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1 Introduction

Picture for yourself a pistol duel between two equally poor shots, neither of
whom are content to be put at a disadvantage. In the interest of fairness,
they agree to take turns based on who currently has the lowest probability
of winning the duel by the current round. Indeed, that is what Cooper and
Dutle did in their paper "Greedy Galois Games," [2] named in reference to
the tragic tale of the young mathematician Evariste Galois. From examining
how the sequence of turns behaves as the probability of any one shot success-
fully felling the opponent vanishes, the Thue-Morse sequence appears and
can be used to tell us more than just about pistol dueling. The authors show
that while it is not the fastest approximation of the zero function, its sum
is exactly zero. Furthermore, they show that it is possible to use the results
of the analysis of the Greedy Galois dueling order to produce expansions of
of rational numbers in non-standard bases.



2 The Pistol Duel Rules

Without loss of generality, let Alice and Bob be our two duelists, and let
Alice go first. Second, let the probability of hitting for each duelist be p > 0.
Once Alice takes her first shot, regardless of the outcome, she will have a
total probability of having won of p. Since Bob has had no opportunity to
put Alice out of her misery, Bob’s probability of winning will be 0 at the
start of the second round. Since Bob has a lower probability of having won
than Alice, he has the next go. After taking his first shot, Bob will have a
probability of winning of (1 — p) % p. This is still less than p, indicating that
he gets to shoot again. This goes back and forth until someone succumbs to
the their mortal coil.

As you can probably predict, there is a better way of determining the turn
order than just recalculating the total probability of victory after each shot
until someone dies. Let the turn order be defined by the sequence {a;}}
where a,, = 1 means that Alice shoots in round n and a,, = —1 means that
Bob shoots. The probability P(X,,) that a player X wins by round n is given
by

where S, x = {i < n | player X shoots in round i}. We get this since a
miss has probability 1 — p, so the probability of player X winning on round
n is p(1—p)™, since they not only have to hit, but every shot prior must have
missed. Then the probability of winning by round n is the sum of winning
on each round the player shoots in up to round n.

We define a sequence of functions f,,(¢) where ¢ = 1 — p such that

fn(Q) :an(zajqj)' (1)
=0

These functions can be used to determine the next term of the firing
sequence, since they relate the difference in the cumulative probability of
winning between Alice and Bob by round n.



fn(Q) = an(z ajqj)
=0

an i i
=0 >, d-p >, )
p 1€Sn, A €S, B

an
= ? ) (P(An) - P(Bn))

The next player’s shot is then found from the relation

{—an iff,(q) > 0
anp+1 =

an otherwise

(2)

since when f,,(¢) > 0 the current player has a greater cumulative proba-
bility of winning, indicating that the other player gets the next shot. In order
to reassure you that this sequence does converge, we will prove the following
proposition, and then it will be time to introduce to you the Thue-Morse
sequence!

Proposition 2.1. For each n € N, there is an € > 0 so that the sequence
{ai}7 is the same for all g € (1 —¢,1).

Proof. The proof is by induction. Since Alice always goes first, the base case
in which n = 0 is trivial. Assume by induction that for n > 0 that for all
q € (1 — €9, 1), the sequence {a;}}, is the same. a4 is determined using
(2) and fn(q), which is now fixed for all ¢ € (1 — €, 1) since the first n
coefficients do not depend on ¢g. Because f, is a polynomial of degree n, it
has at most n roots. Then we can always find 0 < €; < ¢y such that none
of its roots occur in (1 — €1,1). In this interval, f,, is nonzero, and does not
change sign regardless of ¢ € (1 — €1,1), meaning that by (2) ap4+1 is also
independent of ¢ inside this interval, completing the inductive step and the
proof.

O

3 Enter the Thue-Morse Sequence

The Thue-Morse sequence is a binary sequence that was discovered, among
other individuals, by Norwegian mathematician Axel Thue, who in 1906
found it without any desired goal for its utility [1]. In his work which would
become the start of what is known today as combinatorics on words, he



noted that any binary sequence with length of at least 4 must contain at
least one square, i.e. two matching sub sequences that are adjacent. Since it
was impossible to find an infinite binary sequence without a square, was it
also impossible to find an infinite binary sequence without a cube, in which
the same sub sequence repeats three times consecutively?

