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1. Abstract

This paper is a summary by a math student of The Game of Hex and The
Brouwer Fixed-Point Theorem by David Gale. Section 2 introduces the
game of Hex. Section 3 dives into a theorem about the game that in section
4 is used to show the equivalence of the Hex Theorem and Brouwer Fixed-
Point Theorem. In the final section, the Hex Theorem is generalized from 2
to n dimensions, where we develop an algorithm for finding approximate fixed
points of continuous mappings.

2



2. The Game of Hex

2.1 Introduction

Hex is traditionally a 2-player game invented by the Danish engineer and poet
Piet Hein in 1942 and rediscovered at Princeton by John Nash in 1948. It was
produced commercially for many years but has been out of print for many years
in the US. In other countries, however, it is still very popular.

2.2 Setup and Rules

Figure 2.1 below shows a typical 11 × 11 Hex board. The two players are
denoted by either the letter x or o, and the players move alternatively. Play
is very simple, and the players take turns marking any previously unmarked
hexagon with an x or o respectively. The game is won by the x- (resp. o-)
player if he/she has succeeded in marking a connected set of tiles which joins
the two boundary regions X and X ′ (resp. O and O′). A set S of tiles is
determined to be “connected” if any two members h and h′ of S can be joined
by a path P = (h = h1, h2, · · · , hm = h′) where hi and hi+1 are adjacent.

Figure 2.1 denotes a game in which neither player has won and it the o-
player’s move, but the x-player has a guaranteed win in 3 moves if he/she plays
on the shaded tiles. The potentially winning connected set is indicated by the
tiles with underlined x’s.
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Figure 2.1: A garden-variety Hex game
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3. Hex Theorem

One appealing feature of Hex is that it can never end in a draw. This is because
one player can block the other player only by completing his/her own chain.
More precisely,

Theorem 1 (Hex Theorem). If every tile of the Hex board is marked either x or
o, then there is either an x-path connecting X and X ′ or an o-path connecting
O and O′.

First, let’s think about this theorem intuitively. We can imagine that the X-
regions are portions opposite the banks of the river “O” (as depicted in Figure
2.1), and that player x is building a dam by putting down “stones”. It is clear
that if player x will be successful in damming the river if and only if he has
placed his stones in a way that allows him to walk from one side (X) to the
other (X ′). In addition, one can strengthen the Hex Theorem by appending at
the end of the statement “but not both”. However, although intuitive (if player
x succeeds in constructing a path from X to X ′, he will have dammed the river
and prevented any flow from O to O′), it is much harder to prove. The analysis
to follow and the relation to the Brouwer Theorem depends only on the no-draw
property, so that is what we will prove below.

Proof. Suppose the board has been covered by x’s and o’s as in Figure 3.1. X-
face will denote either a tile marked x or one of the regions X or X ′. O-face is
defined analogously.

We consider the edge graph Γ of the Hex Board, which includes additional
edges ending in the vertices marked u, u′, v, and v′ to separate the four boundary
regions, also shown in Figure 3.1. We now present an algorithm for finding a
winning set on the completely marked board: We make a tour along Γ, starting
from the vertex u and following the simple rule of always proceeding along an
edge which is the boundary between an X-face and an O-face. The edge from
u has this property since it separates X and O. Note further that this tour
determines a unique path within Γ; suppose one has proceeded along some edge
e and arrived at vertex w. Then two of the three faces incident to w are those
of which e is the common boundary, so one is an X-face and one is an O-face.
The third face is arbitrary, but in either case there is exactly one edge e′ which
satisfies the touring rule. Figure 3.1 shows this fact (in the next sections, the
situation will be generalized so that no picture will be necessary).
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Before we continue, we show an important result from graph theory:

Lemma 2 (Graph Lemma). A (finite) graph whose vertices have degree at most
two is the union of disjoint subgraphs, each of which is either (i) an isolated
vertex, (ii) a simple cycle, (iii) a simple path.

Proof. By structural induction on the number of edges, it is easy to see that
the three options of subgraphs above are the only ones that are possible.

