
An Overview of Computational Geometry

Alex Scheffelin

Contents

1 Abstract 2

2 Introduction 3
2.1 Basic Definitions . 3

3 Floating Point Error 4
3.1 Imprecision in Floating Point Operations . 4
3.2 Precision in the Calculation of the Area of a Polygon 5

4 Speed 7
4.1 Big O Notation . 7
4.2 A More Efficient Algorithm to Calculate Intersections of Lines 8
4.3 Recap on Speed . 15

5 How Can Pure Mathematics Influence
Computational Geometry? 16
5.1 Point in Polygon Calculation . 16
5.2 Why Do We Care? . 19

6 Convex Hull Algorithms 19
6.1 What is a Convex Hull . 19
6.2 The Jarvis March Algorithm . 19
6.3 The Graham Scan Algorithm . 21
6.4 Other Efficient Algorithms . 22
6.5 Generalizations to the Convex Hull . 23

7 Conclusion 23

1

1 Abstract

Computational geometry is an applied math field which can be described as the intersection
of geometry and computer science. It has many real world applications, including in 3D mod-
elling programs, graphics processing, etc. We will provide an overview of the methodology
of computational geometry in the limited case of 2D objects, culminating in the discussion
of the construction of convex hulls, a type of polygon in the plane which is determined by a
set of points. Along the way we will try to explain some unique difficulties one faces when
using a computer to compute things, and attempt to highlight the methods of proof used.

2

2 Introduction

2.1 Basic Definitions

I will define a few geometric objects, and give example about how one might represent them
in a computer. The reader is free to skip this section and proceed to section 3 on floating
point error if they find this section boring, or unneeded.

Definition 1. Point
A point is a point in the 2D plane represented uniquely by its x and y coordinates. One
can represent a point as an ordered pair (x, y) where x is its x-coordinate, and y is its
y-coordinate.

While it may seem pointless to define what a point is, nearly everything builds off of
points, so it was worth defining. One can simply make a data structure called ”point” which
has two variables, two floating point numbers called ”x” and ”y” that simply represent its
coordinates. From points, we build up to line segments.

Definition 2. Line Segment
A line segment is the geometric construct which spans between two points, and contains
within it every point between them. It matters not what one considers the start and ending
point as the line which goes from the point x to the point y, the line called xy is the same
as the line which goes from y to x, the line called yx.

A precise definition of a line segment is very hard, as one must have some point to start
from. Euclid took lines to be the start of his geometry. The reason for defining a line segment
is to provide a way to discuss how one might store them in a computer. The easiest way
is to simply create two points which are variables in it, say p1 and p2. The issue with this
definition is that when it comes to evaluate equality of two lines, say xy and uv, one might
seek to simply compare the two first points, and the two latter points, say xy = uv if and
only if x = u, and y = v. However as anyone who has taken geometry would know, the line
xy = yx, thus one must check it two ways, xy = uv if and only if x = u and y = v, or x = v
and y = u. Note that we may have some degenerate cases, say what if p1 = p2? Then in
reality we have only defined a point, and when performing geometric calculations with this
line, one might possibly run into issues if one does not consider this case. We thus define
the word degenerate,

Definition 3. Degenerate
Something which requires exceptional care to handle.

In computational geometry one example of common degenerate cases are when two lines
are almost parallel, or when two things intersect only tangentially. In the first case, when
two things are almost parallel, their intersection is very far away, and as we will later see in
section 3 on floating point error, things being very large (in this case the x and y values of
the intersection point) can cause issues with precision. We now will define a polygon, and
simple polygon, and we will then proceed onto a discussion on floating point error.

3

Definition 4. Polygon
A polygon is a type of shape which is comprised of a series of line segments.

A polygon in general is a bit more general than what you might imagine to be a polygon.
For example, this definition does not rule out the possibility that the polygon has self-
intersection points. In order to store a polygon, one will usually store it as an ordered list of
points. Thus a polygon can be stored as {p1, p2, . . . , pn} which will describe its shape. If one
were to try to draw the polygon, you would have to draw every edge, and if you store the
data this way you can simply draw the lines p1p2, p2p3, . . . , pnp1. Note, as the last line we
choose to draw is pnp1, this polygon is not ”closed”, in the sense that it is understood that
the final point is not the first point, and in order to draw it you must manually draw the
last line pnp1. It is common to store polygons this way as one can retrieve all the same data
about the polygon, but for a polygon with n sides you need only store n points rather than
n+ 1 points. The type of polygon you are more familiar with is called a simple polygon.

Definition 5. Simple Polygon
A polygon is a simple polygon where no line segments intersect except for those which are
adjacent in the ordering.

What ”adjacent in the ordering means” is simply that they are lines which would have
to be next to each other. Take the polygon generated by the points {p1, p2, . . . pn}, the line
segments of this are {p1p2, p2p3, . . . pnp1}. It is clear that line segments which are next to
each other in this ordering (we also take pnp1 and p1p2 to be next to each other) do intersect,
namely at their endpoints. The lines pkpk+1 and pk+1pk+2 will intersect at pk+1, but this does
not contradict the polygon being a simple polygon. Simple polygons are in general easier
to work with, self intersections bring a whole slew of issues which make some operations
more tedious, inefficient, etc. but polygons as a whole are a fundamental geometric object.
They can be used to model floors, the boundary of regions on a map, etc. The 3D corollary
of a polygon, a polyhedron is a fundamental object in 3D graphics, and the n-dimensional
corollary is called a polytope, but we will not discuss them as we limit ourselves to the 2D
case.

