
Chasing the Bulge

Sebastian Gant

5/19/2017

Contents

1 Precursers and Motivation 1

2 The Reduction to Hessenberg Form 3

3 The Algorithm 5

4 Concluding Remarks 8

5 References 10

Introduction

In the early days of the computer, numerical analysts faced many difficult tasks
that nowadays we take for granted. One such task was that of computing the
eigenvalues and eigenvectors of a square matrix over the real or complex num-
bers. Slow processing speeds and small memories made finding an economic and
reliable method for computing eigenvalues a difficult task. In 1959, John Fran-
cis formulated and tested his implicitly shifted QR algorithm, which turned the
eigenvalue problem into an everyday computation. Versions of his algorithm
are used in mathematical computation programs today. This paper is a sur-
vey of David S. Watkin’s article “Francis’s Algorithm” [5], and serves as an
introduction to the algorithm.

1 Precursers and Motivation

It is no surprise that the history of eigenvalue computation is closely tied
to that of computing the roots of a polynomial. In linear algebra, it is gener-
ally taught to factor the characteristic polynomial to find eigenvalues. We have
fomulae and simple strategies for finding eigenvalues of 2 × 2, 3 × 3, and 4 × 4
matrices. But, as Abel proved in 1824, there is no direct method for finding the
roots of polynomials of degree 5 or higher. Such methods instead are iterative.

1

Moreover, zeros of polynomials are very sensitve to small changes in the coef-
ficients, making this method challenging in the field of numerical analysis (this
can be seen for zeros of order greater than 1).

Francis knew about the work of Heinz Rutishauser. Under the direction
of Eduard Stiefel, Rutishauser set out to solve the following problem: given a
matrix A, determine its eigenvalues from a sequence of moments

sk = yTAkx

for k = 0, 1, 2, ... and arbitrary vectors x, y. The sks can be used to define a
meromorphic function f by its power series at 0,

f(z) =

∞∑
k=0

skz
k

where the poles of f are given exactly by the reciporacles of the eigenvalues of
A as follows [1]. Let

f(z) = yT (I − zA)−1x

where we define A to be an n×n symmetric matrix (AT = A) so that A is diag-
onalizeable and there exists an orthonormal basis of eigenvectors corresponding
to real eigenvalues of A. Then A = QΛQ−1 where Λ is the diagonal matrix
with eigenvalues λi down the diagonal, and Q is the matrix with orthonormal
eigenvectors of A in its columns. The matrix Q is thus unitary (Q−1 = QT).
If we let x = y = e1, where e1 is the vector with 1 in its first entry and 0s
elsewhere, then

f(z) = eT1Q(I − zΛ)−1QT e1 =

n∑
j=1

(q1j)
2

1− zλj

where q1j is the first entry of the jth eigenvector of A. Here we can see that
the poles of f occur when z = 1/λi.

Rutishauser designed the quotient-difference algorithm to solve this problem
(See [2] or [3] for a detailed discussion). But again, the poles of a meromorphic
function are sensitive to small changes in the coefficients of f . This eventu-
ally led to Rutishauser’s formulation of the LR algorithm, on which the QR
algorithm is heavily based.

The Basic QR Algorithm

John Francis and Vera Kublanovskaya discovered the basic QR algorithm
independently. Rutishauser’s LR algorithm relies on factoring the matrix into
the product of two triangular matrices. The QR algorithm instead factors A
into the product of a unitary and an upper trianglular matrix. The following
theorem guarentees the existence of such a factorization.

2

Theorem 1. Let A ∈ Mn×n. There is unitary matrix Q with orthonormal
columns and an upper triangular matrix R such that A=QR. If A is nonsingular,
then R may be chosen so that all of its diagonal entries are positive. In this
case, the factorization is unique.

A proof is given in [4], and the factorization is similar to the Gram-Schmidt
process. If A is real, then all of the computations can be carried out in real
arithmetic, so that Q and R are real. If we reverse the factors, we have

A = QR A1 = RQ

Where A1 = Q−1AQ. So A is similar to A1 with Q unitary. Thus, A and A1

share eigenvalues. We can iterate the process to get

Ak−1 = QkRk Ak = RkQk

Assuming that the eigenvalues are of distinct modulus, the sequence {Ak} tends
to a limit in (possibly block) upper triangular form, where we can read off the
eigenvalues down the diagonal. If the eigenvalues do not have distinct modulus,
then cylcing can occur, and the sequence will not tend to a limit. In order to
speed up the rate of convergence, we can incorporate shifts in the following way:

Ak−1 − ρkI = QkRk Ak = RkQk + ρkI (1)

Where I is the identity matrix. Again, the Aks are all unitarily similar. A good
choice in ρk is a close approximation to an eigenvalue. So, if we have complex
eigenvalues for a real matrix, we would need to perform complex shifts and
carry out the operation in complex arithmetic. Alternatively, if we made the
first similarity transformation A 7→ A1 with complex shift ρ, and the second,
A1 7→ A2 with ρ, the resulting matrix A2 is real again. In the limit, the
eigenvalues are revealed in conjugate pairs from the 2 × 2 blocks down the
main diagonal of a block triangular matrix.