If we consider only the subgraph Γ′ of Γ consisting of edges which separate
an X-face from an O-face, then the hypothesis of the Graph Lemma is satisfied
and the conclusion shows that our tour of Γ will not cycle. In other words, our
touring rule guarantees that we will never revisit any vertex. This, combined
with the fact that there are a finite number of vertices, gives us the result that
the tour must terminate; but the only possible terminals are the vertices u′,
v, and v′. Now note that each of these three vertices is incident to one of the
regions X ′ or O′. This guarantees the existence of a connected path of either
x’s or o’s across the terminal points, which in turn guarantees a winner of the
game, which is what we wanted to show.

Figure 3.1 shows the graph Γ′ for the completely marked board where player
o has won.
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Figure 3.1: A garden-variety completed Hex game
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4. Equivalence of the Hex
and Brouwer Theorems

4.1 Brouwer Fixed-Point Theorem

In this section, we state the theorem at hand. Then, we will show that the Hex
theorem described earlier is equivalent to the stated theorem.

Theorem 3 (Brouwer Fixed-Point Theorem). Let f be a continuous mapping
from the unit square I2 into itself. Then there exists x ∈ I2 such that f(x) = x.

4.2 New Representation and Some Notation

For analytic purposes it is convenient to use a different but equivalent model for
the Hex board. When John Nash rediscovered the game in 1948, he thought of it
as being played on a checkerboard where two squares were considered adjacent
if they were next to each other horizontally, vertically, or along a positively
sloping diagonal. It can easily be seen that this is equivalent to the original
hexagon arrangement. This representation can also be easily “arithmetized” in
a way which can generalize to n dimensions. We present some notation for this
alternative representation of the board.

– Zn denotes the lattice points of Rn

– For x ∈ Rn, |x| = maxixi

– For x 6= y ∈ Rn, x < y if xi ≤ yi for all i

– The points x and y are called comparable if x < y or y < x

– The (two-dimensional) Hex board Bk of size k is a graph whose vertices
consist of all z in Z2 with (1, 1) ≤ z ≤ (k, k).

– Two vertices z and z′ are adjacent (span an edge) in Bk if

(i) |z − z′| = 1

(ii) z and z′ are comparable
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Figure 4.1 gives the graphical representation of a Hex board of size 5. The
boundary edges are labelled with the points of the compass (N, S, E, W) and
consist of the vertices z = (z1, z2) of Bk with z2 = k, z2 = 0, z1 = k, and z1 = 0
respectively. The horizontal player tries to make a path connecting E and W,
while the vertical player tries to connect N and S. We can now restate the Hex
Theorem:

Theorem 4 (Hex Theorem). Let Bk be covered by two sets H and V . Then
either H contains a connected set meeting E and W or V contains a connected
set meeting N and S.

4.3 Equivalence of Hex and Brouwer

4.3.1 “Hex” implies “Brouwer”

First, we show that “Hex” implies “Brouwer”. In other words, that the result
of the Hex Theorem can be used to prove the Brouwer Fixed-Point Theorem.

Theorem 5. “Hex” ⇒ “Brouwer”

Proof. Let f : I2 → I2 be given by f(x) = (f1(x), f2(x)). From compactness
of I2 it suffices to show that for any ε > 0 there exists x ∈ I2 such that
|f(x) − x| < ε. By uniform continuity of f we know that, given ε > 0, there is
a δ > 0 such that δ < ε and |x− x′| < δ ⇒ |f(x)− f(x′)| < ε.

Now consider the Hex board Bk where 1/k < δ. We will define four subsets
H+, H−, V +, and V − of Bk as follows:

H+ = {z|f1(z/k)− z1/k > ε}
H− = {z|z1/k − f1(z/k) > ε}
V + = {z|f2(z/k)− z2/k > ε}
V − = {z|z2/k − f2(z/k) > ε}

where z = (z1, z2). Intuitively, a vertex z belongs to H+, H−, V +, and V −

according as z/k is moved by f at least ε units to the right, left, up, or down,
respectively.