3 Floating Point Error

3.1 Imprecision in Floating Point Operations

One of the first things that must be discussed is how one stores geometric information. At
the very beginning, one must use some programming language, perhaps, C#, C++, Java,
etc. and then create data structures in order to contain all necessary information. The issue
there lies in how this information is stored, real numbers are often stored as floating-point
numbers, which are imprecise. The reason being that while one could write down the number,
say 0.124385920375028304579239, to store that would require a large amount of memory as
it eventually gets turned into binary. For an overview of floating point numbers in C#, see

4

this article[1]. As a brief summary, not all numbers can be precisely represented, and even
if two numbers are precisely represented, their sum, product, quotient, etc. may not be.
Thus one can continue to accumulate little bits of error, and if one is say off by a degree of
1 × 10−5, if you are to multiply this number by a large number, you have only magnified
the error. Thus, one must be cognizant of how error is handled in their algorithms. There
is a balance to be made between speed and precision, one could allocate a lot more data in
order to store numbers more precisely, but the tradeoff being that the speed of calculations
involving the data will take more time.

3.2 Precision in the Calculation of the Area of a Polygon

In order to illustrate this point, we present a more precise algorithm for the computation of
the area of a polygon in a paper by Jonathan Shewchuk[2]. A commonly known formula to
calculate the area of a polygon with vertices p1, p2, . . . , pn (ordered such that the polygon
consists of lines between the points pk and pk+1, with pn+1 = p1), and such that pk,x denotes
the x-coordinate of pk and pk,y the y-coordinate, that the area is

1

2

∣∣∣∣∣
n∑
k=1

pk,xpk+1,y − pk,ypk+1,x

∣∣∣∣∣
Note, that the presence of absolute value is because depending on whether the points go
clockwise or counterclockwise, you may end up with either the area of the polygon, or the
additive inverse of the area of the polygon. A simple way to see this is using Green’s theorem.
If the set P represents the set of points within the polygon we are looking at, then

∫ ∫
P

1dA
is exactly the area of the polygon. To set this up to use Green’s formula, let P (x, y) = 0
and Q(x, y) = x, and then∫ ∫

P

1dA =

∫ ∫
P

∂Q

∂x
− ∂P

∂y
dA =

∮
∂P

Pdx+Qdy =

∮
∂P

xdy

We can evaluate this along each edge, the let the curve Ck be the straight line between pk and
pk+1, we can parameterize this curve using γ(t) = ((pk+1,x−pk,x)t+pk,x, (pk+1,y−pk,y)t+pk,y),
and then plugging this in we get∮

∂P

xdy =
n∑
k=1

∫ 1

0

((pk+1,x − pk,x)t+ pk,x)(pk+1,y − pk,y)dt

=
n∑
k=1

(pk+1,x + pk,x)(pk+1,y − pk,y)
2

=
1

2

n∑
k=1

pk,xpk+1,y − pk,ypk+1,x + pk+1,xpk+1,y − pk,xpk,y

=
1

2

n∑
k=1

pk,xpk+1,y − pk,ypk+1,x

5

(The fact that those last two terms in the sum disappear is due to the fact that it telescopes
and that p1 = pn+1)

This however, can be prone to large errors if the distance of the points of the polygon to
the origin are large compared to the relative distance to each other. This is because due to
the nature floating point numbers are stored, numbers large in absolute value are less precise
than numbers small in absolute value. Thus, if the relative distance of the points is small,
when summing the (pk,xpk+1,y − pk,ypk+1,x) terms, as each term is small it will be relatively
precise, but as all the numbers, pk,x, pk+1,y, pk,y, pk+1,x are large (as the vertices are far from
the origin), the multiplication will be very imprecise, which may lead to the calculation of a
number very far from the actual area of the polygon. The strategy offered here, is to notice
that the calculation of the area of a polygon matters only on the relative positions of the
vertices, thus it is translation invariant. Take a square with side lengths 1, regardless of
where it is centered its area is 1, thus we can simply translate all the points such that they
lie closer to the origin and then conduct this same calculation. Thus, let p′k = pk − pn (the
idea here is that if we subtract the same fixed difference from each vertex, the area will not
change), and substitute p′k wherever pk was before. Thus our formula becomes

1

2

∣∣∣∣∣
n∑
k=1

p′k,xp
′
k+1,y − p′k,yp′k+1,x

∣∣∣∣∣ =

1

2

∣∣∣∣∣
n∑
k=1

(pk,x − pn,x)(pk+1,y − pn,y)− (pk,y − pn,y)(pk+1,x − pn,x)

∣∣∣∣∣
One can verify by expanding the expression that this is equivalent to the formula offered
earlier, but the benefit is that on average the terms used should be closer to 0. Note that
if we have an incredibly large polygon centered on the origin, say a square with the points
(±105,±105), by shifting we may not really improve the accuracy. The increase in accuracy is
gained when the polygon is relatively small compared to how far removed it is from the origin.
The paper uses forward error analysis to get estimates of the error in both representations,
the first one is a function of the size of the coordinates, so each points absolute distance
from the origin, while the latter is a function only of their distance to each other, so their
relative distance. Note, however, that as mentioned before, there are often tradeoffs between
geometric robustness (the precision of geometric calculations) and speed. For the latter
algorithm one must perform more calculations as you are take differences of points, which
means it will perform slower. It then might be up to the individual to accept one or the
other, or write in code which decides somewhat arbitrarily, that if the absolute distance to
the origin is too large to the relative distances of the points, that one will perform the second
algorithm in favor of precision, else they simply preform the first one in favor of speed. This
calculation will also take up time, thus one must know what sort of data they will be working
with in order to have a good idea of how they wish to proceed. This is one of the unique
challenges applied mathematicians face that pure mathematicians need not worry about in
their own fields.

6

4 Speed

4.1 Big O Notation

Now, while we have gone over error and gave an example of what one might do to address
errors in floating point arithmetic, the rest of the paper will focus primarily on speed. In order
to measure speed, we will have to introduce the ”Big O Notation”, which many computer
scientists will already be familiar with. Big O notation is a way to describe how fast a
function grows, something is O(n) say if it increases linearly. As whatever variable you are
working with increases to infinity, it starts to become some constant multiple of whatever is
inside the O. As an example, let’s say we let n describe the number of points we have, and
we have a function which finds the bottom-most point, in the case of a tie it then chooses
the left-most point out of all the ones with the lowest y-value. This is O(n) as when we
add a new point, we must now check one more time. If instead we had to perform some
operation two more times for every added data point, it would still be O(n) as this is a
constant multiple of something that is O(n).

