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This paper presents the development of Diophantine approximation through history, with motivation
and major results from this field. This paper could be read as a survey into this particular subject, or as a
compilation of elegant proofs reminding one of the minimalistic beauty of mathematics. We follow the
main theme of approximating irrationals, introducing and proving beautiful results along the way. This
includes Weyl’s criterion for equidistribution, Dirichlet’s solution to Pell’s equation, Hurwitz’s theorem
andMinkowski’s Convex Body theorem. Wewill use techniques from a wide range to prove these results,
including continued fractions, Fourier series, and modulo arithmetic.

I. INTRODUCTION

The necessity of approximating irrational numbers
arises in many context in mathematics. The Pythagorean
school used to believe that the only number existed is
the now-called rational numbers, until someone discov-
ered the length of an equilateral right triangle violates
this principle. The ancient Greeks then encountered the
equation x2− 2y2 = 1 when trying to understand

√
2 and

discovered a way to construct an infinite sequence of ra-
tionals that approximates

√
2 better with each term ([14],

Page 77). This is often introduced in introductory analy-
sis texts to show that the rational field Q does not satisfy
the Dedekind completeness, i.e. the Least Upper Bound
property.

Another motivation for Diophantine approximation
arises in solving the alleged Pell equation (wrongly at-
tributed to Pell by Euler, see [14] page 76), which takes the
form x2−ny2 = 1 where x and y can only take on integer
values. People have discovered how to construct infinitely
many integer solutions to this equation given a nontrivial
solution (solution not equal to (±1, 0)) at around 600 CE,
and that such sequence of solutions can approximate

√
n

arbitrarily close. However, the existence of such solution
was not proven until Lagrange first published his proof in
1768 (see [14]). Here, we’ll present a cleaner proof which is
a beautiful consequence of Dirichlet’s approximation the-
orem.

The approximation of irrational through rational num-
bers also inspired one of most important field of mathe-
matics invented in 19th century: the Geometry of num-
bers. Nowadays, the geometry of numbers is not only
interesting to mathematicians, but computer scientists
as well. One of most fundamental results in this fields,
the Minkowski’s convex body theorem, greatly reduces a
problem that has trapped computer scientists for a very
long time. In the last section of this paper, we will in-
troduce and prove the Minkowski’s convex body theorem
and see how it relates to the mission of approximating ir-
rationals.
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II. THE IRRATIONALS AND DIRICHLET’S THEOREM

The irrationals exhibit mysterious behaviours in many
areas and is thus worthwhile to be studied. In this sec-
tion, we present a basic theorem that sheds light on how
irrationals can be approximated by rationals. We’ll fur-
ther explore how they interact with integers and rationals
in general through several other results.
While studying the solution of Pell’s equation around

1840, Dirichlet discovered an approximation theorem that
becomes the starting point of Diophantine Approxima-
tion. In this interesting proof, he employed a technique
that is now called the “pigeonhole principle”. This prin-
ciple, following from simple logic, states that when k + 1
pigeons go into k boxes, at least one box contains at least
two pigeons. In fact, this simple but useful principle was
first formalized by Dirichlet (see [12]), and is widely re-
ferred to as “the Drawer Principle” in countries outside of
U.S. as this is how Dirichlet called it himself. Here, we
follow the version of this theorem presented in [14] with
a slight generalization. Note, however, that other sources
([13], [2]) present this theorem as |α−p/q| < 1/Bq, which
is equivalent.

Theorem 1 (Dirichlet, 1842) Let α be an irrational num-
ber and integer B > 0, there exists integers a, b with 0 <
b < B such that

|a− bα| < 1

B

Proof. Given an integer B, consider the B − 1 numbers
α, 2α, . . . , (B − 1)α. We know that for any number kα in
this sequence, we can choose an Ak ∈ Z that satisfies the
strict inequality

0 < Ak − kα < 1.