The answer to his question is the Thue-Morse sequence, an infinite, cube-
free, binary sequence of which here are the first twenty terms on the alphabet

{17_1}

1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,—-1,1,—1,1,1, —1...

However, it should be mentioned that there are numerous ways for the
Thue-Morse sequence to be defined. They are intimately related to the
binary representations of the natural numbers and can be computed by their
parities. Alternatively, they can be computed by the substitution

1—1,-1
-1—-1,1.

In fact, one of the most interesting uses of the Thue-Morse sequence was
related to chess. To prevent stalemates, there was a chess rule that would
state that a draw would occur when the same sequence of moves occurs
three times in succession. However, in 1929, Machgielis Euwe, a Dutch chess
grandmaster at the time, constructed the Thue-Morse sequence to show that
the rule still allowed the possibility of an infinite game, since the Thue-Morse
sequence is cube free. The rule has since been changed to call a draw when
the same board state occurs three times, eliminating this loophole.

For our purposes, we will use the following definition when discussing the
Thue-Morse sequence, from [4].

Definition 3.1 (The Thue-Morse Sequence). The Thue-Morse sequence
{t:}2, on the alphabet {1,—1} is defined by the following recurrences:
to =1,
to; = t;,
toir1 = (—1)ta;.



The following proposition from [4] and its corollary will also be useful for
our main theorem.

Proposition 3.1. The sequence {(t2;,t2i+1)}52, is the Thue-Morse sequence
on the alphabet {(1,—1),(—1,1)}.

Corollary 3.1. For any n € N, we have Z?ZBLI t; = 0.
We can now prove the major theorem that the sequence of turns converges
to the Thue-Morse sequence.

Theorem 3.1. The sequence {a;}2, as defined in Section 2 tends to the
Thue-Morse sequence (on the alphabet {1,—1}) as g — 1.

Proof. From Proposition 2.1, ¢ can always be taken arbitrarily close to 1,
and the sequence will be the same for the first n terms. The proof is by
induction again. In [2], the authors calculated for certain n what threshold
of probabilities fixed the first n terms of the sequence, by finding the roots
of the respective f,,(q)’s. They found that for n = 4, the first 4 terms of the
sequence were fixed for all ¢ € (0.67,1). Doing some basic calculations, we
see that the start of the sequence of turns is 1,—1, —1,1 where 1 is Alice’s
turn and -1 is Bob’s. Since these are equal to the first four terms of the
Thue-Morse sequence, we have satisfied our base cases.

For the inductive hypothesis, assume n > 2 and that the two sequences
agree for all ¢+ < n. We split the work into two cases.

Case 1: n = 2m is even. Consider g(q) = Z?:_Ol a;q*. Since the a; are
the Thue-Morse sequence, Corollary 3.1 implies that g(1) = 0. Since g is
continuous, and since we can take ¢ arbitrarily close to 1, we can ensure that
—1/2 < g(q) < 1/2 for all ¢ under consideration, and for our argument we
will restrict ¢ > (1/2)'/". From (1), we know that f,(q) = ¢" % g(q), so for
all ¢ under consideration near 1,

fala) = 4" £9(q) >1/2-1/2 > 0.
Therefore (2) mandates that a,11 = (—1)ay. Since n is even, by induc-
tion and the definition of the Thue-Morse sequence

anp+1 = (—1)an = (—1)tn = tn+1.

Case 2: n =2m+1 is odd. Since n is odd, Corollary 3.1 gives that
fn(1) = 0. Therefore



fula) = (¢ —1)g(q)

where g is a polynomial of degree 2m.

We will now show that g(q) = fn(¢?). From our inductive hypothesis
the sequence {a;}, matches the Thue-Morse sequence, s0 agi+1 = (—1)asg;
and a9; = a; which applies to all of the coefficients in our polynomial. Using
these,

2m+1

() = azmir D aid’
=0

m
2 2i+1
= agmi1 3 (a2iq” + azi14*")

1=0
= (—=Dazm Z(a%q% —azig*™*)
i=0
= (=1)agm(1 —q) Z a2iq
=0

= (¢— Dam Y_ ai( @)’

=0
= (q - 1)fm(q )

Since we can take ¢ arbitrarily close to 1, we can take it close enough
such that ¢ and ¢? are such that they are past the threshold for which all the
coefficients of {a; ?:Jrol are fixed. Additionally, ¢ < 1, so ¢ —1 < 0. Therefore
one of fn(q) and f,,(¢?) is positive, and the other must be negative. Now
using our result from (2), this means that for some j € {0,1}, we have that
ans1 = (=1Ya, and a1 = (—1)’Tta,,. From the inductive hypothesis,
the first n terms of our sequence agree with the Thue-Morse sequence, so

ant1 = (=1 ay = (=1 agmi1 = (=1)" M agn, = (=1)7ay, = am1.