Note, that there are times when algorithms exist that are say, O(n2) and O(n log(n))
where the ”slower” algorithm, the one that is O(n2) will actually perform faster than the
other one for n less than some incredibly large number. Let’s say that something is O(en),
which grows very very fast, versus something that is say O(n3). If the algorithm that is
O(en) actually has a speed like say, 0.0001en, while the O(n3) is say 1000n3, it should be very
obvious that for n which aren’t very large, that the O(en) function performs better than the
O(n3). However, in the limiting case, it also is clear that the O(en) function performs worse,
take limn→∞

0.0001en

1000n3 =∞. When writing code that needs to be very efficient sometimes the
programmer will write code which determines when to switch between algorithms. Say we
have as before, an algorithm that is O(n2), and another that is O(n log(n)), but the O(n2)
one performs faster than the O(n log(n)) one for n < 10. Then one might write code which
uses the first in the case that n < 10, but the second when n ≥ 10. There are however times
where this isn’t possible, as determining which algorithm is faster might take too much time,
or only be known after the problem is solved, or the algorithm has ran.

We can also have functions which are of two or more variables, an example we will see
later is of a function for calculating the convex hull, a certain type of polygon, from a set
of points. Letting n be the number of points we start with, and h the number of vertices
of our final polygon, there exists an algorithm that runs in O(nh) time. As the convex
hull can only use points that were initially given, h ≤ n + 1, meaning in the worse case,
this function runs in O(n2). It is very possible it will run faster, but in order to determine
that one would need to know the number of vertices of the final product, which if we could
determine, would practically result in us having the convex hull already. Note also, that
h is not known immediately, it depends on the output. Algorithms whose time complexity
depend on the output are called output-sensitive algorithms, and when dealing with output-
sensitive algorithms we will deal with the worst case.

As a final note, the way in which the time it takes to run an algorithm is very subjective
to the specific algorithm we examine. For example something of O(n) won’t take n seconds,

7

minutes, hours, etc. rather when n = 5, it will take 5 times as long as when n = 1. For
something that is O(n2), when n = 5 it will take 52 = 25 times as long as when n = 1. Now,
really as these values of n are small this may not be accurate, but it’s important to consider
that. The way we determine how long something takes might be how many times it has
to calculate the intersection of two lines, retrieve and compare values of x or y-coordinates,
etc. Thus two algorithms that are say O(n2) might take wildly different amounts of time to
complete for the same values of n.

4.2 A More Efficient Algorithm to Calculate Intersections of Lines

In order to illustrate how the time complexity of algorithms are proven, we will go over
an example in the book Computational Geometry: Algorithms and Applications by Berg,
Kreveld, Overmars, and Schwarzkopf [3] which describes a way to calculate the intersections
of an arbitrary number of line segments. To begin, let’s set the stage for the problem. Given
n line segments, find all intersection points of the line segments. One could brute-force this,
simply take every pair of line segments, and calculate whether they intersect, and if so,
report their intersection point. This clearly is O(n2), as given n line segments, we have n2

pairs (one can consider the set of segments forming a set S, the pairs are simply elements of
S × S which would have n2 elements).

Now, if our line segments all intersect each other, this is fine as we would have n2

intersections. However, this is not always the case, rather one would believe that this is
by far the exception. How then, can we develop an algorithm that is faster in most cases,
and equal in speed in the worst-case scenario? We want an output-sensitive algorithm, but
one that won’t be any slower than O(n2) in the worst case. How can we do this? From
your geometric intuition, line segments that are close should have a reasonable chance to
intersect, while those that are far away should not be able to intersect unless they come
closer together right? Intersection is exactly the case that the distance of two line segments
becoming 0, so how can we make this precise, and develop an algorithm that is both faster,
but also will not miss any intersections? We now will explore this idea.

Let S = {s1, s2, . . . , sn} be the set of segments we wish to find all intersections of. First,
imagine if we squished all the lines down onto the y-axis, we project them all onto the y-
axis. If two lines don’t intersect here, then they cannot possibly intersect. Intuitively, if the
minimum y-value a certain line segment takes is larger than the maximum y-value another
line segment takes they cannot possibly intersect.

8

In order to make this precise, we can imagine sliding or sweeping a line l which lies
horizontally in the plane downwards and keep track of all the lines which intersect this line
at various points as we sweep it down. Only those lines which intersect this sweep line at the
same time will we test against each other to see if they intersect. As continually dragging this
line would be annoying we will define some event points, and only update at these points.

l

Definition 6. Event Point
Certain points at which an algorithm will update

In this particular case, we let the event points be the top and bottom endpoints of every
line segment. Making a list of all the event points, and then ordering them descending
by their height, we essentially stack all the event points on top of each other. Then, our
algorithm will simply jump from point to point, updating and performing things as we hit
these event points. In the case that the event point is the upper point of a line segment, we

9

will add it to a list of line segments intersecting the line, and in the case the event point is
the bottom point of a line segment we will remove it.

U

U

U

U

L

L

L

L

We need not calculate any intersections this way, once we order all the event points by
their height we need only jump from point to point. This however is not enough, points can
be intersecting our sweep line at the same time, but be very far apart horizontally. How can
we accommodate for this? Well, at any particular point of our sweep line, the only lines that
can intersect each other are the ones that are next to each other can intersect. To reflect
this, we also order the segments horizontally, when we hit the top endpoint of a line segment,
find where it falls in the order, and test it for intersection against its two neighbors. Later,
the adjacency might change, when two points intersect, and when you hit the bottom point
of a line, where it is removed from the list. We thus have a new event point, intersections.