The strictness of the inequality follows from the choice
of α being irrational. Note that the irrationality of α also
implies ∀i 6= j, Ai − iα 6= Aj − jα. So we now have B +1
distinct numbers that fall into the interval [0, 1]:

0, A1 − α, A2 − 2α, . . . , AB−1 − (B − 1)α, 1

We then divide this interval into B subintervals of length
1/B. By pigeonhole principle, at least two numbers must
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fall into the same subinterval. The difference between
these two numbers takes the form a − bα where a, b ∈ Z
and satisfy

|a− bα| < 1

B

�
This result admits many elaborations and strenghten-

ings. Here, we present one that unveils an interesting
property about the irrationals [13].

Corollary 2 For α irrational, there exists infinitely many
relatively prime numbers p, q such that

|α− p

q
| < 1

q2

Proof. Suppose there are only finitely many rationals

p1
q1
,
p2
q2
, . . . ,

pk
qk

satisfying:

|α− pi
qi
| < 1

q2i
.

for 1 ≤ i ≤ k. Consequently, since α is irrational, there
exists a positive integer n such that the inequality∣∣∣∣α− p1

q1

∣∣∣∣ ≤ 1

n+ 1

holds for 1 ≤ i ≤ k. However, this contradicts Dirich-
let’s Theorem, which asserts that, for this n, there exists a
rational number p/q with q ≤ n such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

(n+ 1)q
<

1

q2
.

�We point out another property about the irrational
numbers:

Theorem 3 A real number α is irrational if and only if
there are infinitely many rational numbers p

q such that

|α− p

q
| ≤ 1

q2

One direction in this statement follows directly from the
theorem we just proved. A complete proof can be found
in [11]. This theorem is interesting to note here due to
its implication: it appears that irrational numbers can be
distinguished from rational numbers by the fact that they
can be approximated by infinitely many rational numbers
p/q with an error less than 1/q2.

A more fascinating behaviour about the irrationals
is exhibited through the equidistribution modulo Z of
many sequences involving irrationals. Before we derive
this result formally, we first introduce the notion of

equidistribution. Below is a more intuitive definition
for equidistribution, which is basically saying that, in its
limit form, the integer multiples of an irrational number
“spread out” evenly on the interval [0, 1] w.r.t. its fraction
part.

Definition: A real sequence {xn}∞n=1 is said to be
equidistributed modulo 1 if for every pair of real numbers
0 ≤ a < b ≤ 1, we have

lim
N→∞

#{n ≤ N : (xn) ∈ [a, b]}
N

= b− a

Now, we present another equivalent way of stating
equidistribution, which will be more useful to the proof.
We would like to focus on the discussion of Weyl’s cri-
terion and will just assume this result. However, a proof
could be found in chapter 11 in [9].

Theorem 4 A real sequence {xn}∞n=1 is said to be equidis-
tributed modulo 1 if and only if for every function f in
C0[0, 1], we have”

lim
n→∞

1

N

∑
n=1

Nf(xn)

∫ 1

0

f(x)dx

Now we use this definition to prove an elegant criteria
by Weyl for determining whether a sequence is equidis-
tributed in [0, 1].

Theorem 5 (Weyl, 1916, see[9]) A sequence {xn}∞n=1 is
equidistributed if and only if

lim
N→∞

1

N

N∑
n=1

e2πinxn = 0

Proof. Define ψn(α) = e2πinα, then for any smooth
function f with integer period, it admits Fourier expan-

sion
∑

n f̂(n)ψn converging absolutely and uniformly to
f (uniform is guaranteed by our smooth assumption). So

1

N

N∑
m=1

f(xm) =
1

N

N∑
m=1

(∑
n

f̂(n)ψn(xm)

)

=
1

N

∑
n

f̂(n)

(
N∑

n=1

ψn(xm)

)

= f̂(0) +
1

N

∑
n6=0

f̂(n)

(
N∑

n=1

ψn(xm)

)

For any cut-off b for the Fourier series, noting f̂(0) =
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0
f(x)dx, we have:

1

N

N∑
1

f(xm)−
∫ 1

0

f(x)dx

≤

∣∣∣∣∣∣
∑
n 6=0

f̂(n) ·

(
1

N
·

N∑
1

ψn(xm)

