9:) = 𝜑(1y) = 1�, 
so 𝑎9: ∈ 𝐾𝑒𝑟(𝜑). Thus, 𝐾𝑒𝑟(𝜑) is closed and contains inverses, so by Theorem 9 𝐾𝑒𝑟(𝜑) is a 
subgroup of 𝐺.                   ∎ 
 
 3.4 Normal Subgroups 
 
 The kernel of every homomorphism on 𝐺 is a subgroup of 𝐺, but not every subgroup is 
the kernel of a homomorphism. If 𝜑:𝐺 → 𝐻	and 𝑎, 𝑎′ ∈ ker(𝐺), then  



 
𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) = 𝜑(𝑏) = 𝜑(𝑏)𝜑(𝑎′) = 𝜑(𝑏𝑎′), 

 
but if 𝐺 is not abelian then there is no guarantee that 𝜑(𝑎𝑏) = 𝜑(𝑏𝑎′), or even that 𝜑(𝑎𝑏) =
𝜑(𝑏𝑎), for all 𝑎 and 𝑎′ in an arbitrary 𝐺j ≤ 𝐺. If our intention be that 𝜑(𝐺j) = 1�, then the 
restriction that 𝜑(𝑎𝑏) = 𝜑(𝑏𝑎′)	for all 𝑎, 𝑎j ∈ 𝐺′ is equivalent to requiring 𝑏𝐺j = 𝐺′𝑏, i.e. that 
it has equal left and right cosets. 
 
Definition: If 𝐺j is a subgroup of 𝐺 such that 𝑎𝐺j = 𝐺′𝑎 for all 𝑎 ∈ 𝐺, then we call 𝐺′ a normal 
subgroup and denote it 𝐺′ ⊴ 𝐺. 
 
Theorem 13: Every normal subgroup 𝐺′ ⊴ 𝐺 is the kernel of some homomorphism of 𝐺. 
 
Proof: We show this by considering the cosets of 𝐺′. Let (𝐺: 𝐺′,∗) be the group1 of 𝐺′ cosets of 
𝐺 where 𝑎𝐺j ∗ 𝑏𝐺j = 𝑎𝑏𝐺′. Let 𝜑:𝐺 → (𝐺:𝐺′,∗) be defined as 𝜑(𝑎) = 𝑎𝐺′. Then 𝜑(𝑎𝑏) =
𝑎𝑏𝐺j. Since 𝐺′ is normal, 𝑎𝑏𝐺j𝐺′ = 𝑎𝐺′𝑏𝐺′ = 𝜑(𝑎) ∗ 𝜑(𝑏), so 𝜑 is a homomorphism, and 

ker(𝜑) = {𝑎 ∈ 𝐺	|	𝜑(𝑎) = 𝑎𝐺′ = 1𝐺j = 𝐺′} = 𝐺′ 
 because 𝐺′ is closed.                   ∎ 
 

3.5 Quotient Groups 
 

The concept of a normal group and its group of cosets allows us to consider the 
decomposition of groups into smaller groups, similar to factoring integers.  

 
Definition: Given a group 𝐺 with 𝑁 ⊴ 𝐺, the group of cosets of 𝑁 in 𝐺 is called the quotient 
group of 𝐺 by 𝑁, and is denoted 𝐺/𝑁. 
 
 By Lagrange’s Theorem, |𝐺| = |𝑁||𝐺/𝑁|, so the comparison with factoring integers is 
appropriate. Decomposing groups in this way is subtler than the case of integers though. First 
of all, there are multiple groups of most orders, so given 𝑁 and 𝐺, it may not be immediately 
clear what 𝐺/𝑁 would be. Second, while |𝑁|  is a subgroup of 𝐺, there is no guarantee that 
|𝐺/𝑁| is. Third, the decomposition of |𝐺| need not be unique to 𝐺. The simplest case is 𝐾Q and 
𝐶Q. In both cases 𝐶> is a normal subgroup, however, 𝐾Q/𝐶> = 𝐶> and 𝐶Q/𝐶> = 𝐶>. 
 

3.6 The Extension Problem 
 

 Nonetheless, such decompositions reveal a new path towards classifying the finite 
groups. 
 
Definition: Given two groups 𝐴 and 𝐵, an extension of 𝐵 by 𝐴 is the group 𝐺 such that 𝐴 ⊴ 𝐺 
and 𝐵 = 𝐺/𝐴. 
 
 

1. J Confirm this is indeed a group. 



Definition: A simple group is a group with no nontrivial normal subgroups. 
 