This seems like it could possibly be faster, but is this okay? If we only consider adjacent
lines how can we be sure that we will find all intersections? Well, in order to simplify this,
we will ignore degenerate cases for now, they will be easy to deal with. So, assume that no
segment is horizontal, that two segments intersect only in one place (meaning they cannot
overlap), and that no three segments intersect at a common point. It is obvious that we
cannot possibly miss an intersection where an endpoint of a segment lies on another segment
as we will be testing those lines for intersection when we hit the event point corresponding
to that endpoint. Thus we must consider whether the intersection of the interiors of line
segments will always be found. Here we will quote the proof of a lemma verbatim from the
book.

Lemma 1. Let si and sj be two non-horizontal segments whose interiors intersect in a single
point p, and assume there is no third segment passing through p. Then there is an event point
above p where si and sj become adjacent and are tested for intersection.

Proof. Let l be a horizontal line above p. If l is close enough to p then si and sj must be
adjacent along l. (To be precise, we should take l such that there is no event point on l, nor
in between l and the horizontal line through p.) In other words, there is a position on the

10

sweep line where si and sj are adjacent. On the other hand, si and sj are not yet adjacent
when the algorithm starts, because the sweep line starts above all line segments and the
status is empty. Hence there must be an event point q where si and sj become adjacent and
are tested for intersection.

The proof here clearly relies on the fact that no line is horizontal and there is no third line
passing through p. If that is the case, very close to p it is clear that si and sj have no line in
between them, thus are adjacent. This may not be as rigorous as some pure mathematicians
may like, who like proofs built up rigorously from axioms and first principles, but this is
often the nature of applied mathematics.

So let’s think about the algorithm so far, when we hit an event point which corresponds to
the upper endpoint of a line segment, we must test it for intersection with its two neighbors.
Say si and sk are adjacent on our sweep line, and we hit the top endpoint of a segment sj
which is between si and sk (with respect to their top endpoints), then we add it between
si and sk, and test it for intersection with si and sk. After the upper endpoint has been
handled, we move onto the next event point. What do we in the case of an intersection?
Well if two lines intersect then they swap places, the one that was to the right is now on the
left, and the one on the left is on the right. Let sj, sk, sl, and sm appear in this order on the
sweep line. Then, in the case that sk and sl intersect, we will swap the order so now it reads
sj, sl, sk, sm and test sj and sl for intersection, as well as sk and sm. Note that we may end
up calculating the intersection of two lines multiple times. Let’s say that sk and sm were
adjacent at some point before, we will have found their intersection again.

The final case is when we hit the bottom edge of a line segment. Let’s say we have
sk, sl, sm in this order, then hit sl’s bottom endpoint. Then we remove sl from the queue,
and test sk and sm for intersection. In order to continue, we must now define things precisely,
and go into time complexity. The following sections will omit some explanation of things
from computer science, such as binary search trees. The explanation of such things do not
fit the theme of the paper, and can easily be found on the internet.

Define an event queue Q. This stores all of the event points we have. We need an
operation to move to the next event, and return it so we can handle the event properly. The
event is the one highest one below our sweep line. In the case of a tie, two elements with
the same y-coordinate, take the one with the smaller x-coordinate. Thus we go from left to
right, implying that for horizontal lines, the left endpoint is its upper endpoint, and the right
endpoint is its lower endpoint. The event queue must allow for new things to be inserted,
as when we calculate an intersection we need to be able to add it. In addition, two event
points can be the same, for example two lines with the same endpoint. It is convenient to
simply treat this as one event point, thus we need Q to be able to check if an event point is
already present.

Define an order ≺ on the event which will represent the order we handle events. If p and
q are event points then p ≺ q, if and only if py > qy, or in the case that py = qy, then px < qx.
Store these events in a balanced binary search tree, ordered according to ≺. At each event
point p in Q, store all segments which have as an upper endpoint p. This information will
be needed to handle events. Both of these operations, fetching the next event and inserting

11

an event take O(logm) time, where m is the number of events in Q.
Next, we need to know the status of the algorithm. This is the ordered sequence of

segments which intersect the sweep line, the thing that tells us what are adjacent. The
status structure, T , is used to access the neighbors of a segment s, so that we can test
them for intersection with s. We must be able to add and remove segments. As there is a
well defined order (by their x-value) we can use a balanced binary search tree as a status
structure. On page 25 the author offers an in-depth look into the structure, but we will
merely summarize the result. In O(log n) time we are able to update and find the neighbors,
and can easily find the segment immediately to the left or right of a point p on our sweep
line, or find the segments which contain p. Our algorithm then, in pseudocode provided by
the author, looks like so

Algorithm 1. FindIntersections(S)
Input A set S of line segments in the plane.
Output The set of intersection points among the segments in S, with the associated segments
which contain the intersection point.
1. Initialize an empty event queue Q. Next, insert the segment endpoints into Q; when
an upper endpoint is inserted, the corresponding segment should be stored with it.
2. Initialize an empty status structure T .
3. while Q is not empty
4. do Determine the next event point p in Q and delete it.
5. HandleEventPoint(p)

We have already described how to handle event points in our simple case without degen-
eracies. We will now describe how to handle even the degenerate cases.

Algorithm 2. HandleEventPoint(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments are stored
with the event point p. (For horizontal segments, the upper endpoint is by definition the left
endpoint.)
2. Find all segments stored in T that contain p; they are adjacent in T . Let L(p) denote
the subset of segments found whose lower endpoint is p, and let C(p) denote the subset of
segments found that contain p in their interior.
3. if L(p) ∪ U(p) ∪ C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p) ∪ C(p) from T .
6. Insert the segments in U(p) ∪ C(p) into T . The order of the segments in T should
correspond to the order in which they are intersected by a sweep line just below p. If there
is a horizontal segment, it comes last among all segments containing p.
7. (*Deleting and re-inserting the segments of C(p) reverses their order.*)
8. if U(p) ∪ C(p) = ∅
9. then Let st and sr be the left and right neighbors of p in T .
10. FindNewEvent(sl, sr, p)
11. else Let s′ be the leftmost segment of U(p) ∪ C(p) in T .

