
Linear Programming and its Connection to Discrete Optimization

Ansh Nagda

1 Introduction

A Linear Program (or LP) is a special case of constrained optimization over Rn where the objective

function and the constraints are linear functions. Linear Programming is fundamentally important

in two fields - first, in mathematical modelling. In particular, a large number of operations research

problems can be formulated as linear programs. Secondly, and less obviously, there are problems in

Discrete Optimization that can be reduced to solving a linear program. This is impressive because in

general, discrete optimization is thought to be much harder than continuous optimization, but this

reduction allows us to use the rich continuous structure of Rn to solve discrete optimization problems.

The goal of this term paper will be to explore one such application in discrete optimization that

was introduced in 1956 by Hoffman and Kruskal in [HK10]1. Before we can see their results in Section

2, we will have to build up our understanding of linear programming.

1.1 A Simple Example

To help the reader build familiarity with linear programs, here is a simple example of modelling an

operations problem using LPs. Imagine that you are a company trying to manufacture two cereal

products, say Cheerios and Froot Loops. For simplicity, assume that the only raw materials required

are wheat and sugar, and that manufacturing one kilogram of the products requires the following

amounts of raw materials:

Cheerios Froot Loops

Wheat 0.7 kg 0.6 kg

Sugar 0.3 kg 0.4 kg

Due to limitations of the factory, at most 1000 kilograms of Cheerios can be produced per day, and

at most 600 kilograms of Froot Loops can be produced per day. Assume that Cheerios can be sold at

a rate of $4 per kg, and Froot Loops can be sold at a rate of $7 per kg. Also, wheat can be bought

at a rate of $1 per kg, and sugar can be bought at a rate of $2 per kg. Given this information, the

1The results in [HK10] are slightly more general than this term paper (in particular, they proved results about

“minimal faces” rather than vertices)

1

problem of maximizing profit can be modelled as the following optimization problem over real valued

variables:

maxmimize 4x1 + 7x2 − x3 − 2x4

s.t. x ≤ 1000

y ≤ 600

0.7x1 + 0.6x2 ≤ x3
0.3x1 + 0.4x2 ≤ x4

This problem is indeed an LP. A high school student could probably solve this LP using pen

and paper. But this problem becomes increasingly nontrivial as more ingredients and products are

considered. Fortunately, there are plenty of algorithms that computers can use to efficiently solve

LPs on hundreds of variables and constraints. This term paper won’t discuss these algorithms, but

an interested reader might want to read about the ellipsoid algorithm[GLS81].

Note that if we were manufacturing more “discrete” products like tables and chairs, then our

variables might have to be integers rather than real numbers.

1.2 Initial Definitions

In order to study Linear Programs in detail, we need to formalize linear programs in a compact way.

This section aims to provide this formalization. The definitions and proof in this section were inspired

from [Sch].

We define a halfspace to be a set of the form {x ∈ Rn : 〈a, x〉 ≤ b} where a ∈ Rn and b ∈ R.

In other words, a halfspace is the solution set of a single linear inequality. Additionally, we define

a hyperplane as the boundary of some halfspace. In two dimensions, halfspaces are halfplanes, and

hyperplanes are lines. As an example, the halfspace {(x, y) ∈ R2 : −2x+ y ≤ −1} is shown in white:

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

We define a polyhedron as the intersection of a finite number of halfspaces. In other words, a polyhe-

dron is the solution set of a finite number of inequalities. In two dimensions, a bounded polyhedron

is simply a convex polyhedron. Here is an example of a polyhedron defined by four halfspaces:

2

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Given two vectors v and v′ in Rn, we say that v ≤ v′ if for all 1 ≤ i ≤ n, vi ≤ v′i. This gives rise

to a clean alternative definition of polyhedra: A polyhedron is any set of the form {x ∈ Rn : Ax ≤ b}
for some m× n matrix A and some b ∈ Rm. As a first note, polyhedrons are convex due to linearity

of matrix multiplication.