)∣∣∣∣∣∣
≤
∑
n6=0

|f̂(n)| ·

∣∣∣∣∣ 1N
N∑
1

ψn(xm)

∣∣∣∣∣
≤

∑
0<|n|≤b

|f̂(n)| ·

∣∣∣∣∣ 1N ·
N∑
1

ψn(xm)

∣∣∣∣∣+ ∑
|n|>b

|f̂(n)| · 1

Since the Fourier series converges absolutely, given ε > 0

there is large enough b so that
∑

|n|>b |f̂(n)| < ε. With

that b, since 1
N

∑N
1 φn(xm) → 0 for each fixed n 6= 0, and

since there are only finitely many n with 0 < |n| ≤ b, for
large enough N :

∑
0<|n|≤b

|f̂(n)| ·

∣∣∣∣∣ 1N
N∑
1

ψn(xm)

∣∣∣∣∣ < ε

Thus, ∣∣∣∣∣ 1N
N∑
1

f(xm)− f̂(0)

∣∣∣∣∣ ≤ 2ε

That is, 1/N ·
∑N

1 f(xm) →
∫ 1

0
f(x)dx, and by the equidis-

tribution definition above, we have shown thatWeyl’s cri-
terion suffices for equidistribution. �

Equipped with this powerful result, we can see that many
interesting results almost follows immediately.

Corollary 6 Given any irrationalα, the sequence {nα}∞n=1

is equidistributed modulo 1.

Proof. We sum over the geometric series:

1

N

N∑
l=1

e2πin·lα =
1

N
· e

2πinα − e2πin(N+1)α

1− e2πinα

The irrationality of α and n 6= 0 assure that the denomi-
nator does not vanish. Thus,

1

N

N∑
l=1

e2πin·lα ≤ 1

N
· 2

|1− e2πinα|
→ 0

for each fixed n 6= 0. By Weyl’s criterion, {lα} is equidis-
tributed modulo 1. �

Note the profound implication of this result: we can now
saymore than just bnαc is dense in [0, 1]. We can conclude
that this sequence distributed evenly, in its limit form,
among this entire interval. This is an elegant result that

conforms to our intuition, and has further surprising real
world implications. For example, one could see how Ben-
ford’s Law could be explained with this and several other
equidistribution sequences, because logn where n is not
a power of 10 is irrational. For a concrete discussion of this
subject, see Chapter 9 in [7].
Remark: Another interesting proof for Corollary 6 can

be found in [3] chapter 23.10, which involves the contin-
ued fraction technique. Wedirect interested reader to this
source.

III. SOLUTION TO PELL EQUATIONWITH DIRICHLET’S
THEOREM

Recall that Pell Equation refers to the equation x2 −
ny2 = 1 where n is not a perfect square number. In the
context of number theory, we are generally interested to
find the integer solutions to this equation. Sowhenwe say
solutions to the Pell equation in this paper, we mean inte-
ger solution. As we said in the introduction, people have
long understood how to construct infinitely many solu-
tion:

Theorem 7 (Brahmagupta composition rule, circa
600CE) If (x1, x2) and (x2, y2) are both solutions (not nec-
essarily different) to the Pell equation x2 − ny2 = 1, then
so is

(x3, y3) = (x1x2 + ny1y2, x1y2 + y1x2)

Proof. Since (x1, y2) and (x2, y2) are solutions, we have:

x21 − ny21 = 1 = x22 − ny22

Therefore

1 = (x21 − ny21)(x
2
2 − ny22)

= (x1 −
√
ny1)(x1 +

√
ny1) · (x2 −

√
ny2)(x2 +

√
ny2)

= (x1 −
√
ny1)(x2 −

√
ny2) · (x1 +

√
ny1)(x2 +

√
ny2)

= [x1x2 + ny1y2 − (x1y2 + y1x2)
√
n]·

[x1x2 + ny1y2 + (x1y2 + y1x2)
√
n]

= (x1x2 + ny1y2)
2 − n(x1y2 + y1x2)

2 = x23 − ny23

�
However, even though we know how to construct so-

lutions given only one nontrivial solution, the existence
of such is not obvious at all. Sometimes it is very clear
there is one: (3, 2) is a nontrivial solution to x2−2y2 = 1.
But to one’s surprise, the smallest nontrivial solution to
x2 − 61y2 = 1 is:

(x, y) = (1766319049, 226153980)

Such mysterious behaviour of the smallest nontrivial
solution naturally generates the question: does it always
exist? The stunning theorem below by Dirichlet proves
that its existence is guaranteed. Before proceeding, we de-
fine a few terminology that would make the proof process
easier:
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1. Define Z[
√
n] = {x+ y

√
n : x, y ∈ Z}.