As noted above, an extension need not be unique. However, if given two groups 𝐴 and 
𝐵, it was possible to identify the extensions of 𝐺 then we would be able to identify every group 
with a normal subgroup. This concept is known as the Extension Problem, and is a significant 
unsolved problem in mathematics. There are some well understood extensions, the direct 
product and the semidirect product are two examples, but there are many extensions that 
these do not describe. Nonetheless, if we had a more complete understanding of extensions 
and knew which groups were simple (the equivalent of primes in the integer factoring analogy) 
we would be able to identify any group of finite order. 

The second part of this goal has been accomplished. The Classification of Finite Simple 
Groups was a major mathematical undertaking of the twentieth century, and declared 
complete in 2004. The classification identifies each family of simple groups, proves their 
simplicity, and shows that there are no others. The proof of the classification is made up of 
thousands of pages from many papers and authors, and is far beyond the scope of this paper. 
We shall, however, give a brief overview. 

 
4.  The Classification of Finite Simple Groups 

 
 There are three infinite families of simple groups, and an additional 26 “sporadic” 
groups. We shall give an overview each family, however all of the sporadic groups are 
complicated (ranging from very complicated to unimaginably complicated) -to be written-  
 

4.1 Cyclic Groups of Prime Order 
 

The simplest least complicated family of simple groups are the cyclic groups of prime 
order. We saw previously that by Lagrange’s Theorem, a group of prime order has no nontrivial 
subgroups, so it certainly has no nontrivial normal subgroups. By Theorems 7 and 8, for any 
prime 𝑝, 𝐶� exists and is unique, so these make up a family of finite simple groups. 

These are in fact the only abelian simple groups, and it is possible to show that every 
abelian group may be formed by extensions of these groups. This extension process, called 
direct products, is well understood, so the abelian groups have been completely classified. 

 
4.2 Alternating Groups 

 
 We have considered the symmetric groups 𝑆J, the permutations of 𝑛 arranged 
elements. A transposition is a permutation that changes only two elements in the arrangement. 
It should not be surprising that every permutation in 𝑆J may be generated by a sequence of 
transpositions. This sequence of transpositions is by no means unique, but perhaps surprising is 
that the parity of the sequence is. Thus, we are able to classify permutations as being either 
“even” or “odd” based on the parity of their transposition decompositions. The set of even 
permutations on 𝑛	elements form a subgroup of 𝑆J, known as the alternating group on 
𝑛	elements, and is denoted 𝐴J. 
 



Definition: Given a group 𝐺, 𝑎, 𝑏 ∈ 𝐺 are conjugates if 𝑎𝑔 = 𝑔𝑏 for some 𝑔 ∈ 𝐺. The set 
{𝑏	|	𝑎𝑔 = 𝑏𝑔	for	some	𝑔 ∈ 𝐺} = 𝑎y  is the conjugacy class of 𝑎 in 𝐺. 
 
Theorem 14: The conjugacy classes of a group partition the group. 
 
Proof: Let 𝑎~𝑏 indicate that 𝑎 and 𝑏 are conjugates. Then clearly 𝑎~𝑎 because 𝑎1 = 1𝑎. If  
𝑎~𝑏, then 𝑎𝑔 = 𝑔𝑏 for some 𝑔 ∈ 𝐺, and 𝑏𝑔9: = 𝑔9:𝑎, so 𝑏~𝑎. Finally, if 𝑎~𝑏 and 𝑏~𝑐, then 
𝑎𝑔 = 𝑔𝑏 and 𝑏ℎ = ℎ𝑐 for some 𝑔, ℎ ∈ 𝐺. Therefore 𝑔9:𝑎𝑔ℎ = ℎ𝑐, so 𝑎(𝑔ℎ) = (𝑔ℎ)𝑐 and 
𝑎~𝑐. Thus, conjugacy is an equivalence relation, and partitions the group.            ∎ 
 
Theorem 15: Suppose 𝑁 ⊲ 𝐺. If 𝑎 ∈ 𝑁, then 𝑎y ⊂ 𝑁. 
 
Proof: The proof follows trivially from the definition of a normal subgroup. Let 𝑎𝑔 = 𝑔𝑏 for 
some 𝑔 ∈ 𝐺. If 𝑎 ∈ 𝑁, then 𝑎𝑔 ∈ 𝑔𝑁, so 𝑔𝑏 ∈ 𝑔𝑁, and 𝑏 ∈ 𝑁. 
 
 Thus, conjugacy classes give us a powerful tool for identifying normal subgroups. When 
combined with Lagrange’s Theorem, we know that a normal subgroup must be the union of 
some conjugacy classes, and its order must divide the order of the group. The following is an 
important example of how these facts may be used. 
 
Theorem 16: 𝐴u is simple. 
 