A Linear Program is an optimization problem over a subset of Rn where the objective function

is linear and the constraints are linear inequalities. That is, a Linear Program is the problem of

maximizing (or equivalently, minimizing) a linear functional over a polyhedron. We represent a linear

program by max(〈c, x〉 : Ax ≤ b). Here is a useful picture to keep in mind, where the arrow is

supposed to indicate c (where c gives the coefficients of the linear function we want to optimize).

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

From the above picture, it should be intuitively clear why linear programs are optimized somewhere

on the boundary of the polytope in question. Also observe that a point z is on the boundary of the

halfspace {〈a, x〉 ≤ b} if 〈a, z〉 = b. This is an important observation, and it motivates the following

convenient definitions that will help us keep track of “boundary information” of points in a polytope.

Let A ∈ Rm×n and b ∈ Rm. Given an index i ∈ [m]2, define ai to be the ith row of A. Given the

polyhedron P = {x ∈ Rn : Ax ≤ b} and a point z ∈ P , we define 3Sz ⊆ [m] to be the set of indices

i such that 〈ai, z〉 = bi. Additionally, we define Az to be the submatrix of A obtained by keeping

only the rows that appear in Sz. That is, Az is the matrix obtained from A by deleting all rows i for

which 〈ai, z〉 < bi. Finally, we define bz to be the correponding part of b. Note that Azz = bz for all

z ∈ P . Also note that Az ∈ Rm′×n and bz ∈ Rm′
, where m′ ≤ m.

2[m] equals the set {1, 2, . . . ,m}.
3Note that these definitions only make sense with respect to some polytope. Every time we use this notation, the

polyhedron in question will be clear from context.

3

Lemma 1. Let P = {Ax ≤ b} ⊆ Rn be a polytope, and let z ∈ P . Let c ∈ Rn be a nonzero vector

such that Azc = ~0. Then there exists δ > 0 such that z + δc ∈ P .

Proof. Let S1 ⊆ [m] be the indices of rows i such that 〈ai, c〉 = 0, and let S2 = [m] \ S1 be the rows

i such that 〈ai, c〉 6= 0. Pick δ := min
i∈S2

b−〈ai,z〉
|〈ai,c〉| . Note because Azc = ~0, 〈ai, c〉 = 0 for all i ∈ Sz. So

Sz ⊆ S1, which implies that Sz is disjoint from S2. Therefore for all i ∈ S2, b− 〈ai, z〉 > 0. Since δ is

the minimum of finitely many positive numbers, it must be positive.

It remains to show that for all i ∈ [m], 〈ai, z + δc〉 ≤ bi.

Case 1: i ∈ S1. In this case, no matter what δ is,

〈ai, z + δc〉 = 〈ai, z〉+ 0 = 〈ai, z〉 ≤ bi

Case 2: i ∈ S2. In this case,

〈ai, z + δc〉 ≤ 〈ai, z〉+ δ|〈ai, c〉| ≤ 〈ai, z〉+
b− 〈ai, z〉
|〈ai, c〉|

|〈ai, c〉| = bi

Therefore z + δc ∈ P , and the proof is complete.

1.3 Vertices of Polyhedra

In R2, one can easily obtain a visual understanding of “vertices” of a convex polygon. Here are the

vertices of the polygon used as our example:

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Vertices of polyhedra will be the central object that we will study, and this section is dedicated

to formally defining and characterizing vertices. Given a finite set of points X = {x1, . . . , xm} ⊆ Rn,

we define the Convex Hull of X (or Conv(X)) to be the set of points
∑m

i=1 λixi such that λi ≥ 0

and
∑m

i=1 λi = 1. If this definition is not intuitive, then one should keep the following equivalent

definition in mind: Conv(X) is the intersection of all convex sets containing S.

We now formally define a vertex : given a convex set S, we say that x ∈ S is not a vertex of S if

and only if there are two points p, p′ ∈ S distinct from x such that x ∈ Conv({p, p′}). It turns out

that in the case that S is a polyhedron, there is an nice characterization of the vertices of S:

Lemma 2. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron, and let z ∈ P . Then z is a vertex of P if

and only if rank(Az) = n.