In trying to find a way to get directly from A to A2, Francis discovered his
implitly shifted QR algorithm, carried out in real arithmetic. Strangely, the
algorithm does not resemble (1) in a direct way. In his classes at Washington
State University, Watkins has considered bypassing (1) and teaching Francis’s
algorithm straightaway [5].

2 The Reduction to Hessenberg Form

Here we introduce some machinary to help us understand and describe Fran-
cis’s algorithm.

Given two distinct, nonzero vectors x,y ∈ Rn with the same Euclidean norm,
let S denote the hyperplane orthogonal to the vector x−y that passes through
the origin. We can think of a linear transformation Q that maps vectors to the
other side of S like the image of a mirror. Then x 7→ y and y 7→ x under Q.
The matrix corresponding to the linear transformation is thus invertible with
Q = Q−1, and unitary as it preserves norms. We are ready for the following
theorem:

3

Theorem 2. Let x be a nonzero vector. Then there is a reflector Q such that
Qx = (±‖x‖2) e1.

Surely, given x, let

y =


±‖x‖2

0
...
0


Since x and y share the same norm, there is a reflector Q that maps x to y and
vice versa.

With reflectors, we can perform similarity transformations on a matrix A
to put A in what is called Upper Hessenberg form. An upper Hessenberg
matrix satisfies aij = 0 if i > j + 1. This resembles upper triangular form but
with one more set of nonzero entries underneath the main diagonal.

Theorem 3. Every A ∈ Mn×n is orthogonally similar to an upper Hessenberg
matrix:

H = Q−1AQ

Here we will give an outline of the proof; the details can be found in [6]. We
construct Q as the product of n − 2 reflectors in the following way. Write the
first reflector, Q1, in the form

Q1 =

[
1

Q̃1

]
where empty entries represent 0s and Q̃1 is an (n − 1) × (n − 1) reflector such
that

Q̃1


a21
a31
...
an1

 =


α
0
...
0


Then

Q1A =

[
1

Q̃1

]
a11 a12 · · · a1n
a21 a22
...

. . .

an1 ann

 =



a11 a12 · · · a1n

α ∗
...

0 ∗
. . .

...
...

...
...

0 ∗ · · · ∗


Where “∗” denotes a possibly nonzero entry. Note that the matrix on the right
has zeros from the third column onwards as desired. All that is left for the

4

similarity transformation is to multiply on the right by Q−11 = Q1:

a11 a12 · · · a1n

α ∗
...

0 ∗
. . .

...
...

...
...

0 ∗ · · · ∗


[
1

Q̃1

]
=



a11 ∗ · · · ∗

α ∗
...

0 ∗
. . .

...
...

...
...

0 ∗ · · · ∗


which preserves the desired zeros entries. We can repeat this process with
another reflector of the form

Q2 =

1
1

Q̃2


so that Q2Q1AQ1 and Q2Q1AQ1Q2 have zeros down the second column from
the fourth row onwards. Repeating this process with n−2 reflectors, as the last
two columns of a Hessenberg Matrix still have nonzero entries in the nth row,
we get a matrix of the form

Qn−2 · · ·Q2Q1AQ1Q2 · · ·Qn−2

Letting Q = Q1Q2 · · ·Qn−2 we reach the desired result. As Watkins notes, the
Hessenberg form is as close as we can get to an upper triangular matrix using a
direct method like the one above. This is in accordance with the fact that there
is no direct method that gives an explicit solution to the roots of a polynomial of
degree 5 or higher. Also note that if we start with an upper Hessenberg matrix
in the basic QR algorithm described above, all terms in the sequence would be
upper Hessenberg as well, and the matrix multiplication would be much simpler.