Proof: The conjugacy classes of 𝐴u are the identity, cycles of three elements, pairs of 
nonintersecting transpositions, and cycles of five elements (split into two classes). The size of 
these conjugacy classes are 1, 15, 20, 12,	and 12 respectively. Note that these do indeed sum to 
|𝐴u| = 60.	A nontrivial normal subgroup must contain the identity and at least one other 
conjugacy class, however, the order of any such combination of conjugacy classes will not 
divide 60. Therefore 𝐴u has no normal subgroup. 
 

Using this, it may be shown by induction that 𝐴J is simple for all 𝑛 ≥ 5. The proof of this 
is just beyond the scope of this paper, but uses similar ideas of combining information about 
the conjugacy classes with the order of 𝐴J. Thus, we have another infinite family of finite 
simple groups. 
 

4.3 Groups of Lie Type 
 
 The remaining finite simple groups, the groups of Lie type and the sporadic groups are 
far more complicated, and most of their descriptions, let alone the proofs of their simplicity, are 
far beyond the scope of this paper. Nonetheless, we shall endeavor to obtain some level of 
understanding of them, and where additional investigations may lead. Much of the remained of 
this paper follows from a Yale Mathematical Monograph summarizing Michael Aschbacher’s 
1978 lectures on the then-current state of the classification project [1]. 
 The groups of Lie type are named for their similarity to a class of Lie groups. The study of 
Lie groups is a very important branch of algebra in its own right, but it will not be necessary for 



this paper. We previously mentioned the group 𝐺𝐿J(ℝ), the group of 𝑛 × 𝑛 invertible matrices 
with real value entries. 𝐺𝐿J(ℝ) is, of course, infinite because ℝ is infinite, but if ℝ were 
replaced with a finite field 𝔽�, where 𝑞 is the order of 𝔽, then 𝐺𝐿J-𝔽�.	would also be finite (of 
order 𝑞J\). 𝐺𝐿J(ℝ) has some interesting subgroups, and some of these subgroups, when 
considered over finite fields, are simple. These are the groups of Lie type. In total there are 
sixteen classes of the groups of Lie type. We shall specifically describe how three of them are 
constructed. Their simplicity will be stated without proof. 

The special linear group 𝑆𝐿J(ℝ) is the subset of matrices in 𝐺𝐿J(ℝ) with determinant 
1. The scalar transformation group 𝑍J(ℝ) is the set of scalar transformations in 𝐺𝐿J(ℝ). 𝑍J(ℝ) 
is a normal subgroup of 𝐺𝐿J(ℝ) since scalar multiplication is commutative, so 𝐺𝐿J(ℝ)/𝑍J(ℝ) 
is well defined and called the projective linear group, 𝑃𝐺𝐿J(ℝ). The projective special linear 
group, 𝑃𝑆𝐿J(ℝ) is classes the matrices in 𝑃𝐺𝐿J(ℝ) with determinant 1. The orthogonal group 
𝑂J(ℝ) is the set of orthogonal matrices in 𝐺𝐿J(ℝ),	the special orthogonal group 𝑆𝑂J(ℝ) is the 
set of orthogonal matrices with determinant 1.  

 
Example 4.1: 𝑃𝑆𝐿J-𝔽�. is a simple group for 𝑛 ≠ 1, except in the cases that 𝑛 = 2 and 𝑞 ≤ 3.  

 
Example 4.2: 𝑆𝑂>Jg:-𝔽�. is a simple group for 𝑛 > 1, except when 𝑛 = 𝑞 = 2. 
 

The bulk of the classification theorem concerns the proof that that these sixteen classes 
of groups of Lie type, along with the alternating and prime cyclic groups, are all of the finite 
simple groups, with a small number of exceptions known as the sporadic groups. 
 

4.4 The Sporadic Groups 
 

In total there are 26 sporadic groups, and while some have been known of since they 
were described by Mathieu in 1861, their complete discovery and the proof of their simplicity 
took decades of concentrated study. They range from the Mathieu 11, 𝑀:: group, of order 
7920, to the Monster Group of order ≈ 10uq. The monster group itself is large enough that it 
contains 19 of the other sporadic groups as subgroups [1].  

𝑀:: is small enough to be understood without additional machinery. It is isomorphic to 
any subgroup of 𝑆:: generated by any 11-cycle, and any double 4-cycle. An elementary proof of 
its simplicity exists, but requires familiarity with the Sylow theorems [2]. 
 

Conclusion 
 
 The classification project has cemented the importance of the extension problem and 
enabled new paths of research into to the finite group isomorphisms. The complexity of the 
proof and its disjoint nature remain significant barriers for anyone intending to research the 
subject, and no one person understands the entirety of it. However there has been progress 
towards collecting and simplifying the proof [3]. With continued effort we may someday be 
able to recognize the structure of a group as easily as we can the size of a set, or at least the 
factors of an integer. 
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