12

12. Let sl be the left neighbor of s′ in T .
13. FindNewEvent(sl, s

′, p)
14. Let s′′ be the rightmost segment of U(p) ∪ C(p) in T .
15. Let sr be the right neighbor of s′′ in T .
16. FindNewEvent(s′′, sr, p).

Note that in lines 8-16 we assume that sl and sr exist, if they don’t then the corresponding
steps should not be performed.

Now why do we go about it this way? Well the first step where one might have questions
might be 5. We delete the segments in L(p) as we will go past its lowest point, thus it is
no longer needed. We delete points in C(p), as since this is internal it corresponds to the
intersection of two lines in their interior, thus they must be flipped. In step 6. since we now
allow many lines to intersect at one point, we must determine the new order of the segments
in C(p) by looking at how their order is a bit below the intersection, we cannot simply flip
the order anymore.

l

If the if statement in 8. is true, then the point we looked at corresponds only to the lower
endpoint of a segment, thus we need only look at the two segments to the left and right,
and then test if those two intersect. Else, we either are adding a point since we hit the top
of a line, or have an internal intersection, both of which require two sets of segments to be
tested against each other, thus we have two calls to FindNewEvent. In order to understand
what FindNewEvent does, note that we want to avoid finding intersection points which have
already been handled. As all points above our sweep line have been handled, we need only
look at points below the line. What then of horizontal lines? Well, as the left-most point
is the upper point, and the right-most point the lower, we are interested in points lying to
the right of the current event point, as well as those below. So, define FindNewEvent as
follows,

Algorithm 3. FindNewEvent(sl, sr, p)
1. if sl and sr intersect below the sweep line, or on it and to the right of the current
event point p, and the intersection is not yet present in Q
2. then Insert the intersection point in Q.

This simply looks only for the intersection points that have a chance of not having
already been found, and then inserts it into our queue if it isn’t already present. It should
be clear that FindIntersections finds only real intersections, but as before, does it find every
intersection? To prove this, we will prove a lemma.

13

Lemma 2. FindIntersections computes all intersection points and the segments that contain
it correctly.

Proof. The priority of an event is given by whichever point has a larger y-coordinate, and
in the case we have a tie, then by that which has a lower x-coordinate. The proof is by
induction on the priority of the event points.

Let p be an intersection point, and assume that all points with a higher priority have
been calculated correctly. We shall prove that p and all segments which contain it will
be calculated correctly. Let U(p), L(p), C(p) be defined as they are in the definition of
HandleEventPoint.

Assume p is an endpoint of one or more of the segments. If that is the case, then p is
stored as an event point in Q at the start of the algorithm. The segments from U(p) are
stored with p at the start, thus they are found. The segments from L(p) and C(p) are stored
in T when p is handled, so they will be found in line 2. of HandleEventPoint. Thus, p and
all segments involved are determined correctly in the case p is an endpoint of one or more
of the segments.

Now, assume p is not the endpoint of any segment. We must show that p is inserted into
Q at some point, as in what we proved in Lemma 1 in the case without degeneracies. As all
points have p in their interior, order the segments by angle around p, then two neighboring
segments si and sj should clearly pop out, two segments which are adjacent by this new
ordering. As in the proof of Lemma 2.1, as these two did not start adjacent, there must be
an event point with higher priority than p where they become adjacent, thus by induction
when q is handled correctly we add p into Q. While the proof of Lemma 2.1 assumed we
did not have horizontal lines, but it is easy to adapt the proof. Thus by induction we are
done.

Note the base case is simply the first point which is added which is an endpoint and
is handled correctly, thus there is no issue there. Now, how can we calculate the time
complexity of this algorithm? Well the answer is that it is output-sensitive. We will prove
this as another lemma.

Lemma 3. The running time of FindIntersections for a set S of n line segments in the
plane is O(n log n+ I log n) where I is the number of intersection points of segments in S.

Proof. The algorithm starts by constructing the event queue on the endpoints of our seg-
ments. As each insertion is O(log n) and we have 2n points to insert this is O(log n) (note
that the 2 does not matter for big O notation). Initializing the status structure takes constant
time as initializing it does not depend on anything else. Then the plane sweep begins and all
events are handled. The handling of an event has us perform three operations, the event is
deleted in Line 4. of FindIntersections, and there can be one or two calls to FindNewEvent.
Deletions and insertions are O(log n) each, we also perform operations on the status structure
T which is also O(log n). The number of operations is linear in m(p) = |L(p) ∪ U(p) ∪ C(p)|
which are involved in the event corresponding to p. If the sum of all m(p) over all event
points is m, then the algorithm runs in O(m log n) time.