2. We call x− y
√
n the conjugate of x+ y

√
n.

3. For each member in Z[
√
n], we associate a norm

with it:

norm(x+ y
√
n) = (x− y

√
n)(x+ y

√
n) = x2 − ny2

4. It is easy to check that ∀α, β ∈ Z[
√
n]:

norm(α)norm(β) = norm(αβ)

Theorem 8 (Dirichlet, 1842) Given an non-square posi-
tive integer n, the equation x2 − ny2 = 1 has an integer
solution (a, b) 6= (±1, 0).

Proof. We follow the following steps to construct such
solution:

1. Since Dirichlet’s approximation theorem holds for
all B > 0, we can make 1/B arbitrarily small, thus
forcing the choice of new values of a and b. Thus
there are infinitely many integer pairs (a, b)with |a−
b
√
n| < 1/B . Since 0 < b < B, we have

|a− b
√
n| < 1

b

2. It follows from step 1 that

|a+ b
√
n| ≤ |a− b

√
n|+ |2b

√
n| ≤ |3b

√
n|

and therefore

|a2 − nb2| ≤ 1

b
· 3b

√
n = 3

√
n

Hence there are infinitely many a− b
√
n such that

3. We apply the infinite version of the pigeonhole prin-
ciple: if infinitely many pigeons go into k boxes,
then at least one box contains infinitely many pi-
geons. And these results follows:

• infinitely many a − b
√
n with the same norm,

N say,

• infinitelymany of thesewith a in the smae con-
gruence class modulo N ,

• infinitelymany of these with b in the same con-
gruence class modulo N .

4. From step 3 we get two positive numebrs, a1−b1
√
n

and a2 − b2
√
n, with

• the same norm N

• a1 ≡ a2 (mod N)

• b1 ≡ b2 (mod N)

This uses the quotient a− b
√
n of the two numbers

just found. Its norm a2−nb2 is clearly 1 by the mul-
tiplicative property of norm. It is not so clear that a
and b are integers, but this now follows fro the con-
gruence conditions in step 4.

Consider the quotient a − b
√
n of the two numbers a1 −

b1
√
n and a2 − b2

√
n found in step 4. We have

a− b
√
n =

a1 − b1
√
n

a2 − b2
√
n

=
(a1 − b1

√
n)(a2 + b2

√
n)

a22 − nb22

=
a1a2 − nb1b2

N
+
a1b2 − b1a2

N
·
√
n

whereN = a22−nb22 is the common norm of a1−b1
√
n and

a2 − b2
√
n. Since the latter numbers have equal norms,

their quotient a − b
√
n 6= ±1. It remains to to show that

a and b are integers. This amounts to showing that N di-
vides a1a2 − nb1b2 and a1b2 − b1a2 or that

a1a2 − nb1b2 ≡ a2b2 − b1a2 ≡ 0 (mod N)

The first congruence follwos fromt he fact that a21−nb21 =
N , which implies

0 ≡ a21 − nb21 ≡ a1a2 − nb1b2 (mod N)

replacing a1 and b1 by their respective congruent values
a1 ≡ a2 (mod N) and b1 ≡ b2 (mod N) found in step 4.
the second congruence follows from a1 ≡ a2 (mod N)

and b1 ≡ b2 (mod N) by multiplying to obtain a1b2 ≡
a2b1 (mod N), in other words, a1b2−b1a2 ≡ 0 (mod N).
�

IV. HURWITZ’S THEOREM AND CONTINUED
FRACTIONS

(Proceed with relevant definition and corollaries 1.3 in
[13] to deduce the main result which is Hurwitz’s theorem
presented in [2] ...)
Definition: The expression [a0, a1, . . . , an] such that all
ai ≥ 1 are integers and an ≥ 2, denotes a finite simple
continued fraction, which means the following:

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(continued until
1

an
)

The rational numbers:
p0
q0

= [a0],
p1
q1

= [a0, a1], . . . ,
pn
qn

= [a0, a1, . . . , an]

are called convergents. For convenience of notation, we
further define p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0.
Given this definition, we can now prove an array of use-

ful and interesting properties of continued fractions, all of
which will eventually lead us to the development of Hur-
witz’s theorem.
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Lemma 9 For n ≥ 0,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2

Proof. Proceed with induction. Base case for n = 0 is
obvious. We now assume

pn−1 = an−1pn−2 + pn−3, qn−1 = an−1qn−2 + qn−3

and show the inductive case:

pn
qn

= [a0, a1, . . . , an]

= [a0, a1, . . . , an−1 + 1/an]

=
(an−1 +

1

an
)pn−1 + pn−2

(an−1 +
1

an
)qn−1 + qn−2

=
(anan−1 + 1)pn−2 + anpn−1

(anan−1 + 1)qn−2 + anqn−1

=
anpn−1 + pn−2

anqn−1 + qn−2

We now simply read off the denominator and numerator
to get our results. �

Corollary 10 For n ≥ −1,

qnpn−1 − pnqn−1 = (−1)n

Proof. Base case for n = −1 is q−1p−2 − p−1q−2 =
(−1)−1 which is established. Now, assume the claim is
true for (n− 1), we apply Lemma 9 and get:

qnpn−1 − pnqn−1

=(anqn−1 + qn−2)pn−1 − (anpn−1 + pn−2)qn−1

=− (qn−1pn−2 − pn−1qn−2)

=(−1)n

So the claim is true for all n ≥ −1. �

Corollary 11 For n ≥ 0,

qnpn−2 − pnqn−2 = (−1)n−1an

Proof. Base case for induction is obvious. We combine
Lemma 9 and Corollary 10 to get:

anpn−2 − pnqn−2

=(anqn−1 + qn−2)pn−2 − (anpn−1 + pn−2)qn−2

=an(qn−1pn−2 − pn−1qn−2)

=(−1)n−1an

�

Corollary 12 The convergents pk/qk satisfies the following
inequalities:

1.
p0
q0

<
p2
q2

<
p4
q4

< . . .

2.
p1
q1

>
p3
q3

>
p5
q5

> . . .

3. Given any positive even n and oddm, we have:

pn
qn

<
pm
qm

Proof. We divide both sides by qn−2qn in Corollary 11
and get:

pn−2

qn−2
− pn
qn

=
(−1)n−1an
qn−2qn

This shows that when n ≥ 2 and n is even, we know that
(n− 2)th term is less than nth term. Similarly, when n ≥ 3
and n is odd, we know that (n−2)th term is larger than nth

term. This establishes part 1 and 2. Note that, to show 3
is true for arbitrary pair of odd and even numbers, we can
simply show pm−1/qm−1 < pm/qm is true for all odd m,
and combine with part 1 and 2 to conclude 3. So we only
need to show:

pm−1

qm−1
<
pm
qm

⇔ qmpm−1 − pmqm−1 = (−1)m < 0

This establishes the third inequality. �

We can see that the inequalities in Corollary 11 is fore-
shadowing the existence of a limit. Indeed, such limit not
only exists, but is guaranteed to be irrational!

Corollary 13 Let a0 be an integer and a1, a2, . . . be pos-
itive integers, define pk/qk to be the convergents of the
continued fractions defined by {an}∞n=0. Then, the limit
limn→∞ pk/qk exists and its value is irrational. Conversely,
for α irrational, there exists a unique integer a0 and unique
positive integers a1, a2, . . . such that α = limn→∞ pk/qk.

