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Abstract

The goal of this paper is to define and charaterize harmonic mor-
phisms between Riemannian manifolds, then build up machinery for
utilizing them. Much of the paper will follow the works of Bent Fu-
glede, who pioneered much of the theory of harmonic morphisms in his
seminal paper 40 years ago. Later we will take an algebraic approach to
the study of harmonic morphisms, building up some categorical machin-
ery for future use. We conclude with an example of utilizing harmonic
morphisms by applying them to solving the Dirichlet problem on Rie-
mannian manifolds. Section 1 is dedicated to introductory material, 2
follows the works of Fuglede, and 3 and 4 contain interesting findings
of my own.
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1 Introduction

This paper makes use of some concepts from elementary category theory.
The basic definitions of categories, morphisms, and functors are assumed to be
known by the reader beforehand. However, some definitions will be provided
in this section. All category theory used in this paper is explained in greater
detail in Steve Awodey’s book Category Theory [2].

We will utilize the notion of contravariant functors, which play a critical
role in the definition of sheaves.

Definition 1.1. Given categories C,D, a contravariant functor is a functor
F : C → D such that for every morphism f : A→ B in C, the value Ff in D
is a morphism Ff : F (B)→ F (A).

Next we define a posetal category.

Definition 1.2. Let (X,≤) be a partially ordered set, or “poset”. This defines
a posetal category, which has as objects the elements of X, and there are
morphisms a→ b iff a ≤ b.

When we define the category of Riemannian manifolds with harmonic mor-
phisms, we will show that the isomorphisms are given by diffeomorphisms
between manifolds.

1.1 Riemannian Manifolds

A Riemannian manifold is a differentiable manifold M of dimension m
equipped with a metric gM . That is, at each point p ∈ M , a tangent space
TpM to M can be determined, and there is a symmetric, positive definite,
bilinear form gM(p) : TpM × TpM → R defined on the tangent space that
varies smoothly in p. It should be noted that the metric gM is not a ”metric”
in the sense of a metric space, however it can be used to define such a metric.

The metric evaluated at a point p ∈M is usually denoted gM(p) = gp. The
tangent space TpM is a vector space of dimension m that is “tangent to” the
manifold at p. An intuitive visual is a plane connected to M that is “centered
at p”, that is the zero vector in TpM is thought to be “at p”. A norm on TpM
is induced by the metric; for any vector a ∈ TpM , the norm of a is given by

‖a‖ =
√
gp(a, a).
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Angles between vectors can be defined intuitively. For any two vectors a, b ∈
TpM , the angle between a and b is the number θ such that

cos θ =
gp(a, b)

‖a‖ ‖b‖
.

The metric tensor gij on M is a tool for measuring distances on M using
the algebra of vectors, and is indispensible for utilizing calculus on M .

Definition 1.3. Given the Fréchet derivative J = Df of the map f : Rm →
M ,the metric tensor on M is defined as the matrix product

g = JTJ.

One should note then that the determinant det g is equal to the square of
the Jacobian determinant. Thus the components of the metric tensor g are

gij = JikJkj,

where the Einstein summation convention is used,

aibi =
m∑
1

aibi, ai =
ai
|g|
, gij =

1

gij
.

Here, |g| denotes the determinant of g. This convention will be used through-
out the article. Another way of computing the metric tensor is via the metric
inner product. Let xj denote the coordinates in Rm of a point p = (xj) ∈ M ,
and U an open subset of M containing p. For every such open set there is
a diffeomorphism ψ : U → Rm that maps the coordinates of a point p ∈ M
with respect to the manifold to their coordinates in Rm. That is, if p has
“local” coordinates yj in the manifold, then xi = ψi(yj) are the components
of the map ψ. Thus the coordinates yj can be defined as the components of
the inverse map ψ−1. A standard convention is to denote by yj the map itself,
so that yj(xi) are the local coordinates of the point p in M and xi(yj) are the
coordinates of p in Rm. Next we denote by ∂jp the partial derivatives (∂jy

i) of
the inverse chart y. With this definition, the components of the metric tensor
can be defined equivalently as

gij = g(∂ip, ∂jp).

The machinery defined above is a standard notation for expressing coordinates
on a manifold.

Since the tangent space of a manifold is variable from point to point, we
define the general basis of TxM,x ∈ M as a set of operators. Here, we name
the coordinate chart for clarity.
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Definition 1.4. For an open set U ⊆ M with coordinate chart ψ, the basis
at a point p = (yj) ∈ M of the tangent space TpM is a set of operators (∂i)p
such that, for a function f ∈ C1(M),

(∂i)pf = ∂i(f ◦ ψ−1)(ψ(p)).