4

Proof. First assume that z ∈ P and rank(Az) < n, and will show that z is not a vertex. Since Az is a

linear transformation into Rn, this implies that Az has nontrivial kernel. That is, there is some vector

c 6= ~0 such that Azc = ~0. Applying lemma 1 on ±c, there is some small δ > 0 such that z ± δc ∈ P .

Clearly, z = (z+δc)+(z−δc)
2 lies in the convex hull of z + δc and z − δc. Therefore z is not a vertex.

This completes the proof of the first direction. Now assume that z is not a vertx of P , and we

will show that rank(Az) < n. Because z is not a vertex, z = λx+ (1− λ)y for some x, y ∈ P that are

different from z. Let i ∈ Sz. By definition of Sz, we have that 〈ai, z〉 = bi. So

bi = λbi + (1− λ)bi ≥ λ〈ai, x〉+ (1− λ)〈ai, y〉 = 〈ai, z〉 = bi

Since bi = bi, it follows that the inequality is in fact an equality. Without loss of generality, assume

λ > 0. Then 〈ai, x〉 = bi = 〈ai, z〉 for all i ∈ Sz. So Az(x− z) = ~0, and since x 6= z, this implies that

the nullspace of Az is nontrivial, so rank(Az) < n.

Informally, one can think of Lemma 2 as asserting that in Rn, vertices of P are exactly the

intersections of n “linearly independent” hyperplanes that form the boundary of P .

Now let S ⊆ [m] be some subset of indices, and let A′ be the matrix of A formed by deleting all

rows with indices in S, and let b′ be the part of b. If rank(A′) = n, then basic linear algebra tells us

that the equation A′z = b′ has at most one solution, so there is at most one z ∈ P such that Az = A′.

Since there are finitely many subsets of [m], this gives us the following corollary of lemma 2:

Remark. Polyhedra have finitely many vertices.4

The following theorem is very intuitive in R2.

Theorem 3. Every bounded polyhedron is the convex hull of its vertices.

Proof. Let P = {Ax ≤ b} be a polyhedron, and let X = {x1, . . . , xk} be the vertices of P . Note that

if x ∈ Conv(X), then x is trivially in P (because X ⊆ P and P is convex). Therefore Conv(X) ⊆ P .

It remains to prove that P ⊆ Conv(X).

Let z ∈ P . We will show that z ∈ Conv(X) using induction on n− rank(Az). For the base case,

if n− rank(Az) = 0, then lemma 2 tells us that z ∈ X, so z ∈ Conv(X).

Fix some k ≥ 0. By induction, we can assume that if n− rank(Ax) ≤ k, then x ∈ Conv(X). Let z

be a point such that n− rank(Az) = k+ 1. Then rank(Az) < n, and there is a vector c 6= ~0 such that

Azc = ~0. Let µ = max{µ : z + µc ∈ P}, and let x = z + µc. Note that Axc 6= ~0, because if it were

zero, lemma 1 would imply that there is some δ > 0 such that (z + (µ+ δ)c) ∈ P , which contradicts

optimality of µ. That is, c /∈ nullspace(Ax).

Also note that Ax contains all rows of Az, because for all i ∈ Sz, 〈ai, x〉 = 〈ai, z〉 + µ〈ai, c〉 =

〈ai, z〉 = bi. So nullspace(Ax) ⊆ nullspace(Az), but c ∈ nullspace(Az) \ nullspace(Ax). Therefore

4Additionally, a polyhedron that is described by m linear inequalities has at most 2m vertices.

5

nullspace(Ax) (nullspace(Az), which implies that Ax has greater rank than Az, and by induction,

x ∈ Conv(X).

Similarly, define µ = max{ν : z − νc ∈ P}, and y = z − νc. In the same way, we can prove that

y ∈ Conv(X). Since5 z = ν
ν+µx + µ

ν+µy lies in the convex hull of {x, y}, it follows that z is also in

Conv(X), which completes the proof.

The main use of this theorem will be the following corollary:

Corollary 3.1. Linear Programs over bounded polyhedra are optimized at some vertex.