3 The Algorithm

Now that we know we can put any matrix into upper Hessenberg form via
a set of unitary transformations, suppose A is in such form. Suppose too that
aij 6= 0 for i = j + 1. If not, we could break up the matrix into two smaller
block matrices and begin from there. We willl stick to the case where A is
real. To begin, pick m shifts ρ1, ρ2, . . . , ρm. Again, we want to pick shifts that
approximate eigenvalues well. Francis chose m = 2 and picked ρ1, ρ2 to be the
eigenvalues of the 2× 2 block matrix in the bottom right corner of A. It could
be that this matrix gives complex shifts, in which case we can choose shifts in
conjugate pairs, so that the operations are still carried out in real arithmetic.
If we consider the polynomial

p(z) = (z − ρm)(z − ρm−1) · · · (z − ρ1)

Then with good choices of ρk, |p(λk)| will be small (where λk is the eigenvalue
closely approximated by ρk. It is hard to make precise the notions of “good/bad”

5

and “small/large” here, so the reader can consider this to be more of a thought
exercise). It follows that m of the |p(λk)|s will be small, while n −m of them
will be large. We can index the λks in the following manner:

|p(λn)| ≤ |p(λn−1)| ≤ · · · ≤ |p(λ1)|

so that λn, λn−1, . . . , λn−m+1 are well approximated, while λn−m, λn−m−1, . . . , λn
are not. It follows that |p(λn−m+1)| < |p(λn−m)| so that∣∣∣∣p(λn−m+1)

p(λn−m)

∣∣∣∣� 1

Consequently, the entry an−m+1,n−m in the subdiagonal converges to zero after
iterations of Francis’s algorithm. The zero in the subdiagonal greatly simplifies
the problem, as it allows us to break the matrix into the block form:

A =

[
A11 A12

0 A22

]
where A22 is m×m and A11 is (n−m)× (n−m) and upper Hessenberg. With
m = 2 or m = 3, the eigenvalues of A22 are easy to compute and correspond to
eigenvalues of A. We can then repeat the process on the matrix A11. This is
the general outline of Francis’s algorithm. We will now go into the details.

With shifts ρ1, . . . , ρm in hand, let

p(A) = (A− ρmI)(A− ρm−1I) · · · (A− ρ1I) (2)

As we will soon show, we do not actually need the whole matrix p(A), just
the first column. Let x denote this column, then x = p(A)e1. With A upper
Hessenberg, we note that (A− ρ1I)e1 has only two non-zero entries in the first
two positions, so (A− ρ2I)(A− ρ1I)e1 has zeros at the 4th entry and following.
Thus, x = p(A)e1 has non zero entries from the (m + 1)th positions onward.
In all cases, x is real. If we consider the vector x̃ ∈ Rm+1 consisting of the
nonzero entries in x, Theorem 2 guarentees the existence of a reflector Q̃0 such
that Q̃0x̃ = αe1 where α = ±‖x̃‖2. Now, let Q0 be the reflector[

Q̃0

I

]
where Q0 is n×n. Then Q0x = α−1x. Since e1 picks out the first column of Q0,
this column is proportional to x. To begin a unitary similarity transformation,
consider Q−10 A = Q0A. Because of the dimension of the block Q̃0 in Q0, only
the first m + 1 rows of A are affected. Then, multiplying on the right by Q0

affects only the first m + 1 columns. This creates a ”bulge” in the original
Hessenberg matrix

6

This can be illustrated with an example. Suppose n = 6 and m = 2. Then

Q0A =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1
1

1




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗


And

Q−1
0 AQ0 = (Q0A)Q0 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

I

 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗


Here we color the bulge red. Note that row (m + 2) now has nonzero entries
after this first similarity transformation, while there is a large block of 0s un-
derneath row (m + 2). This is in accordance with the fact that am+2,m+1 6= 0
in the original Hessenberg matrix. Now, by Theorem 3, we are guarenteed a set
of unitary similarity transformations to return the matrix Q0AQ0 into upper
Hessenberg form. For our first bulge chasing matrix,

Q1 =

[
1

Q̃1

]
For any matrix, we would need Q̃1 to act on rows 2 through n, but because A
has 0s in the fist column after row (m + 2) we only need Q̃1 to act on rows 2
through (m+ 2). Thus, Q̃1 is an (m+ 1)× (m+ 1) reflector such that

Q̃1


a21
a31
...

am+2,1

 =


α
0
...
0


Q1 then has a 1 in the first row and column, an (m+ 1)× (m+ 1) matrix in a
block on the diagonal (Q̃1), and the identity in the bottom right corner:

Q1 =

1

Q̃1

I


The product Q1Q0AQ0 establishes 0s in the first column from row 3 onward.

If we multiply again on the right by Q−11 = Q1 to complete the transformation,
the columns 2 through m+2 are affected, preserving the 0s in the first column as
desired. Consequently, the similarity transformation translates the bulge down
1 entry, and 1 entry to the right.