14

Clearly m = O(n+ k) where k is the size of the output. To see this, when m(p) > 1, we
report all the segments involved in the event, and the only time that m(p) = 1 is when p
is the endpoint of a segment. Thus we have at the least, n points where we handle events,
but we also have a variable amount depending on how many intersections we have, which
correspond to points in C(p). We thus want to show that m = O(n + I) where I is the
number of intersection points. To show this, interpret the set of segments as a planar graph
embedded in the plane. Its vertices are the endpoints of segments and intersection points of
segments, and the edges are the pieces of segments which connect various vertices. Consider
an event point p. It is a vertex of the graph, and m(p) is bounded by the degree of the vertex
(the number of edges connected to p). Thus, m is the sum of the degrees of all vertices.
Every edge contributes one to the degree of two vertices (its start and endpoint), thus m
is bounded by 2ne where ne is the number of edges. We now seek to bound ne in terms
of n and I. By definition, we can have at most 2n + I vertices nv, this is only obtained
when no edges of segments coincide. 2n endpoints and I intersection points. It is well
known that ne = O(nv), but we shall prove it here. Every face is bounded by at least three
edges, assuming we have at least three segments. And a single edge can bound at most two
faces. Thus, nf , the number of faces, is less that 2ne/3. We now use, without proof, Euler’s
formula, which states that for any planar graph with nv vertices, ne edges, and nf faces, the
following relation holds,

nv − ne + nf ≥ 2

Equality holds if and only if the graph is connected. Plugging in our bounds on nv and nf
we get that

2 ≤ (2n+ I)− ne +
2ne
3

= (2n+ I)− ne/3

Thus, ne ≤ 6n + 3I − 6, which means that m ≤ 12n + 6I − 12, thus our bound holds,
as this shows that m = O(n + I). We thus get that the time complexity is O(m log n) =
O(n log n+ I log n).

So, we have shown and proven the time complexity of an output-sensitive algorithm,
which should perform better than our brute force method when the number of intersections
is small relative to the number of line segments we have. In the worst case, we can have
I = n2 correct? In that case our algorithm becomes. . . O(n2 log n)? As it turns out, our
algorithm is actually worse than the other one in the case that the number of intersections
is somewhat maximal. We also never addressed when two lines lie on top of the other for
the sake of simplicity here. There do exists algorithms which run in O(n log n + I) time as
the author explains on page 41, one of which is by Balaban [4]. This problem of finding the
intersections of line segments is one of the fundamental problems in computational geometry,
and much work has gone into finding solutions to this that are fast.

4.3 Recap on Speed

Hopefully, we have illustrated the methodology that is used to prove things in computational
geometry, calculate the time complexity of algorithms, etc. While the details of the proof

15

may be hard to understand at time, hopefully the reader can feel like they have at least a
small understanding of how things work in the field of computational geometry.

5 How Can Pure Mathematics Influence

Computational Geometry?

5.1 Point in Polygon Calculation

A classic problem that often occurs is to determine if a point lies within a polygon. One
way to determine this is to look at the winding number of the polygon around the point. To
the reader who has had a course in complex analysis this should be a familiar concept. The
benefit of looking at the winding number is that it does not fail in degenerate cases like the
more common method which extends a ray out from the point. The idea there is that if the
point is in the polygon, that a ray from the point will intersect the polygon an odd number
of times. Once when it leaves, and then if the ray enters the polygon again, then it will have
to leave, thus it will enter an even amount of times. If it is outside, either the ray never
intersects, or it will intersect an even number of times, when it enters it must leave. This
however fails if not handled correctly when the ray intersects a vertex (one must be sure to
count it twice), or when the polygon is not simple.

1

5

4

3

2

7

6

1

2

3

1

2

1 or 2

1

2 3

4

76

5

9
8

2

1

The Even-Odd Rule Method Using Rays
And Potential Issues With The Method

In the case of a general polygon, we can have a polygon wind around a point more than
once, a byproduct of the fact that it can intersect itself. Instead, when one calculates the
winding number, as long as the winding number is not 0, then the point lies inside the
polygon. So, how can we make this rigorous? We will reference the paper by Hormann and
Agathos entitled ”The point in polygon problem for arbitrary polygons” [5]. The winding
number is a way to measure the amount of times a certain curve in the plane winds around
a point. It is intimately related to the argument principle in complex analysis, and we will
demonstrate a way to calculate it.

16

1

5

4

3

2

7

6

0

0 1

2 3

4

76

5

9
8

2

The Winding Number Method
(Numbers Next To Points Indicate
The Winding Number)

1

The winding number ω(R,C) of a point R with respect to a closed curve C which is given
by a function γ(t) = (x(t), y(t)) for t ∈ [a, b], with C(a) = C(b) is the number of revolutions
made around R while traveling once along C. It is defined for every point R which does not
appear in the image of γ, the curve C, and can be calculated by integrating the differential
of the angle the point C(t) takes with respect the positive horizontal axis. This is a function
ϕ(t). In the case we have a closed curve, which all polygons we work with are, this yields a
number of the form ω · 2π, with ω ∈ Z denoting the winding number.

Without loss of generality, assume R = (0, 0), which we can do as the winding number
is translation invariant, so we just shift the polygon such that the point R is now the origin.
This lets us express ϕ(t) as arctan(y(t)/x(t)), and thus

ω(R,C) =
1

2π

∫ b

a

dϕ

dt
(t)dt =

1

2π

∫ b

a

dϕ(t) =
1

2π

∫ b

a

y′(t)x(t)− y(t)x′(t)

x(t)2 + y(t)2
dt

As we are dealing with a polygon, this integral is easy to calculate. A polygon P is made
up of points, call them p1, p2, . . . , pn = p0 (note this polygon has n − 1 vertices), and it is
piecewise linear. We can define the curve by t 7→ (xi(t − i), yi(t − i)), t ∈ [i, i + 1], with
(xi(t), yi(t)) = tPi+1 + (1− t)Pi. This is the obvious map, with each interval [i, i+ 1] simply
mapping the line which goes from Pi to Pi+1, which is one edge of the polygon. Thus, we can
get the following equations, which we will present without proof. The proof is in Appendix
A of the paper.

ω(R,P) =
1

2π

n−1∑
i=0

∫ 1

0

y′(t)xi(t)− yi(t)x′i(t)
xi(t)2 + yi(t)2

dt

=
1

2π

n−1∑
i=0

arccos

(
Pi · Pi+1

‖Pi‖ ‖Pi+1‖

)
· sign det

[
P x
i P x

i+1

P y
i P y

i+1

]

=
1

2π

n−1∑
i=0

ϕi

Where ϕi is the signed angle between the edges of RPi and RPi+1. This is just the difference
of the angle at which Pi and Pi+1 are relative to the horizontal plane, which one could see

17

easily from the fundamental theorem of line integrals. When we break this up into each
piece which is simply a line, we are looking at

∫ Pi+1

Pi
dϕ(t) = ϕ(Pi+1) − ϕ(Pi), which is why

this is a signed angle.