The theorem will be proved if we can show that these four sets do not cover
Bk; if vertex z lies in none of them, then |f(z/k) − z/k| < ε, which by the
compactness of I2 is enough to obtain f(z/k) = z/k. The key observation is
now that the disjoint sets H+ and H− (V + and V −) are not contiguous (in other
words, the two sets in question do not have any pairwise adjacent elements).
Explicitly, that means that if z ∈ H+ and z′ ∈ H−, then

f1(z/k)− z1/k > ε

and
z′1/k − f1(z′/k) > ε
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Figure 4.1: Graphical representation of size 5 Hex board
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Adding these two gives

f1(z/k)− f1(z′/k) + z′1/k − z1/k > 2ε

but by the choice of δ and k, we have that z′1/k − z1/k < δ < ε, so

z1/k − z′1/k > −ε

Adding the two above inequalities gives

f1(z/k)− fz(z′/k) > ε

The above shows that z and z′ are not adjacent; if they were we would have
|z/k − z′/k| = 1/k < δ, which contradicts the choice of δ.

Similarly, V + and V − are not contiguous. Now, we let H = H+ ∪ H−,
V = V + ∪ V −, and we suppose that Q is a connected set lying on H. From the
previous paragraph Q must lie entirely in H+ or H−, because they are disjoint.
But note that H+ cannot meet E since f maps I2 to itself, so no point on the
right boundary can be mapped to the right. Similarly, H− does not meet W,
so Q cannot connect E and W. Similarly, V contains no connected set meeting
both N and S. So by the Hex Theorem, the sets H and V do not cover Bk,
proving the existence of the Brouwer Fixed-Point.

4.3.2 “Brouwer” implies “Hex”

The reverse of the above. This proof makes use of the fact that the Hex board
Bk gives a triangulation of the k×k square I2k in R2. In other words, each point
of I2 is uniquely expressible as a convex combination of some set of (at most
three) vertices, all of which are pairwise adjacent. These vertices are the edges
and triangles in Figure 4.1.

In addition, we use the fact that any mapping f from Bk into R2 extends
to a continuous piecewise linear map f̂ on I2k . Specifically, if x = λ1z

1 +
λ2z

2 + λ3z
3 where the λi are non-negative numbers summing to 1 and the zi

are the uniquely determined points used in the triangulation, then by definition,
f̂(x) = λ1f(z1) + λ2f(z2) + λ3f(z3).

Theorem 6. “Brouwer” ⇒ “Hex”

Proof. First, we assume that Bk is partitioned by two sets H and V . We define
four sets as follows: let Ŵ be all vertices connected to W by an H-path, and
let Ê = H − Ŵ . Let Ŝ be similarly defined as all vertices connected to S by a
V -path, and let N̂ = V − Ŝ. By definition, Ŵ and Ê, and N̂ and Ŝ, are not
contiguous.

For contradiction, assume there is no H-path from E to W and no V -path
from N to S. Now let e1 and e2 be the unit vectors of R2 and define f : Bk → Bk

by

f(z) =


z + e1, z ∈ Ŵ
z − e1, z ∈ Ê
z + e2, z ∈ Ŝ
z − e2, z ∈ N̂
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Each of the four cases of f(z) can be shown to satisfy f(z) ∈ I2k . For the case
of z + e1, we have

z + e1 6∈ Bk ⇔ z ∈ E

but by our assumption that there is no H-path from W to E, we can see that
Ŵ does not meet E. Similarly for the other 3 cases, we have that Ê does not
meet W, N̂ does not meet S, and Ŝ does not meet N.

We now extend f with our piecewise linear map (which we know exists) to
all of I2k to obtain the contradiction by showing that f has no fixed point. We
are able to do this through the following lemma:

Lemma 7. Let z1, z2, z3 be vertices of any triangle ∆ in R2 and let ρ̂ be the
simplical (piecewise linear) extension of the mapping ρ defined by ρ(zi) = zi+vi

where v1, v2, v3 are given vectors. Then f has a fixed point if and only if 0 lies
in the convex hull of v1, v2, v3.