Proof. Let max(〈c, x〉 : x ∈ P) be a linear program on a bounded polyhedron P , and let {x1, . . . , xk}
be the vertices of P . Since P is closed and bounded, by the extreme value theorem, the linear

program is optimized at some point x ∈ P , and say that 〈c, x〉 = M . By theorem 3, x =
∑
λixi

where {x1, . . . , xk} are the vertices of the polyhedron. Then

M = 〈c, x〉 =
∑

λi〈c, xi〉 ≤M
∑

λi = M

where the inequality is due to the fact that M is the maximum of the LP. Since M = M , the inequality

is in fact an equality. Using the fact that 〈c, xi〉 ≤M for all i, this implies that 〈c, xi〉 = M (that is,

the LP is optimized at xi) for all i such that λi > 0. Since
∑
λi = 1, there is some i such that λi > 0,

and the linear program is optimized at xi.

We note that there are algorithms that can find a vertex optima of an LP[GLS81].

2 Integer Programming

We define Integer Programs (IPs) as optimization problems of the form max(〈c, x〉 : x ∈ Zn, Ax ≤ b)
where {Ax ≤ b} is a polytope. In other words, an integer program is the problem of optimizing a

linear function over all integer points of a polytope. In general (unlike linear programming), integer

programming is NP-hard, which means that most computer scientists don’t expect that there is an

efficient way to solve IPs. In this section, we will see a way to use linear programming to solve certain

special cases of integer programming.

2.1 Some applications of Integer Programming to problems on graphs

Given a finite set of vertices6 V = {v1, v2, . . . , vn} and a set of edges E = {e1, . . . , em}, where

E consists of two-element subsets of V , we say that (V,E) is an undirected graph. We define the

5Here we also use the fact that ν > 0 and µ > 0, which is given by lemma 1.
6Note that the vertices of a graph have nothing to do with the vertices of a polyhedron - this is simply an instance

of using the same term in two different mathematical contexts.

6

incidence matrix of the graph as the n×m matrix M by

Mi,j =

1 if vi ∈ ej
0 otherwise

Given a finite set of vertices V = {v1, v2, . . . , vn} and a set of edges A = {e1, . . . , em}, where A

consists of 2-tuples over V , we say that (V,A) is a directed graph. We define the incidence matrix of

this directed graph as the n×m matrix M by

Mi,j =

−1 if vi is the first entry of ej

+1 if vi is the second entry of ej

0 otherwise

Before we see how to solve some integer programs, we will motivate integer programming using some

very natural and important optimization problems on graphs.

1. Assignment Problem: We say that a set E′ ⊆ E is a matching if for all sets e1, e2 ∈ E′, e1 is

disjoint from e2. That is, a matching is a collection of edges that don’t share any endpoints.

The maximum matching problem is the problem of finding the largest cardinality matching in

E. More generally, given weights on edges w : E → R, the weighted matching problem consists

of finding a matching E′ ⊆ E such that
∑

e∈E′ w(e) is maximized. It is not too difficult to see

that the weighted matching problem is equivalent to the following integer program7:

max
∑

w(e)xe

s.t. xe ∈ Z ∀e ∈ E

0 ≤ xe ≤ 1 ∀e ∈ E∑
e∈E:v∈e

xe ≤ 1 ∀v ∈ V

If M is the incidence matrix of (V,E), then we can write this IP in a more compact equivalent

form: max(〈w, x〉 : x ∈ Zm,~0 ≤ x ≤ ~1,Mx ≤ ~1), where w is defined as the m-dimensional

vector such that wi = w(ei).

An undirected graph (V,E) is called bipartite if V can be partitioned as V = V1∪̇V2 such that

all edges in E have exactly one endpoint in V1, and exactly one endpoint in V2. The Assignment

Problem is the important special case of the weighted matching problem when the graph (V,E)

is bipartite.

2. Integer Maximum Flow: Given a directed graph (V,A), a source s ∈ V , a sink t ∈ V , and

capacities on edges c : E → R+, a legal flow is a function f : E → R+ such that for all

7Here, the variable xe is supposed to be the indicator of the event “e ∈ E′”.