θ1

θ2

θ2 − θ1

θ2

θ1

θ2 − θ1

Now, the second equation there may look nice, however the inverse trig function is costly
computationally, and thus there are better ways to make use of the fact that the third
equation is simply the difference between the angles of endpoints of all edges of the polygon
which are faster, which the paper goes into, but I elect not to go into as it is complicated and
not very enlightening. Thus, if the winding number is 0, the polygon does not encompass
our point, and if it is an integer n 6= 0, then it goes around our point a net n times
counterclockwise, if n is positive, and a net −n times clockwise if n is negative, thus as long
as the winding number is not 0 our point lies inside the polygon.

18

5.2 Why Do We Care?

While it was a brief excursion, hopefully the reader finds it at least somewhat believable that
there are real rigorous, pure mathematics that can underlie what computational geometrists
do. It is precisely the fact that one can relate a point in polygon calculation to a complex
contour integral (the context where the winding number is often discussed) which led me
personally to become interested in the field of computational geometry, and hopefully the
reader finds it interesting as well.

6 Convex Hull Algorithms

6.1 What is a Convex Hull

The convex hull is a specific type of polygon which is unique to any set of points. Taking
any set of points, the convex hull is the smallest convex polygon which encloses all the points
(one is also allowed to have the points be on the boundary of the polygon). To do this, you
construct the polygon using the points in your set as the vertices.

A Set of Points and Its Associated Convex Hull

As the reader might have already discovered in their own work, convex sets are generally
easier to work with than concave sets, and this applies to polygons as well. The convex
hull is a classic problem in computational geometry, and fast solutions have been developed.
Given a set of points, if one knows what a convex hull is, one could manually construct it
with relative ease. The problem with translating this to a computer which cannot see the
points, and only knows the x and y values of each points is a problem which we will now
explore a bit.

6.2 The Jarvis March Algorithm

The first algorithm we present is often referred to as the Jarvis March Algorithm or Gift
Wrapping. It was described by Jarvis in 1973 [6]. The algorithm runs in O(nh) time where
n is the number of points we begin with, and h is the number of points in the convex hull.
Note, that h ≤ n+ 1, thus the algorithm runs in worst case at O(n2) time, but will perform

19

better when h is small relative to n. Note, that it is perfectly possible to have a convex hull
with n + 1 points, take the regular n-gon, it will have every point in its convex hull, thus
this worst case scenario is very possible.

The actual methodology is very simple, and intuitive. First, we identify the bottom-most
point, and in case of a tie, we take the left most point. From this point, it is very obvious
that the next point will be above, and so in order to maximize the size (thereby ensuring the
polygon remains convex / contains every point), we find the point which has the smallest
angle with the positive x-axis, and then take that point to be the next point. From that point
on, we have two points, p1 and p2. Now to find the point pk+2 we find the point pi which
maximizes the angle ∠pkpk+1pi and take this pi to be pk+2 until we return to the beginning
(this angle cannot be a reflex angle, else we will have constructed a concave polygon, and
by virtue of how the algorithm this isn’t possible). One can imagine it like this, imagine we
have all the points as pegs on a board. We tie a string to the bottom-left most point, then
pull the string taut downwards, and then pull it in a large arc going counter clockwise. The
string will get caught on other pegs, until we come back and the string meets our initial peg,
and we tie the end to the first peg. All the points which the string is touching form the
vertices of our convex hull, and they are the ones which are the ”most-left” with respect to
our counterclockwise motion.

The Jarvis March Method

Finding the first point can be done in O(n) time. Then, to find the next point we require
to check n− 1 angles, so this runs in O(n) time. We must do this h times, as we do it once
for each point in our convex hull, but in addition we have the O(n) operation to find the
first point, but this does not matter in the limit. We thus have a O(nh) algorithm, as we

20

perform n − 1 operations h times, plus the initial point finding. The paper actually begins
by finding a point outside the convex hull, and then performing this process of finding the
first point hit by a swinging radial arm, but the method I outline will work equally well.
The advantage of this is that it is simple, and works faster than the O(n log n) method I will
describe next when h < log n, something that has a chance of occurring no matter the size
of n.

6.3 The Graham Scan Algorithm

The Graham Scan is an algorithm that runs in O(n log n) time. It is slightly more com-
plicated than the Jarvis March, and was described by Graham in 1972 [7]. The algorithm
proceeds like so. Identify a point which is inside the convex hull. One method to do so is to
find 3 points which are not colinear, and then taking the centroid of the triangle formed by
the three points. This can be done in O(n) time. Call this point P .

P

Next, with respect to some arbitrary half line from P (taking a line going right works
just fine), express the points in polar form, of the form rne

iθn , this can be done in O(n)
times. We can then order them in order by θn, which can be done in O(n log n) time (this
operation dominates). Then, if θk = θk+1, we can delete the shorter one as the smaller can
not be on the convex hull (it is further in). Any point with rk = 0 can also be deleted.

At this point, we have a set S = {r1eiθ1 , . . . , rmeiθm} points, so take three points which
are consecutive, say rke

iθk , rk+1e
iθk+1 , rk+2e

iθk+2 , and we have θk < θk+1 < θk+2. At this point
we will diverge a bit from what the paper describes, as a simpler solution exists. The point
is to identify whether or not going from our first point, to the second point, to the third
point constitutes a right turn, or a left turn. A left turn indicates all points are in the convex
hull, while a right turn indicates that the middle point is interior. We also could have that
all points are colinear. In order to determine this, take the vector v1 from the first point to
the second, and v2 from the second to the third. Simply look at the z-value of their cross
product (we must pretend now v1 and v2 are 3D vectors, so assume their z-value is 0 to
simplify the calculation). If the result is 0, they are colinear, if it is positive, we have a left
turn, and if it is negative it is a right turn.