When no point p is specified, the basis vectors are simply denoted ∂i and
act as regular partial derivative operators. The Tangent bundle on M is the
disjoint union of all tangent spaces on M ,

TM =
∐
x∈M

TxM = {(x, TxM) : x ∈M}.

A familiar notion is that of vector fields. However, vector fields on Rie-
mannian manifolds have a more sophisticated definition.

Definition 1.5. Given a Riemannian manifold M with tangent bundle TM ,
a vector field on M is a function that assigns to each point x ∈ M a vector
v ∈ TxM .

Next we define the Laplace-Beltrami operator, which generalizes the
Laplacian operator on Riemannian manifolds.

Definition 1.6. Given a manifold M with metric tensor g, the Laplace-
Beltrami operator is defined as

∆M =
1√
|g|
∂i

(√
|g| gij∂j

)
.

A function f : M → R is called harmonic if ∆Mf = 0. Thus, the Laplace-
Beltrami operator generalizes harmonic functions to functions on Riemannian
manifolds.

Similarly, we define the gradient of a function on a manifold as follows.

Definition 1.7. For a Riemannian manifold (M, g) and function f on M , the
gradient of f is given by

∇f = gij∂if∂j.

Note that the gradient is an element of the tangent space, and so opera-
tions via the metric can be used as a norm on the gradient of a function. A
special case is when the map is f is the coordinate chart itself. Then we have
by definition the identity

g(∇ψk,∇ψj) = gij.
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We also introduce the notion of the Christoffel Symbols of the Second
Kind, a set of functions defined on a manifold. The applications of these
symbols are marginal in the subject of this paper, so little motivation will
be provided. Simply put, the Christoffel Symbols provide a transformation
of vectors on the manifold into the tangent space of the manifold. Thus they
allow one to project a set of vectors on the manifold M onto the tangent space,
allowing for various vector fields on M to be defined. Their use is generally in
the subject of parallel transport, which will not be considered in this paper.

Definition 1.8. Given a manifold M with metric g, suppose rp is a local chart
Up → Rm for a neighborhood Up ⊆M of p ∈M . Then the Christoffel Symbols
of the Second Kind are defined as

Γkij = ∂kr · ∂i∂jr =
1

2
gkm (∂jgik + ∂igjk − ∂kgij) .

The Christoffel Symbols will be used rarely in this paper, and so no deriva-
tion will be provided.

Next we define the notion of a differential of a function.

Definition 1.9. Given a C1 map f : N →M between Riemannian manifolds
M,N , the differential dfx at a point x ∈M is defined as a linear map

dfx : TxM → Tf(x)N

that maps the tangent space of M at x to the tangent space of N at f(x).

The differential df of f generalizes the Fréchet derivative of a function to
the case of manifold domains, and allows one to preserve the differentiable
structure of M when mapping to N via f . Thus it is an important concept in
the study of functions between Riemannian manifolds. Similar to the definition
we saw in class, a diffeomorphism1 f : M → N is called conformal if df
is nonzero on M . Later we will develop the notion of semiconformal maps
between manifolds, to which the differential will have numerous applications.

1.2 Sheafs

Sheafs are a useful tool for studying global properties of a topological
space. The way they achieve this is by generalizing the local properties of

1A diffeomorphism is an invertible, differentiable map between Riemannian manifolds
such that its inverse is differentiable. By ”differentiable”, we mean that the differentiable
exists.
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the space to global properties via the Axiom of Gluing. We begin by defining
a presheaf, as the definition of a sheaf is based heavily on the machinery of
presheafs.

Let (X, τX) be a topological space. Ordering the topology τX by the
subset relation, we get a partially ordered set (τX ,⊆). This defines a posetal
category, where the objects are the open sets of X and the arrows are given
by the subset relation: there is a morphism U → V iff U ⊆ V .

Definition 1.10. A presheaf is a contravariant functor F on the posetal cat-
egory (τX ,⊆).