7

v /∈ {s, t}, ∑
(v1,v2)∈E:v=v1

f((v1, v2)) =
∑

(v1,v2)∈E:v=v2

f((v1, v2))

In other words, a flow is an assignment of nonnegative value to each edge such that for all

vertices except s and t, the amount of flow entering the vertex is the same as the amount of

flow leaving the vertex. The Maximum Flow Problem is the problem of finding a legal flow that

maximizes the net flow entering the sink t. There is a natural formulation of this problem as a

linear program (where xe is supposed to equal f(e)):

max
∑

(v1,v2)∈E:t=v2

x(v1,v2) −
∑

(v1,v2)∈E:t=v1

x(v1,v2)

s.t. xe ∈ Z ∀e ∈ E

0 ≤ xe ≤ c(e) ∀e ∈ E∑
(v1,v2)∈E:v=v1

x(v1,v2) =
∑

(v1,v2)∈E:v=v2

x(v1,v2) ∀v ∈ V \ {s, t}

Let M be the incidence matrix of the directed graph. Delete the two rows correponding to

the vertices s and t, and call the resulting matrix M ′. Also, let w the row of M corre-

sponding to t. Then the condition that x induces a legal flow is equivalent to the condi-

tion that M ′x = 0. This gives rise to the following compact form of the maximum flow LP:

max(〈w, x〉 : x ∈ Rm,~0 ≤ x ≤ c,M ′x = ~0), where c is defined as the m-dimensional vector such

that ci = c(ei).

The maximum flow problem is a problem included in almost every undergraduate algorithms

course. One reason for this is that an astonishingly large number of discrete problems on graphs8

can be reduced to finding an Integer Maximum Flow given some integer capacities, which is

why the integer program max(〈w, x〉 : x ∈ Zm,~0 ≤ x ≤ c,M ′x = ~0) is of interest.

2.2 Totally Unimodular Matrices

Now we turn our focus back to the realm of linear and integer programming.

Given a matrix M , a submatrix of M is a matrix formed by deleting some number of rows and columns

of M . For example, given a linear program max(〈c, x〉 : Ax ≤ b), the matrix Az is a submatrix of A.

We say that a matrix M is Totally Unimodular or TU if every square submatrix of M has determinant

in {−1, 0, 1}. Note that a TU matrix automatically has entries in {−1, 0, 1}. With this definition, we

are ready to present the punchline of this section.

8Some of these problems include finding the maximum number of paths between two vertices and finding the weighted

minimum cut of a graph.

8

Theorem 4. If A is a TU n × m matrix, b ∈ Zm, and c ∈ Rn such that {Ax ≤ b} is a bounded

polyhedron, then

max(〈c, x〉 : x ∈ Zn, Ax ≤ b) = max(〈c, x〉 : x ∈ Rn, Ax ≤ b)

and there is an algorithm that can efficiently optimize the above integer program.

Essentially, this theorem tells us that given a polytope P of the form {Ax ≤ b} for TU A and

integer b, linear programming over P is equivalent to integer programming over P . This theorem

follows immediately by combining corollary 3.1 with the following lemma:

Lemma 5. If A is a TU n×m matrix and b ∈ Zm, then every vertex of the polyhedron P = {Ax ≤ b}
is an integer vector.

Proof. Let z be a vertex of P . By lemma 2, rank(Az) = n, so we can delete linearly dependent

rows of Az until it is a square n × n invertible matrix. Call the resulting matrix A′. By total

unimodularity, it follows that detA′ ∈ {−1, 0, 1}, and since A′ is invertible, detA′ ∈ {−1, 1}. Let

C be the cofactor matrix of A′. C must be an integer matrix (because A′ has entries in {−1, 0, 1}).
Therefore (A′)−1 = CT

detA′ = ±CT is an integer matrix.

By definition of Az, Azz = bz. Let b′ be the subvector of b that corresponds to A′. Then it is true

that A′z = b′. So z = (A′)−1b′ is an integer vector.