Proof. By the results we have proven: p0

q0
< p2

q2
< · · · <

p1

q1
, it is clear that both limits:

lim
n even→∞

pn
qn

and lim
n odd→∞

pn
qn

exists (both are bounded monotone sequences). And fur-
ther both limits are equal by their recurrence relation. We
put α = limn→∞

pn

qn
and compute:∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ = 1

qnqn+1
<

1

q2n

Since pn, qn are relatively prime, there exist infinitely
many rational numbers p/q such that |α − p/q| < 1/q2,
so α is irrational.
Conversely, let α be irrational, a0 = bαc, and let α1 :=

a0 +
1
α1
. We notice that α1 > 1 is irrational. For k ≥ 1 let

ak = bαkc and αk = ak + 1
αk+1

. We observe that ak ≥ 1,

αk+1 > 1, and αk+1 is irrational. Our goal is to show:

α = [a0, a1, a2, . . . ]



6

Using the recurrence we’ve proven before with α =
[a0, a1, a2, . . . ], we find:

qnα− pn = qn · αn+1pn + pn−1

αn+1qn + qn−1
− pn

=
qn(αn+1pn + pn−1)− pn(αn+1qn + qn−1)

αn+1qn + qn−1

=
(−1)n

αn+1qn + qn−1

Hence, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2n
.

which implies limn→∞
pn

qn
= α. Finally, it remains to

prove that the integers a0, a1 ≥ 1, a2 ≥ 2, . . . are uniquely
determined. In view of

α = [a0, a1, a2 . . . ] = a0 +
1

[a1, a2, . . . ]
,

and 0 ≤ α− a0 < 1, we find a0 = bαc which implies that
a0 is unique and α1 = [a1, a2 . . . ] is uniquely determined
by α. Because a1 = bα1c, a1 is unique, etc. This proves
the corollary. �

Now, we have finally gathered all the tools we will need
in order to develop Hurwitz’s theorem. Recall from sec-
tion II that we have obtained a bound 1/q2 for num-
bers takes on the form |α − p/q| with α irrational. Two
other great mathematicians, Vahlen and Borel, succes-
sively discovered that the bound in Dirichlet’s theorem
can be further tightened using the technique of contin-
ued fractions. And these improvements of the bounds
culminated with Hurwitz’s theorem, showing that this
Dirichlet-type inequality’s bound cannot be improved any
further. Here, we first present two improvements of the
bound in chronological order:

Theorem 14 (Vahlen, 1895) Letα be an irrational number
and denote two consecutive convergent of α as pn−1/qn−1

and pn/qn. Then, at least one of them satisfies the inequal-
ity

|α− p

q
| < 1

2q2

Proof. We observe that:∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn−1

qn−1

∣∣∣∣ = ∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣
=

1

qnqn−1
<

1

2q2n
+

1

2q2n−1

.

Thus, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2q2n
or

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ < 1

2q2n−1

�

Theorem 15 (Borel, 1903) Let α be an irrational num-
ber and denote three consecutive convergent of α as
pn−1/qn−1, pn/qn and pn+1/qn+1. Then, at least one of
them satisfies the inequality

|α− p

q
| < 1√

5q2

Proof. Let α = [a0, a1, . . . ], αi = [ai, ai+1, . . . ], βi =
(qi − 2)/(qi − 1), q ≥ 1. It is not difficult to deduce that∣∣∣∣α− pn

qn

∣∣∣∣ = 1

q2n(αn+1 + βn+1
.

We show that there does not exist a positive integer n sat-
isfying

αi + βi <
√
5

for i = n − 1, n, n + 1. Our reasoning is indirect. We
assume that the above inequality is satisfied for i = n −
1, n. It follows from

αn−1 = an−1 +
1

αn
,

1

βn
=
qn−1

qn−2
= an−1 +

qn−3

qn−2
= αn−1 + βn−1

that

1

αn
+

1

βn
= αn−1 + βn−1 ≤

√
5.