Thus the presheaf determines a second category C with objects F (U) as the
images of the elements of τX , and morphisms F (U)→ F (V ) iff F (V ) ⊆ F (U).
For the purposes of this article, we will only consider presheafs that map
to categories of sets, for ease of explanation. In this case, the elements of
F (U) are called the sections of U , and the morphisms F (U) → F (V ) are
called restriction morphisms. As set functions, the morphisms take sections
s ∈ F (U) to restricted sections s|V ∈ F (V ). Two properties are required to
hold on the morphisms in C:

(1) The morphism F (U)→ F (U) is the identity map.
(2) If s : F (U) → F (V ), t : F (V ) → F (W ) and r : F (U) → F (W ),

then t ◦ s = r.
Thus the presheaf “axioms” determine that there is exactly one morphism
F (U)→ F (V ) for any two open sets U ⊆ V . Next we define a sheaf on X.

Definition 1.11. A sheaf F is a presheaf that satisfies the following axioms:
(Locality) If (Ui) is an open covering of U ∈ τX , and s, t ∈ F (U) such

that
s|Ui

= t|Ui

for every Ui, then s = t.

(Gluing) If (Ui) is an open covering of U ∈ τX , and for each i there is
a section si such that

si|Ui∩Uj
= sj|Ui∩Uj

for every Ui, Uj, then there is a section s ∈ F (U) such that s|Ui
= si for

every Ui.

The sheaf axioms provide existence and uniqueness for a glued section
defined on any open set. Thus they allow local properties to be extended to
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the global scale via gluing. The sheaf axioms can be stated purely in category
theory as well: the gluing axiom requires that the restriction of the sheaf F to
the subspace U has a limit L, and the locality axiom requires that L ∼= F (U).

As stated above, the sheaf axioms allow one to expand local properties of
the open sets U ∈ τX to global properties on the topological space X. Thus
they have a broad application, such as the solution to the “annulus problem”
we encountered earlier this quarter. For the purposes of this article, we will
consider the Riemannian manifolds that are also equipped with a sheaf that
maps each open set to the vector space of harmonic functions defined on it. In
the case of general topological spaces, this object is called a Brelot space. Since
we will only consider the Brelot spaces that are also Riemannian manifolds, we
will refer particularly to these objects simply as Brelot spaces in this article.
Later we will see that the application of harmonic morphisms allows one to
build up a category of Brelot spaces for deeper study.

2 Harmonic Morphisms

Harmonic morphisms will allow us to map between Brelot spaces and
preserve structure. As many of the results of complex analysis hold on the
harmonic functions on Riemannian manifolds, this will allow for powerful ap-
plications of what is called complex analysis to the study of Riemannian ge-
ometry.

For the remainder of this article, we will suppose that M,N are Rieman-
nian manifolds of dimensions m,n respectively.

Definition 2.1. A harmonic morphism f : M → N is a continuous function
such that, for any open set V ⊆ N and harmonic function v : V → R on V ,
v ◦ f is harmonic on the open set f−1(V ), provided this set is nonempty.

Thus harmonic morphisms pull back harmonic functions on the codomain.
It is clear that the composition of harmonic morphisms g : L → M and
f : M → N is again a harmonic morphism f ◦ g : L → N , and that the
identity map id is harmonic. Thus there is a category BHarm of Brelot spaces
with harmonic morphisms. As well, the harmonic morphisms in BHarm induce
direct image functors on the sheaves of the Brelot spaces. That is, for a
harmonic morphism f : M → N and sheaves F,G on M,N , respectively,
there is a functor f∗ : G→ F defined as f∗G(V ) = g 7→ g ◦ f for V open in N
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such that

M
f //

F
��

N

G
��

F (M) G(N)
f∗oo

commutes. Thus there is also a category BSheaf of sheaves on the Brelot
spaces of BHarm. This behaviour will be examined in more detail later in the
paper. For the remainder of the article we will refer to the sheaf functor that
takes Riemannian manifolds in BHarm to their sheaves in BSheaf as F .

Next we turn to characterizing the harmonic morphisms in BHarm, so
that we can understand what kind of functions they are and thus utilize them
more effectively. The proofs of the following theorems are reduced to large
amounts of symbol-pushing, and so will not be provided. They can be found
in [5]. For the rest of the paper we will consider only manifolds M,N with
dim(M) ≥ dim(N). We will see that the case dim(M) < dim(N) is not very
interesting in the context of harmonic morphisms.

2.1 Preliminaries for Characterization

We begin with a theorem by Greene and Wu[6], of which no proof will be
given.

Theorem 2.1. Every non-compact n-dimensional manifold N has an embed-
ding h : N → R2n+1 such that the components hk are harmonic on N .