Therefore we can efficiently solve integer programs over TU matrices.

2.3 Back to applications

In order to apply the results we just proved on our graph problems, we must prove that certain

matrices related to the graphs are totally unimodular. The following proofs are long but easy.

Lemma 6. Let M be the incidence matrix of an undirected bipartite graph. Then M is totally

unimodular.

Proof. Let (V = {v1, . . . vn}, E) be the bipartite graph where V = V1∪̇V2 such that all edges have

exactly one endpoint in V1 and exactly one endpoint in V2. Without loss of generality, assume that

V1 = {v1, . . . , vk} and V2 = {vk+1, . . . , vn} for some k.

Let M be the incidence matrix of (V,E). Let B be some j × j submatrix, and we will show that

detB ∈ {−1, 0, 1} by induction on j.

The base case (when j = 1) is trivial because the entries of M are either 0 or 1. Now let j > 1. One

can think of the submatrix B as defining a “subgraph” with vertices {v′1, . . . v′j} and edges {e′1, . . . , e′j}.

Case 1: There exists some i such that e′i ∩ {v′1, . . . v′j} is empty. In this case, the ith column of B is

zero, so detB = 0.

9

Case 2: There exists some i such that e′i ∩ {v′1, . . . v′j} has exactly one element. In this case, the ith

column of B contains exectly one 1. Up to permuting the rows and columns, B has the following

structure, where B′′ is a (j − 1)× (j − 1) matrix:

B =

(
1 B′

~0 B′′

)
Since permuting rows and columns preserves determinant up to sign, we can expand the determinant

along the first column to yield that detB = ±detB′′. By induction, this implies that detB ∈
{−1, 0, 1}.

Case 3: For every i, e′i∩{v′1, . . . v′j} has exactly two elements. In this case, every column of B contains

exactly two 1s. We write

B =

(
B1

B2

)
where B1 consists of the rows of A corresponding to the vertices in V1, and B2 consists of the rows

of A corresponding to the vertices in V2. By definition of bipartite graphs, it cannot be that some

column of B1 has two 1s, and it cannot be that some column of B2 has two 1s. Therefore each column

of B1 has exactly one 1, so summing all rows of B1 yields ~1. Similarly, summing all rows of B2 yields

~1. This means that the rows of B are not linearly independent, so detB = 0.

Lemma 7. Let M be the incidence matrix of a directed graph. Then M is totally unimodular.

Proof. This proof will be almost identical to the proof of lemma 6. Let (V,A) be the directed graph

where V = {v1, . . . vn}. Let M be the incidence matrix of (V,A). Let B be some j × j submatrix,

and we will show that detB ∈ {−1, 0, 1} by induction on j.

The base case (when j = 1) is trivial because the entries of M are either −1, 0 or 1. Now let

j > 1. One can think of the submatrix B as defining a “subgraph” with vertices {v′1, . . . v′j} and edges

{e′1, . . . , e′j}.

Case 1: There exists some i such that none of the endpoints of e′i are in {v′1, . . . v′j}. In this case, the

ith column of B is zero, so detB = 0.

Case 2: There exists some i such that e′i has exactly one endpoint in {v′1, . . . v′j}. In this case, the ith

column of B contains exactly one nonzero entry, which is either −1 or 1. Up to permuting the rows

and columns, B has the following structure, where B′′ is a (j − 1)× (j − 1) matrix:

B =

(
±1 B′

~0 B′′

)
Since permuting rows and columns preserves determinant up to sign, we can expand the determinant

along the first column to yield that detB = ±detB′′. By induction, this implies that detB ∈
{−1, 0, 1}.

10

Case 3: For every i, both the endpoints of e′i are in {v′1, . . . , v′j}. In this case, every column of B

contains exactly one −1 and exactly one +1. Clearly, summing the rows of B yields ~0, so detB = 0.