Hence, 1 = αn · 1
αn

≤ (
√
5−βn)(

√
5− 1

βn
), or equivalently,

β2
n −

√
5βn + 1 ≤ 0 which implies βn ≥ (

√
5− 1)/2. Now

if the inequality we assumed is satisfied for i = n, n + 1,
then again βn+1 > (

√
5− 1)/2, so we deduce

1 ≤ an =
qn
qn−1

− qn−2

qn−1

=
1

βn+1
− βn <

2√
5− 1

−
√
5− 1

2
< 1

Thus we have our contradiction. �

We can see that Vahlen and Borel’s results are already
significant departures from Dirichlet. We can push it a
little further by Hurwitz’s theorem. To achieve this, we
first state two theorems without proof. We would like to
focus on Hurwitz’s theorem and direct interested reader
to [12].

Theorem 16 (Legendre) Let p, q be integers such that q ≥
1 and ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p/q is a convergent of α.
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Theorem 17 Assume the continued fraction expansion for
α is given by

α = [a0, a1, . . . , aN , 1, 1, . . . ]

then:

lim
n→∞

q2n

∣∣∣∣α− pn
qn

∣∣∣∣ = 1√
5

Theorem 18 (Hurwitz, 1891, see [4]) Let α be an irra-
tional number,

1. Then there are infinitely many rational numbers
p

q
such that:

|α− p

q
| < 1√

5q2

2. If
√
5 is replaced byC >

√
5, then there are irrational

numbers α for which statement (1) does not hold.

Proof. Claim 1 follows directly from Borel’s result, while
claim 2 follows from Legendre’s and the theorem 17.
Namely, if α is irrational and of form :

α = [a0, a1, . . . , aN , 1, 1, . . . ]

then according to Legendre’s Theorem above, all solutions

of |α− p/q| < 1/(Cq2) with C >
√
5 can be found among

the convergents to α, however, in view of theorem 18, this
inequality is satisfied by ony finitely many convergents to
α. �

V. MINKOWSKY’S CONVEX BODY THEOREM AND
DIRICHLET REVISITED

We’ll follow the strategy outlined in Chapter III from
[3]. [3] gave a proof for the R2 case, we use the same idea
of the proof to generalize the result to Rn, which is what
Minkowski originally did. A keen reader will notice that
the spirit of the proof is somewhat identical to the pigeon-
hole argument. Before proceeding, we first define a few
necessary terms:

1. A set B in Rn is convex if for any x and y in B, all
points on the line segment joining x and y are also
in B.

2. A set B in Rn is symmetric about the origin if for
any x in B, the point −x is also in B.

3. We denote the set of all points in Rn all of whose
coordinates are integers by Zn.

Now, we first prove a special case of Minkowski’s the-
orem which illustrates better the general strategy better.
Once, we’ve established this, we will give a proof of the
theorem for the general lattices

Theorem 19 (Minkowski’s Convex Body Theorem,
1912) Let B be a convex open set in Rn that is symmetric
about the origin and whose volume is greater than 2n.
Then B must contains a nonzero point all of whose
coordinates are integers.

Proof. We first show the following (sometimes called
Blichfeldt’s principle, see [1]): if S is a bounded set in Rn

whose volume is greater than 1, then there exist two points
x and y in S such that x− y has integer coordinates.

• Proof: The idea is essentially the same as Dirichlet’s
pigeonhole argument:

For each lattice point a = (a1, . . . , an), letR(a) be
the set containing (x1, . . . , xn) whose coordinates
satisfy ai ≤ xi < ai+1 (this is the analogue of a box
in Rn).

If we then set S(a) = S ∩ R(a), we have∑
a∈Zn vol(S(a)) = vol(S), because each point of

S lies in exactly one of the boxes R(a).

Now imagine translating the S(a) by the vector
−a: it will preserve volume, but move S(a) to land
inside S(0). Denote this translated set by S∗(a).

Then
∑

a∈Zn vol(S∗(a)) = vol(S).

Now, notice that each of the sets S∗(a) lies inside
S(0), which has volume 1, so there must be some
overlap.

Hence, there exists some distinct x, y ∈ S and
a1, a2 ∈ Zn such that x − a1 = y − a2: but then
x− y = a1 − a2 is a nonzero lattice point. Thus, we
have shown the existence of such two points.