This will allow us to choose “harmonic local coordinates” yk on a Rieman-
nian manifold, and hence express a function f on N as a collection of harmonic
functions fk = yk ◦ f on R2n+1. Choosing such coordinates will be a useful
tool in our characterization of harmonic morphisms. We also note a theorem
of Carleman, Aronaszajn, and Cordes [1],[4] that is similar in nature to that
of the identity theorem in complex analysis. It is thus called the uniqueness
theorem.

Theorem 2.2. If u is harmonic on a manifold M , and the partial derivatives
of all orders vanish at a point of M , then u is constant.

One can extend this to get a weaker statement, “If a harmonic function on
a manifold is zero on an open set, then that function is zero identically”. Next
we define semiconformal maps between Riemannian manifolds.

Definition 2.2. A semiconformal map is a C1 function f : M → N such that,
at all points x where the differential df is nonzero, df is surjective onto Tf(x)N .
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Another definition is that, when restricted to the points of M where df 6= 0,
the map f is a conformal submersion. The meaning of “conformal” on a
manifold is the same as usual, using the definition of angle defined in the
introduction. The submersion condition reads as “df is surjective”, and the
conformality condition requires that df is a linear map that only scales vectors
by a constant. Any semiconformal map f determines a dilation λ on M ,
with λ(x) = |df |, and so we have the following equivalent property for f .
If D = (ker dfx)

⊥ denotes the orthogonal complement of the kernel of df at
x ∈M , then for any two vectors v, w ∈ D, we have the identity

g
f(x)
N (df(v), df(w)) = λ2(x)gxM(v, w),

where gxM denotes the norm on TxM assigned by the metric gM on M .
Next we provide some elementary characterizations of harmonic mor-

phisms and semiconformal maps due to Fuglede [5].

Theorem 2.3. A C2 map f : M → N is a harmonic morphism if and only if
there is a function λ, called the dialation of f , on M such that
(1)

∆M(v ◦ f) = λ2((∆Nv) ◦ f)

for all C2 functions v : N → R.

The characterization can obviously be locallized so as to agree better with
our definition of a harmonic morphism.

A similar characterization of semiconformal maps is given here.

Theorem 2.4. A C1 map f : M → N is semiconformal with dialation λ such
that if and only if
(2)

gM(∇fk,∇f l) = λ2(gklN ◦ f).

Here we note that the components of the metric tensor gklN are used as
functions on the manifold N .
Next we define a third type of map, which will be useful in our characterization.
We begin with a definition of the tension field of a function on its target
manifold.

Definition 2.3. Given a C2 map f : M → N , the tension field along f is a
vector field on N whose components are given by
(3)

τ k(f) = ∆Mf
k + gM(∇f i,∇f j)(Γkij ◦ f).
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A harmonic mapping f : M → N is any map with

τ k(f) = 0

for every index k.
First we note the trivial fact that the identity function on a manifold is a
harmonic map. Thus we have the identity
(4)

∆My
k + gijΓkij = 0.

This will be useful in proving the following lemma.

Lemma 2.5. The tension field of a C2 semiconformal mapping f : M → N
with dilation λ is given by
(5)

τ k(f) = ∆Mf
k − λ2((∆Ny

k) ◦ f).

Thus in the case of local harmonic coordinates (yk), the tension map is
equal to the Laplacian of f on M .

Proof. Substituting equation (2) into the definition of the tension field, we
have

τ k(f) = ∆Mf + λ2(gijN ◦ f)(Γkij ◦ f),

And making use of the tension field of the identity function gives

gijNΓkij = −∆Ny
k,

giving the desired result

τ k(f) = ∆Mf − λ2((∆Ny
k) ◦ f).

2.2 Characterization of Harmonic Morphisms

Next we give a theorem characterizing harmonic morphisms in terms of semi-
conformal and harmonic maps. The proof can be found in [5], however I have
filled in some steps that Fuglede considered “trivial”.

Theorem 2.6. The harmonic morphisms f : M → N are precisely the semi-
conformal harmonic maps, and the dilation of f is given as in Theorem 2.3.
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Proof. First we note by the chain and product rules the following two
identities of the Laplace-Beltrami operator:
(6)

∆M(fkf l) = fk∆Mf
l + f l∆Mf

k + 2gM(∇fk,∇f l),
(7)

∆N(ykyl) = yk∆Ny
l + yl∆Ny

k + 2gkN l.