Proof. Let x = λ1z
1 + λ2z

2 + λ3z
3. Then ρ̂(x) = λ1(z1 + v1) + λ2(z2 + v2) +

λ3(z3 + v3) and x is fixed if and only if λ1v
1 + λ2v

2 + λ3v
3 = 0.

The key fact is again the non-contiguousness of Ŵ and Ê and Ŝ and N̂ .
Applying the above lemma here means that if one considers the three vertices
of any triangle of mutually adjacent vertices, then it will never be the case that
one of these vertices is translated by ei and another by −ei, so the three vertices
are translated by vectors which all lie in the same quadrant of R2. Hence, they
do not have 0 in their convex hull. Because no points are mapped to themselves,
we have obtained a fixed-point-free mapping, contradicting the Brouwer Fixed-
Point Theorem. Because we assumed the negation of “Hex”, we have shown
that “Brouwer” ⇒ “Hex”.
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5. The n-dimensional Hex
Theorem

Now we generalize the game of Hex into n dimensions and prove the corre-
sponding version of the Hex theorem. Then, we will show an application of the
theorem to find the fixed points described in Brouwer’s theorem.

5.1 n-dimensional Hex theorem

To begin our discussion of the n-dimensional Hex theorem, we must introduce
a formal definition of an n-dimensional Hex board and associated terms. The
following definitions are direct generalizations of the ones used previously for
n = 2.

Definition 1 (n-dimensional Hex board). The n-dimensional Hex board of size
k, Hn

k , consists of all vertices (denoted as vectors) z = (zi, . . . , zn) ∈ Zn such
that 1 ≤ zi ≤ k, i = 1, . . . , n. To avoid notational clutter, we will from now on
denote Hn

k by H.

Definition 2 (Adjacent vertices). A pair of vertices z and z′ is called adjacent
if |z − z′| = 1 and z and z′ are comparable (similarly to above meaning that
zi ≥ z′i or z′i ≥ zi for all i).

Definition 3. For each i, we define

H−i = {z|z ∈ H, zi = 1}
H+

i = {z|z ∈ H, zi = k}

Definition 4 (Labeling). A labeling of H is a mapping L from H to N =
{1, 2, . . . , n}.

Now we are properly equipped to state our theorem:

Theorem 8 (Hex Theorem). For any labeling L there is at least one i ∈ N
such that L−1(i) contains a connected set which meets H−i and H+

i . Such a set
will be called a winning i-set.
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Before continuing with the proof of this theorem, we chip in that the proof
that the n-dimensional Hex and Brouwer Theorems are equivalent is obtained
by generalizing mechanically the two-dimensional proof from the last section.
The proof is left to the reader as an exercise. We now give a proof of the
n-dimensional Hex Theorem.

Proof. Let the augmented Hex board Ĥ to be all z ∈ Zn such that 0 ≤ zi ≤ k+1.
Further, let

F−i = {z|z ∈ Ĥ, zi = 0}
F+
i = {z|z ∈ Ĥ, zi = k + 1}

be the faces of Ĥ. Let ei be the ith unit vector in Rn, and let e be the n-vector,
all of whose components are 1. In other words, e = (1, 1, . . . , 1).

We provide a definition of a simplex and associated terms to aid us in our
proof:

Definition 5 (Simplex). A simplex of Rn is an (n + 1)-tuple of vertices σ =
(z0, . . . , zn), where zi ∈ Zn and both

(i) zi+1 − zi = er for some r ∈ N

(ii) zi+1 − zi 6= zj+1 − zj for i 6= j

Note that for σ ⊂ Ĥ, every pair of zi and zj are adjacent.

Definition 6 (i-facet). The i-facet of σ is the n-tuple

τ i = (z1, . . . , zi−1, zi+1, . . . , zn)

This can practically be thought of as σ with the i-th term removed.