Since am+1 = tm+1 = lopns1) = tn+1, We have successfully proven that
Gn4+1 = tnt1 and finished the inductive proof. O



4 The Fairest Sequence of Them All?

Now it begs the question - are our two duelists really getting their fairest
shot at survival? In general, is there a turn sequence such that each duelist’s
chance of survival is as close to 1/2 as possible, regardless of the probability
of hitting? Brought up in [3|, we are looking for a sequence b = {b;}i>0 of
+1’s that results in the bias function Dy (p) vanishing as p — 0 as fast as
possible, where

Dy (p) = P(A survives) — P(B survives). (3)

Drawing from our earlier representation (1) of the difference in proba-
bility of players A and B winning by round n, we can see that to get the
bias function to disappear as quickly as possible, we want our sequence b to
be so that the power series > 7, b;z' is a close approximation to the zero
function for z near 1.

pY_big =p lim by fu(g)
=0

b2
= le Por (P(A wins by round n) — P(B wins by round n))
n—oo p
= 1i_>rn [P(A survives round n)) — P(B survives round n))]
= P(A survives) — P(B survives)
= Dy(p).

While the Thue-Morse sequence does provide a good approximation of
zero, it only does so within exp(—c(logp)?). In [3], Gunturk proved that
there exists a better 1 sequence that approximates the zero function within

exp(—¢/p).

However, the Thue-Morse sequence still does have some good things going
for it in terms of the zero function. It turns out that as p — 0, the bias
function of the Thue-Morse sequence is exactly zero. In other words, both
players have equal probability of surviving the duel.

Lemma 4.1. For any probability p < 1/2, the sequence of coefficients {a;}52,,
obtained from the greedy Galois duel defined in Section 2 with hitting proba-
bility p satisfies



i .
> aid' =0,
=0

where ¢ =1 —p. Let S, x = {i € N: player X shoots in round ¢ given
probability of hitting p} and this is equivalent to

Y d=) d. (4)

1€5p, A 1€S5,, B

Proof. Let p < 1/2, so that ¢ > p. We note that

Since the probabilities of each player winning the duel by round n, P(A,,)
and P(B,,), cannot decrease as n increases, and since their sum tends to 1,
we only need to prove that neither player’s probability exceeds 1/2. This
will show that the probability of each player surviving is equal, so that

Sy d-o

iESp,A iESp,B

Suppose not. Without loss of generality, let Alice be the player for which
the cumulative probability of having won the duel P(A,,) is greater than
1/2 in round n. Let a = P(A,—1) and b = P(B,_1). Since Alice shoots
in round n, by the rules of the game b > a. P(4,,) = a+ pg"™ > 1/2, and
since P(A,) +P(B,) = 1 for all n, Bob’s probability will always be less than
Alice’s from round n + 1 and on.



Therefore

However, this results in a contradiction since
1= lim (P(4,) +P(By)) >2(a+pg") > 1
n—o0

and we have proven the lemma. ]

This lemma provides a fascinating result. From (4), we can see that

To get an idea of what this means, here is a specific numerical example.
Let p = 1/16, implying that ¢ = 15/16 and (2p)~1 = 8. Then we have that

15, 16, _;
D ML S
. 16 , 15
i€Sp.B 1€Sp. B
If we let d = {d;}i>0 be the sequence such that d; = 1 if i € S, p and
d; = 0 otherwise, then this means that d; is a positional binary numeral
expansion of 8 using "base" 16/15. For a more precise definition of what
an expansion means, an erpansion of x € RT in the base B > 1 (not
necessarily an integer) is any right-infinite string of the form

CpCp—1.--C1€C0.C—1C—3...

where 7 is some nonnegative integer, and for each k < n, ¢,, € {0,1, ..., | 8]},
and
(o)
T = Z eniB"F.
k=0



This can be an infinite string or a finite string, which occurs when ¢; = 0
for all j < some —N, in which we write

CpCp—1...C1€C0.C—_1C_92...C_N.