Next we turn to the proof, starting with the only if direction. Suppose
then that f is a harmonic morphism with dilation λ. Composition on the right
with f in equation (7) and multiplication by λ2 gives

λ2(∆Ny
kyl) ◦ f = λ2

(
(yk ◦ f)((∆Ny

l) ◦ f) + (yl ◦ f)((∆Ny
k) ◦ f) + 2gklN ◦ f

)
= λ2

(
fk((∆Ny

l) ◦ f) + f l((∆Ny
k) ◦ f) + 2gklN ◦ f

)
= fk∆Mf

l + f l∆Mf
k + 2λ2gklN ◦ f,

where (1) is invoked to exchange λ2((∆Ny
l) ◦ f) = ∆Mf

l. Next we subtract
∆Mf

kf l, which we note by (1) is equal to the left-hand side. Thus we obtain

0 = 2λ2(gklN ◦ f)− 2gM(∇fk,∇f l),

giving equation (2). Thus f is semiconformal. Next we use the semiconfor-
mality of f to prove it is a harmonic map. Taking local coordinates yk in N ,
we see that (1) reads

∆M(yk ◦ f) = ∆Mf
k = λ2((∆Ny

k) ◦ f),

and subtracting off the right hand side gives

∆Mf
k − λ2((∆Ny

k) ◦ f) = 0,

and the left-hand side is the tension field given by (5). Thus f is a harmonic
map as well.

The if direction can be found in [5], or derived by the reader with adequate
symbol-pushing, making use of (2) and (5).

Remark. Since every harmonic morphism must be semiconformal, the
case that dimM < dimN implies that df cannot be surjective at any point
x ∈ M . Thus by contrapositive of the semiconformal condition, it follows
that df = 0 identically. That is, every harmonic morphism f : M → N with
dimM < dimN is constant.

Another, less general characterization of harmonic morphisms will be use-
ful later, when we talk about solving the Dirichlet problem on Riemannian
manifolds. As stated by Fuglede in [5], the result is as follows.
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Theorem 2.7. Suppose that dimM = dimN = 2. Then the harmonic mor-
phisms M → N are precisely the C2 semiconformal mappings of M → N .

Another powerful result by Fuglede is the openness of harmonic morphisms,
stated as follows.

Theorem 2.8. Every non-constant harmonic morphism f : M → N is an
open mapping. That is, for any open subset U of M , f(U) is open in N .

The proofs are provided in [5].

3 The Categories BHarm and BSheaf

Here is studied the categories BHarm and BSheaf. Only elementary properties
of the categories are given, providing machinery for further study. We begin
by characterizing the isomorphisms in BHarm.

Theorem 3.1. The harmonic diffeomorphisms are precisely the isomorphisms
in BHarm.

Proof. (⇒) Of course, the harmonic diffeomorphisms are bijections, so
each has a unique inverse function. It is shown in [3] that the inverse of every
harmonic morphism is again a harmonic morphism, and Fuglede notes that
injective harmonic morphisms exist only between Riemannian manifolds of the
same dimension [5]. Thus every harmonic diffeomorphism is an isomorphism
in the category BHarm.

(⇐) Suppose f is a harmonic morphism with harmonic inverse f−1. Then
the inverse must be differentiable by (2.5), and f must be a bijection for f−1

to be well defined, so f is a diffeomorphism.
Thus the isomorphisms in BHarm are precisely the harmonic diffeomorphisms.

Of course, the isomorphisms in BSheaf are precisely the “bijections” be-
tween sheaves, however there is a deeper implication to the diffeomorphisms
in BHarm when we consider the objects of each sheaf. Remember that the
direct image functor f∗ induced by a harmonic morphism f : M → N maps
the sheaf objects F (V ) to linear transformations F (V )→ F (U) for U, V open
in M,N , respectively (such that f(U) = V ).

Theorem 3.2. Suppose that f : M → N is a harmonic diffeomorphism.
Then the direct image functor f∗ maps the objects of F (N) to vector space
isomorphisms.
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Proof. Let U, V be open sets of M,N , respectively, and g, h ∈ F (V )
such that g ◦ h = h ◦ f on imf . Via (2.8), f is an open map, so g − h is
zero on an open set. Thus, via (2.2), we have that g = h. Thus f∗F (V ) is
injective. The same argument holds for the direct image functor f−1∗ induced
by the inverse f−1. Thus by Cantor-Schröder-Bernstein theorem, f∗F (V ) ∼=
f−1∗ F (U), and so the injectivity of f∗ implies it is bijective. Thus f∗ is a vector
space isomorphism.