Here we draw attention to an important simplex to follow: σ0 = (0, e1, e1 +
e2, . . . , e). Note two important properties of σ0. First, all vertices of σ0 lie in
H. Second, its n-facet τ0 = (0, . . . , e1 + e2 + . . .+ en−1) satisfies τ0 ∈ F−n .

Definition 7 (i-neighbor). For 0 < i < n, the i-neighbor of σ is the simplex
σ̃ with the same vertices as σ, but zi is replaced with z̃i = zi−1 + zi+1 − zi.
z̃i is called the mate of zi with respect to σ. We define the 0-neighbor of σ to
be σ̃ = (z1, . . . , zn, z̃0), where z̃0 = z1 + zn − z0 and the n-neighbor of σ to be
σ̃ = (z̃n, z0, . . . , zn−1), where z̃n = zn−1 + z0 − zn.

Note that σ̃ satisfies the conditions of a simplex. Also note that σ̃ is the
i-neighbor of σ if and only if σ is the i-neighbor of σ̃, with their intersection
being their i-facets. Also note that if σ̃ is the 0-neighbor of σ, then σ is the n-
neighbor of σ̃, and vice versa. The intersection of these 0-neighbor, n-neighbor
pairs is the n-facet of σ and the 0-facet of σ̃.

We extend our labeling L to Ĥ by defining for z on the faces of Ĥ:

L(z) = min{i|z ∈ F−i } if z ∈ ∪ni=1F
−
i

= min{i|z ∈ F+
i } otherwise
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Below is our last definition before hopping into the proof.

Definition 8 (Completely labeled). A simplex σ or facet τ is completely labeled
(c.l.) if L maps σ or τ onto all of N . Note that σ0 and its corresponding τ0

are c.l. since from the above extension, the vertices of τ0 have labels 1 through
n. This is easily verified for all vertices.

Now that we have laid the groundwork, we can continue with our proof.
Define a graph Γ with nodes being all the c.l. simplexes in Ĥ. Simplexes are
adjacent if they are neighbors an their intersection is a c.l. facet. We proceed
in the n-dimensional extension of the original Hex Theorem proof with the
following lemma.

Lemma 9. Every node σ of Γ has degree n ≤ 2.

Proof. Let σ = (z0, . . . , zn) be an arbitrary c.l. simplex in Ĥ. Then since there
are n + 1 vertices and n possible labels, there must be exactly two vertices zi,
zj with the same label. Then σ̃ is a c.l. neighbor of σ if and only if it is the
i- or j-neighbor of σ. That way the i- or j-facet will still contain a vertex with
label for each of 1 through n, since there was initially a duplicate label. Any
other case will not be c.l.

Next, we can show that the simplex σ0 has exactly one c.l. neighbor. Sup-
pose L(e) = i > 1. Then the n-neighbor of σ0 is σ̃0 = (−en, 0, . . . , e1 + . . . +
en−1) 6∈ Ĥ, since −en < 0. The other vertex of σ0 with label i is e1 + . . .+ ei−1,
with mate in Ĥ, so σ0 only has degree 1. If L(e) = 1, it can be seen that
L(0) = 1 as well, and from the above argument for the n-neighbor, only the
0− neighbor remains in Ĥ.

Applying Lemma 2 from above, we can show that σ0 is the initial node of
a simple path P = (σ0, σ1, . . . , σm). This is because it has only one adjacent
node in the graph. We can now prove the following.

Lemma 10. The c.l.-facet of σm lies on some face F+
i of Ĥ.

Proof. Let σm = (z0, . . . , zn), where σm has only one neighbor. We know such
a σm must exist, otherwise σ0 would have two neighbors. Then it must be that
for some i, the mate z̃i of zi is not in Ĥ. For 0 < i < n, zi−1 < z̃i < zi+1, so
z̃i ∈ Ĥ.