These expansions were initially introduced by Rényi, called " 5-expansions"
[5]. Thus the = 16/15 expansion we obtained for 8 is

.0110100110010110100101...

Even using just the first 40 digits, we obtain 7.394774. With only 70
digits we obtain an estimate of 7.912343, which is within 1% of 8.

5 Conclusions and Possible Generalizations

These results and their connection to the Thue-Morse sequence are impres-
sive, but a natural question is can this be expanded to a greater numbers of
players? The Thue-Morse sequence certainly does have a generalized defini-
tion [1], based on the definition from the binary expansions of the natural
numbers.

Definition 5.1 (The Generalized Thue-Morse Sequence). The generalized
Thue-Morse sequence is ty ,, = (sg(n) mod m),>o for fized integers k > 2
and m > 1.

Using this definition, our version of the Thue-Morse sequence is tg .
These new Thue-Morse sequences also have the property that they are over-
lap free, as long as m > k. For example, here is t3 3

012120201120201012201012120120...

Now lets suppose that Candide joins Alice and Bob in what would become
a Greedy Galois Standoff. Keeping in line with the original turn ordering
criteria, here are the rules of this three person "truel":

e The player whose turn is next is the player with the current least
probability of having won the duel up to that point.

e In the case that two or more players have the least probability of having
won the duel up to that point, turn precedence follows in the order of
Alice, then Bob, and finally Candide. Thus, Alice goes first.

10



e For the sake of simplicity, each participant has brought a shotgun to
the truel. If anyone makes their shot (with probability p), then that
person hits both their opponents and promptly wins. Because of this,
the calculation for determining if a player has won up to their current
turn is the same as for a two person duel, namely that:

P(Xn)=p» (1-p)
Sn,x

where P(X,,) is the probability that player X wins by round n and
Sn,x = {i <n | player X shoots in round }.

Following these rules, we get that the first 30 turns for the truel between
Alice, Bob and Candide in which p = 0.001 and p = 0.000001 respectively is

(p = 0.001) 012210210012120021021120210012...
(p = 0.000001) 012210210012120021210012210102...

where 0 indicates that it is Alice’s turn, 1 indicates Bob’s turn and 2
Candide’s. We can see that the sequence does start to converge for smaller
probabilities still, and that as it converges every player has the same number
of turns after 3k rounds, for positive integers k. We can see that this se-
quence is not square-free, as it contains the square "210210" in the first nine
characters, but it is unclear if it will converge to a sequence that features
the cube-free property of the Thue-Morse sequence.

Compared to the Thue-Morse sequence t33 we see that they are quite
different. Both sequences have that every three characters some ordering of
0 1 and 2 appear. However, I’d like to draw parallels between the truel turns
and the original Thue-Morse sequence tg o since it features an interesting
alternation property. Much like how Proposition 3.1 shows that every pair
of elements (t2;,%2i4+1) of to 2 are opposite, I conjecture that the sequence of
turns in the truel has the following property.

Conjecture 5.1. Given that {j}§° is the sequence of turns for our truel, for
any positive integer k

Jek = J6k+5
J6k+1 = Jok+4
J6k+2 = J6k+3-

11



While these rules for a three person duel do not produce the Thue-Morse
sequence, other rule sets could provide a better approach. A likely problem
with the current rules is that with three players, it is unclear how to account
for hitting one of the two players. When any single hit results in a win for the
current player, it becomes a game in which each player has twice the number
of opportunities to lose than to win, and becomes a more lopsided version of
a two player duel. Perhaps a modification to these rules in which a player
aims to shoot only the person who would be going next (or alternatively the
person with the next lowest probability of winning).

The Thue-Morse sequence and fair turn ordering will always be linked
together. It naturally produces a fair distribution between two players, even
when the value of each turn is known to be different. The Thue-Morse se-
quence produces a turn order in which players "take turns taking turns".
Even in a pistol duel with equal probabilities of hitting, going first has a
distinct advantage over going second when players alternate turns normally.
When players take turns shooting first, both players’ chances of success be-
come more similar. And when the players follow this pattern of alternation
recursively, the Thue-Morse sequence appears.

12
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