4 Harmonic Morphisms and the Dirichlet Prob-

lem

The Dirichlet problem is an important object in the study of harmonic func-
tions. The problem is stated as follows.

Given a Riemann integrable function φ on the boundary of an open con-
nected set Ω ⊆ C, find a harmonic function u on Ω that extends continuously
to the boundary so that u = φ on ∂Ω.

For the remainder of this section we will consider such domains Ω to
be subsets of the complex plane with smooth boundary, and any manifolds
will be assumed to be of dimension 2. Via the Riemann mapping theorem, we
have that there is a conformal map Ω→ D (note that conformal maps on the
complex plane are harmonic morphisms), where D denotes the Poincaré disk.
Thus the problem can be restated as “Given a φ ∈ R[−π, π], find a harmonic
function u on D such that u(eiθ) = φ(θ) for θ ∈ [−π, π]”. In this case, the
solution to the Dirichlet problem is given by the integral

u(z) =
1

2π

∫ π

−π

eit + z

eit − z
φ(t) dt.

The map T : R[−π, π] → F (D) that takes Riemann integrable functions to
their Dirichlet solutions on D is a linear transformation, provided u is assumed
to be bounded. The Dirichlet solution u to φ on D is denoted in general as
u(z) = Tφ(z). Since the bounded solutions to the Dirichlet problem are unique,
it follows that T is injective onto a subset of the space F (D). Similarly, if
u ∈ F (D) is a bounded harmonic function on D that extends continuously to
D, we have that u is the unique Dirichlet solution to u|∂D. Thus T is an injec-
tive linear map from the set of Riemann integrable functions on [−π, π] to the
subspace of bounded harmonic functions on D that extend continuously to ∂D.
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4.1 Solutions to the Dirichlet Problem on Riemannian
Manifolds

Here is described a method of solving the Dirichlet problem on Rieman-
nian manifolds of dimension 2. For ease of explanation, we will assume slightly
stronger conditions than are necessary for solving the Dirichlet problem on a
Riemannian manifold. Thus weaker conditions may be assumed, however as
such, they greatly increase the difficulty of the following proof. Additionally,
the proof is designed to avoid the concept of measuring distance on the man-
ifold, as the topic delves into subjects not discussed in this paper, namely the
calculus of variations.

Consider a Riemannian manifold M of dimension 2. Let γ ∈ C∞[−π, π]
define a smooth simple closed curve in M , so that imγ encloses (that is, is the
boundary of) a connected open subset V ofM . A 1916 result by Lichtenstein[7]
states that every Riemannian 2-fold admits conformal local coordinates in R2.
Of course, this allows one to also choose conformal local coordinates in C.
Thus we will choose a conformal coordinate chart f : Ω → C for some open
set Ω such that V ⊆ Ω. Since every conformal map is trivially semiconformal
as well, and f is necessarily a smooth diffeomorphism, we have by (2.7) that f
is a harmonic morphism, and by (2.8) we have that the image f(V ) is an open
connected subset of the complex plane. Therefore, via the Riemann mapping
theorem, there is a conformal holomorphic bijection f(V ) → D. Such a map
is again a harmonic morphism (via 2.7), and compositions of harmonic mor-
phisms are harmonic morphisms. Thus we will suppose wlog that f maps V
to the Poincaré disk. Next let ψ : ∂V → R be a continuous function on ∂V .
Choose a function φ on ∂D such that φ ◦ f = ψ on ∂V . Then we can solve the
Dirichlet problem for φ on D, and the solution is given by

u(z) =

∫ π

−π

eit + z

eit − z
(φ ◦ f ◦ γ)(t) dt.

Note that because f is a harmonic morphism, u ◦ f is harmonic on V trivially.
Next choose an arbitrary sequence xn → x, xn ∈ D, x ∈ ∂D. f is a diffeo-
morphism, so it is bijective, implying that for every such sequence there is a
unique associated sequence yn → y, yn ∈ V , y ∈ ∂V such that f(yn) = xn
for every n ∈ N, and so by continuity f(yn) → x (note that convergence of
this sequence relies on some metric having been determined on M , however
the specifics of this metric are not important). Therefore, since u is a solution
to the Dirichlet problem on D, we have that (u ◦ f)(yn) → (φ ◦ f)(x) = ψ(x)
as n→∞. The sequence xn (and therefore the associated yn) is arbitrary, so
u ◦ f extends continuously to ψ on ∂V by sequential continuity. Thus u ◦ f is
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a solution to the Dirichlet problem on V for ψ.
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