Performing n − 2 of these transformations “chases the bulge” down, just
below the subdiagonal, and out of the matrix through the bottom right corner.
This completes the first iteration of Francis’s algorithm. We can see this bulge

7

chasing with our handy n = 6,m = 2 example. In this case, Q̃1 is a 3×3 matrix,
so that

Q1 =


1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

I


Then

Q1(Q0AQ0) =


1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

I




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

 =


∗ ∗ ∗ ∗ ∗ ∗
α ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗


And completing the similarity transformation,

(Q1Q0AQ0)Q1 =


∗ ∗ ∗ ∗ ∗ ∗
α ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗




1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

I

 =


∗ ∗ ∗ ∗ ∗ ∗
α ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗


In this case, 3 more similarity transformation would push the bulge out, resulting
in the upper Hessenberg matrix

A = Q4Q3Q2Q1Q0AQ0Q1Q2Q3Q4 = Q−1AQ

for Q = Q0Q1Q2Q3Q4. Watkins [5] advocates for renaming what is commonly
known as the “Implicit QR algorithm” to “Francis’s algorithm” because there
are no QR decompositions. The common name is misleading in this way. For the
next iteration, we can pick some possibly different shifts ρ1, . . . , ρm. Again, with
good choices in our ρks, we can get more rapid convergence of an−m+1,n−m → 0.
This allows us to “deflate” the problem into solving for the eigenvalues of two
block matrices separately, one of which is m×m, the other (n−m)× (n−m).
With small m = 2 or m = 3, we get two or three eigenvalues easily.

4 Concluding Remarks

Subspace iteration lies at the core of Francis’s algorithm [5]. If we pick a
k-dimensional subspace S of Rn, and build a sequence of subspaces through
multiplication by the matrix A

S, AS, A2S, . . .

Where AjS = {Ajx : x ∈ S}. For simplicity, suppose all of the terms in the
sequence have dimension k. We also assume that A is diagonalizeable with n

8

linearly independent eigenvectors v1, v2, . . . , vn (n > k). Sort the corresponding
eigenvalues so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. So for any vector x ∈ S,

x = c1v1 + c2v2 + · · ·+ cnvn

where cj ∈ R. And because A is linear,

Ajx = c1λ
j
1v1 + · · ·+ ckλ

j
kvk + ck+1λ

j
k+1vk+1 + . . . cnλ

j
nvn

Now, if |λk| > |λk+1|, the components c1λ
j
1 + · · ·+ ckλ

j
k in directions v1, . . . , vk

will grow much faster than the components in directions vk+1, . . . , vn. As a
result, the sequence above will converge to the k-dimensional subspace spanned
by v1, . . . , vk. But if |λk| is not much larger than |λk+1|, so that the ratio
|λk+1|/|λk| is close to one, the convergence is somewhat slow. We can replace
the matrix A by p(A) as in (2), which is a polynomial of degree m. Now the rate
of convergence, is dependent on the ratio |p(λk+1)|/|p(λk)|. Again, this ratio is
small with shifts ρ1, . . . , ρm that approximate eigenvalues closely.

Moreover, we note that the “bulge creating” matrix Q0 was created so that

Q0e1 =
1

α
x =

1

α
p(A)e1

Each of the Qks for k = 1, 2, . . . , n − 2 were constructed to have e1 in the first
column. Denoting Q = Q0Q1 · · ·Qn−2 as above, we have

Qe1 = Q0Q1 · · ·Qn−2e1 = Q0e1 =
1

α
p(A)e1

so that the first column of Q is proportional to the first column of p(A). This
saves a lot of computation, as we only needed to calculate the first column of
p(A), which is m matrix-vector products where the matrices (A−ρkI) are upper
Hessenberg.

As we have seen, the operations carried out through iterations of Francis’s
algorithm are economical because A is upper Hessenberg. Working with these
special matrices has made Francis’s algorithm competitive and relevant almost
60 years after its formulation.

9

5 References

1. G.H. Golub, G. Meurant. (2010). Matrices, Moments and Quadrature
with Applications, pp. 36-38. Princeton, New Jersey: Princeton Univer-
sity Press.

2. M. Gutknecht and B. Parlett. From qd to LR, or, How were the qd and
LR algorithms discovered? IMA Journal of Numerical Analysis, 2009.
http://www.sam.math.ethz.ch/ mhg/pub/GutPar-IMA.pdf. Retrieved 16
May 2017.

3. P. Henrici. (1974). Applied and Computational Complex Analysis, Vol. 1,
pp. 608-621. New York, New York: John WIley & Sons, Inc.

4. R. Horn, C. Johnson. (1985). Matrix Analysis, pp. 112-115. New York,
New York: Cambridge University Press.

5. D. S. Watkins. Francis’s Algorithm. the American Mathematical Monthly,
vol. 118, no. 5, 2011, pp. 387-403. JSTOR www.jstor.org/stable/
10.4169/amer.math.monthly.118.05.387. Retrieved 15 May 2017.

6. D.S. Watkins. (2002). Fundamental Concepts of Matrix Computations
2nd ed., pp. 350-351. New York, New York: John Wiley & Sons, Inc.

10