Now, we go back to the original statement of
Minkowski. Suppose B is a convex open set symmetric

about 0 whose volume is greater than 2n, and let
1

2
B =

{1
2
x : x ∈ B}.

Notice that since vol(B) > 2n, we have vol(
1

2
B) > 1.

Apply Blichfeldt’s principle to
1

2
B: we obtain distinct

points x, y ∈ 1

2
B such that x− y has integer coordinates.

Then 2x, 2y ∈ B. Since B is symmetric about the origin,
−2y ∈ B. And since B is convex, the midpoint of the
line segment joining 2x and −2y lies in B. This point is
x − y, which is a nonzero point all of whose coordinates
are integers. �

Now, we proceed to further generalize this argument.
Again, we introduce a few terms first:

1. If v1, . . . , vn are linearly independent vectors in Rn,
the set Λ of vectors of the form c1v1 + · · · + cnvn,
where each ci ∈ Z, is called a lattice.
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2. A fundament domain for this lattice can be ob-
tained by drawing all of the vectors v1, . . . , vn out-
ward fro the origin and then filling them in to create
a “skew box”

3. A basic fact from linear algebra says: the volume of
the fundamental domain is equal to the determi-
nant of the matrix whose columns are the vectors
v1, . . . , vn expressed in terms of the standard basis
of Rn. This is one of geometric interpretations of
the determinant of a matrix.

Now, we can prove the more generalized form of
Minkowski’s theorem:

Theorem 20 (Minkowski’s Convex Body Theorem,
1912, general lattice version) Let Λ be any lattice in Rn

whose fundamental domain has volume V . IfB is any open
convex centrally-symmetric region in Rn whose volume is
greater than 2n ·V , thenB contains a nonzero points of Λ.

Proof. Apply a linear transformation T sending the ba-
sis vectors of Λ to the standard basis of Rn (i.e., the basis
consists of all unit vectors with one 1 and the rest being
0). Linear transformation preserve open sets, convex sets
and central symmetry (these are easy to check using the
definition of a linear mapping), so the image of B under
T is still open, convex, and centrally symmetric.

vol(T (B)) = 1/V · vol(B) because the determinant of
matrix is multiplicative and volume can be interpreted as
the determinant of a matrix. So this new open convex
centrally-symmetric set T (B) has volume greater 2n.

Applying the previous version of Minkowski’s theorem
to T (B) yields that T (B) contains a nonzero point all
of whose coordinates are integers: then B contains a
nonzero point of Λ. �
Now we apply Minkowski’s theorem to give an alterna-

tive proof of a generalized form of Dirichlet’s theorem:

Theorem 21 (Dirichlet, 1842, simultaneous version) Let
α1, . . . , αd be irrational numbers and integer N > 0, there
exists integers p1, . . . , pd, q with 0 < q < N such that

|αi −
pi
q
| < 1

qN1/d

Proof. Consider the set S = {(x, y1, . . . yd) ∈ R1+d :

−N − 1

2
≤ x ≤ N +

1

2
, |αix − yi| ≤ N1/d}. Note that

vol(S) = 2N ·
d∏

i=1

2

N1/d
= 21+d. Then there exists an inte-

ger point in S by Minkowski’s theorem. Let(q, p1, . . . , pn)
be this point. This vector satisfies the condition by our
definition of the set S. �

One can see the powerfulness of Minkowski’s theorem
through the slick proof given above. Indeed, Minkowski’s
theorem is not only powerful in the realm of number the-
ory, but is proven to be crucial even outside. In a clas-
sic paper about integer programming [5], Kannan uses
several concepts from Geometry of Numbers, the most
curcial of them being Minkowski’s convex body theorem.
This elegant classical theorem turns out to be crucial in
effectively reducing an n variable problem to polynomi-
ally many (n − 1) variable problems rather than an ex-
ponential number of them. We encourage reader who is
interested in this topic to [5].

VI. CONCLUDING REMARKS

Through our journey of approximating irrationals with
rationals, we can see that the results we have derived in-
advertently have applications outside of the field of Dio-
phantine Approximation, and even more, inspires and
solves real world problems. Till today, this is still a vibrant
research field with much more to be explored.
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