Now suppose σm has no 0-neighbor. Then z̃0 = z1 + zn − z0 6∈ Ĥ. Let
z1 − z0 = er. Then z̃0 is not in Ĥ only if znr = k + 1. In other words, this is
only possible if the r-th element of zn is k + 1. However, from condition (ii) of
simplexes, we see that zir = k + 1 for all i > 0. So the 0-facet of σm is c.l. and
lies on F+

r .
The other possibility is that σm has no n-neighbor. This would mean that

z̃n = z0 + zn−1 − zn is not in Ĥ. Now let zn − zn−1 = er. This implies that
z0r = 0, which as above, implies that zir = 0 for i < n, so the n-facet τ of σm

satisfies τ ∈ F−r . From our definition of the label extensions onto Ĥ, τ can
only have labels i ≤ r, so because τ is c.l., it must be the case that r = n, and
τ ∈ F−r . Next, we show that if τ = (z0, . . . , zn−1) is c.l. and lies in F−n , then
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τ = τ0. First, consider z0. If z0 > 0, then zir > 0 for all i, and r could not be a
label of τ . Therefore, z0 = 0. Likewise for z1−0 = e1, and so forth. Thus, if σm

has no n-neighbor, then τ = τ0. However, σm cannot have τ0 as a facet because
then the path to σ0 would be complete, and we know that P is a path.

From these lemmas the Hex Theorem is now proved. From the way P was
constructed, if we choose the vertices labeled i from each simplex in P , then we
have our winning i-set. Since adjacent simplexes in the path P are neighbors,
the vertices labeled i are adjacent by definition. Thus, they form a connected
path in H. Next, the vertex e1 + . . .+ ei−1 of σ0 lies on F−i and has label i, and
σm has a c.l. facet on F+

i , so the constructed set meets F−i and F+
i . Because

it meets the faces of Ĥ, it also meets the faces of H.

5.2 One Consequence of Theorem

Below is an algorithm using the n-dimensional Hex Theorem to find points
which are arbitrarily close to fixed points of the mappings described in Brouwer’s
Theorem.

Given the labeling L, look at the label of e. If L(e) = i, bring in the mate
z̃i of the vertex zi (with respect to σ0). Call the new simplex σ1. Now again
look at the label of z̃i. There is exactly one other vertex of σ1 with this label.
Replace it with its mate, and keep going. Each time a new “mate” vertex is
brought into a simplex σk, drop its mate from σk. Our proof above shows that
with this method, a winning i-path will be constructed (these steps are the exact
same as finding the next neighbor simplex in P an traversing to it).

With the ideas discussed thus far, we are able to locate for any continuous
function f of In into itself points which are moved by arbitrarily small amounts.
To be more precise, we say the point x in the n-cube In is moved in the direction
i if

|f(x)− x| = |fi(x)− xi|

To find a nearly fixed point, first choose an arbitrary Hex board Hn
k . k can

be arbitrary, but larger values will give better approximations of the points in
question. Let the labels L(z) be defined to be the direction in which z

k is moved
under f . Then, starting with σ0, run the algorithm discussed above to find
the winning i-path. By the Hex Theorem ⇒ Brouwer Theorem proof discussed
previously, we are guaranteed that there will be two vertices, z and z′, which
are adjacent and such that both are moved in the direction i, but in different
sign. Precisely, fi(z) − zi ≥ 0, and fi(z

′) − z′i ≤ 0, or vice versa. This follows
from the fact that points on the two faces cannot be moved further into the
faces (outside the cube). However, if k is large, then neither z nor z′ could have
been moved a large distance if they are moved in opposite directions. Thus, z
and z′ are points close to the fixed points stated to exist by Brouwer’s Theorem.
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6. Closing Remarks

There are many proofs of Brouwer’s Fixed Point Theorem. Many are much
too hard for me to understand. However, I thoroughly enjoyed reading Gale’s
discussion of this very well known theorem. Not only did he use something that
I initially believed to be completely unrelated (the game of Hex) to prove an
abstract theorem, but he did it in a way that someone with a basic understanding
of analysis could understand. I hope that this short summary of Gale’s article
will pique your interest as his article did for me. His discussion touches more
on game theory and the subject of “fixed-point chasing”. I urge all who found
this paper interesting to read Gale’s article cited below, as he goes much more
in depth and provides more material for the truly motivated learner.
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