21

An Example Of A Right Turn An Example Of A Left Turn

So we must now describe what to do in either case. First, if it is a right turn. As the
middle point is not in our convex hull, we delete the point rk+1e

iθk+1 from S, and then repeat
this process using the point rk−1e

iθk−1 , rke
iθk , rk+2e

iθk+2 (reduce all the indices modulo m).
In the case it is a left turn, we essentially just move forward. Repeat the process with

the points rk+1e
iθk+1 , rk+2e

iθk+2 , rk+3e
iθk+3 .

At each repeated iteration of this, we either remove a point from the set of points which
the convex hull might contain, or we move along inside of S. An induction argument will
show that this terminates in at most 2m steps, where m ≤ n. This process thus runs in
O(n) time.

This algorithm thus runs in O(n log n) time, which is due to the process of sorting the
points as it dominates. A few actual implementation-side things can be done to speed this
process up, but it won’t eliminate the fact that this algorithm runs in O(n log n) time. For
example, rather than finding the initial point P , much like the Jarvis March method, one
can first find the bottom most point, and then in case of tie the left-most point. Then,
if we consider the angle all the points make with a line extending out to the right of our
bottom-left most point, all the points make an angle less than π. Thus, rather than actually
calculating all of the points’ angles, and then sorting them, one can sort them by simply
observing the value they make on a function which is monotone on [0, π], such as the cosine
function, which one can calculate very easily using the dot product. It won’t change the
long run behavior, but in an actual implementation where speed is key it may help.

Note, as noted before, that this algorithm can potentially be worse than the Jarvis March
when the number of points in the convex hull is small relative to the total number of points.

6.4 Other Efficient Algorithms

Here, we will simply discuss a few other algorithms which exist, but without any expla-
nation of them. There are many other algorithms which run in O(n log n) time, but they
are simply different in their methodology, which might further complicate, or simplify, the
implementation for any individual programmer. Instead, I want to take the time to discuss
the next class of algorithm, one that runs in O(n log h) time. The first one comes from a
paper entitled, quite comically, ”The Ultimate Planar Convex Hull Algorithm?” [8]. A later
simplification was described by Chan, and is commonly known as Chan’s Algorithm which
also runs in O(n log h) time [9].

22

6.5 Generalizations to the Convex Hull

The convex hull as we have described is for the planar case, when we look for making a 2D
polygon. By means of rotation, this can be done for a 2D polygon in any dimensions, for
example in the 3D case one can simply rotate the set of points so they all have the same
z-value, generate the convex hull, and then apply an inverse rotation to put everything back
into place. There are however, generalizations of the convex hull into higher dimensions,
finding the convex set encompassing a set of points in 3-space, or even n-space, in which
case you will be generating a polyhedron or a polytope. Another thing the reader may be
curious if there exists so-called ”concave hull” algorithms, from a set of points can one gen-
erate the set which encompasses them all with minimal area?

The ”Concave Hull” Along
With The Convex Hull

This kind of thing might be useful when say, generating boundary lines based off of a
random sample of points for say, satellite imaging. There is a generalization of the convex
hull, called alpha shapes. All convex hulls are alpha shapes, but not all alpha shapes are
convex hulls. By use of alpha shapes, there have been algorithms developed to find so-called
concave hulls, and we point the reader in the direction of this article [10]

7 Conclusion

In conclusion, computational geometry is an interesting fusion of the at times somewhat ad
hoc nature of programming, and the rigor steeped field of mathematics. The methods of proof
are different than that of traditional mathematics field, and often require more knowledge
of computing, computer science, etc. than the average mathematician may have, but also at
times can require a solid basing in theoretical mathematics the average computer scientist
may not possess. It is a useful field in applied mathematics, and one which is still very alive
with research, one example many mathematicians may know about is the travelling salesman
problem. One famous millennium problem is to solve the famous P = NP problem, one
way to do so is to come up with a successful algorithm for the travelling salesman which
runs in polynomial time. While most researchers believe that P 6= NP , and the chances you
can find such an algorithm are perhaps zero, if you were to find one, you are entitled to one

23

million dollars. This problem falls into computational geometry, so perhaps you too want to
try tackling the problem?

24

References

[1] J. Skeet. https://csharpindepth.com/articles/FloatingPoint. [Online; accessed 19-May-
2019].

[2] J. R. Shewchuk, “Lecture notes on geometric robustness,” tech. rep., 1999.

[3] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry:
Algorithms and Applications. Santa Clara, CA, USA: Springer-Verlag TELOS, 2nd
ed. ed., 2000.

[4] I. J. Balaban., “An optimal algorithm for finding segment intersections.,” In Proc. 11th
Annu. ACM Sympos. Comput. Geom., pages 211-219, 1995.

[5] K. Hormann and A. Agathos, “The point in polygon problem for arbitrary polygons,”
Computational Geometry, vol. 20, no. 3, pp. 131 – 144, 2001.

[6] R. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,”
Information Processing Letters, vol. 2, no. 1, pp. 18 – 21, 1973.

[7] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar
set,” Inf. Process. Lett., vol. 1, pp. 132–133, 1972.

[8] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algorithm,” SIAM
J. Comput., vol. 15, pp. 287–299, Feb. 1986.

[9] T. M. Chan, “Optimal output-sensitive convex hull algorithms in two and three dimen-
sions,” Discrete & Computational Geometry, vol. 16, pp. 361–368, Apr 1996.

[10] M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient generation of simple
polygons for characterizing the shape of a set of points in the plane,” Pattern Recogni-
tion, vol. 41, pp. 3224–3236, 10 2008.

25