Recall the integer program for the assignment problem: it was of the form max(〈w, x〉 : x ∈
Zm,~0 ≤ x ≤ ~1,Mx ≤ ~1) where M is n×m. Let

A =

M−I
I

 B =

~1~0
~1

 (1)

where A is 3n ×m and B ∈ Z3n. Note that the integer program for assignment is exactly the same

as the integer program max(〈w, x〉 : x ∈ Zm, Ax ≤ B).

Now consider the integer maximum flow problem. The integer program was of the form max(〈w, x〉 :

x ∈ Zm,~0 ≤ x ≤ c,M ′x = ~0). Since M ′ was a submatrix of M , M ′ is TU if M is TU. Let

C =

M ′

−M ′

−I
I

 D =

~1

−~1
~0

c

 (2)

where C is 4n × m and D ∈ Z4n. Note that the integer program for integer maximum flow is

exactly the same as the integer program max{〈w, x〉 : x ∈ Zm, Cx ≤ D}.
We prove the following easy remark in Appendix A:

Remark. If M is totally unimodular, then the matrices A and C defined in 1 and 2 are totally

unimodular.

Applying theorem 4 finally gives us the following result.

Theorem 8. The optimization problems of Assignment and Integer Maximum Flow can be solved

efficiently.

3 Comments and Conclusion

We note that although linear programs can be solved “efficiently” in a theoretical sense, in practice,

optimizing an LP is one of the worst ways to solve Assignment and Integer Maximum Flow problems.

There are much faster algorithms that directly solve those problems without having to solve an LP.

However, those algorithms utilize deep structural information about the problems. What’s impressive

about Hoffman and Kruskal’s paper [HK10] is that their result barely uses any combinatorial insight

into the specific graph problems.

11

Due to the scope of this term paper, we were not able to prove the duality theorem of linear

programs. If we were equipped with the duality theorem, then theorem 4 would provide short proofs

of some essential theorems in combinatorics (notably, Konig’s theorem and the max-flow min-cut

theorem). A reader interested in these proofs can read them in [Sch].

Before concluding, we would like to point out another interesting way to use linear programs

to solve discrete optimization problems - LP Rounding. In most cases, we cannot formulate our

desired discrete optimization problem as an integer program on a totally unimodular matrix. But in

many cases, it turns out that we can “round” the solution of the corresponding linear program to an

integer point, and if we round by a sufficiently small amount, this results in an approximately optimal

solution to the integer program. This method is routinely used to create Approximation Algorithms

for NP-hard problems. An interested reader should consider reading chapters 4 and 5 of [WS11].

References

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[HK10] Alan J Hoffman and Joseph B Kruskal. Integral boundary points of convex polyhedra. In

50 Years of integer programming 1958-2008, pages 49–76. Springer, 2010.

[Sch] Alexander Schrijver. A course in combinatorial optimization.

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

A Proof of total unimodularity of certain matrices

This section contains the proof that the matrices A and C defined in equations 1 and 2 are totally

unimodular if M is totally unimodular.

Lemma 9. If M is TU n×m matrix, then the following matrices are also TU:

(a)

(
M

e

)
where e is some standard basis vector of Rm.

(b)

(
M

m

)
where m is some row of M .

(c) Any matrix obtained by flipping the sign of some row of M .

Proof Sketch. For (a), the proof essentially boils down to the applying the determinant expansion

formula along the row corresponding to e.

12

For (b), the proof boils down to two cases - firstly, if a square submatrix contains two copies of

m, then the submatrix has determinant 0. Otherwise, the submatrix has determinant in {−1, 0, 1}
by total unimodularity of M .

For (c), notice that flipping the sign of any row preserves the determinant up to sign.

Parts (a) and (b) of lemma 9 imply that we can append identity matrices and copies of M while

preserving total unimodularity. Together with part (c), it is trivial to construct the matrices A and

B from M using these operations that preserve total unimodularity.

13

	Introduction
	A Simple Example
	Initial Definitions
	Vertices of Polyhedra

	Integer Programming
	Some applications of Integer Programming to problems on graphs
	Totally Unimodular Matrices
	Back to applications

	Comments and Conclusion
	Proof of total unimodularity of certain matrices

