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1 Introduction

There are many problems in number theory that involve looking at the representation of the integers or
real numbers in the form n =

∑m
i=1 εiai, where {ai} is a given sequence and the εi have values restricted to

a given set, and m is the number to be found. Some famous problems are the Egyptian Fractions, where
{ai} = 1/i and εi ∈ {0, 1}, and we are examining representations of fractions, and Waring’s Problem, which
asks what is the minimum number of integers needed to present each natural number as the sum of a kth
power. Many other problems of this sort can be formed with suitable choices of ai and εi. In this paper, we
will examine the result proved by Michael Bleicher [1], in which we choose ai = ik for a fixed non-negative
integer k, and εi ∈ {−1, 1}. We will prove that infinitely many representations of any integer n will exist and
an algorithm will be determined for finding m, where the algorithm is of polynomial time. Lower bounds of
m will be proved and asymptotic estimates of m will be given in each of the following cases (a) k fixed and
n→∞ and (b) n fixed and k →∞.

2 Preliminary Results

Definition 1. For a non-negative integer k, define εk,j for 0 ≤ j ≤ 2k to be

εk,j =


1 k = 0

−εk−1,j for k > 0 and 0 ≤ j < 2k−1

εk−1,j−2k−1 for k > 0 and 2k−1 ≤ j < 2k
(1)

Definition 2. For k and l non-negative integers and x real, define

Dk,l(x) =

2k−1∑
i=0

εk,i(x+ i)l (2)

By convention 00 = 1.
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We see that D0,0(x) =
∑0

i=0 ε0,i(x+ i)0 = 1 and Dk,0(x) =
∑2k−1

i=0 εk,i = 0 for k > 0 by the definition of
εk,i.

Definition 3. Let f(x) be a function defined on the integers. We define Dkf(x) inductively for k > 0 by

D0f(x) = f(x) (3)

Dkf(x) = Dk−1f(x+ 2k−1)−Dk−1f(x) (4)

Lemma 1. For all non-negative integers k,

Dkf(x) =

2k−1∑
i=0

εk,if(x+ i) (5)

Proof. We proceed by induction. For k = 0, D0f(x) =
∑0

i=0 ε0,if(x+ i) = f(x), which is true by definition.
Now, suppose the lemma holds for Dk−1f(x). Then from (1) and (3), we get

2k−1∑
i=0

εk,if(x+ i) =

2k−1−1∑
i=0

εk,if(x+ i) +

2k−1∑
i=2k−1

εk,if(x+ i)

=

2k−1−1∑
i=0

−εk−1,if(x+ i) +

2k−1∑
i=2k−1

εk−1,i−2k−1f(x+ i)

= −Dk−1f(x) +

2k−1−1∑
i=0

εk,if(x+ 2k−1 + i)

= Dk−1f(x+ 2k−1)−Dk−1f(x)

= Dkf(x)

Remark. If f(x) = xl, we have Dkf(x) = Dk,l(x) using (2) and (5).

Lemma 2. For all non-negative integers k, Dk,k(x) is constant and Dk,l(x) = 0 for l < k.

Proof. We first consider k = l and prove by induction. For k = 0, we have D0,0(x) = 1 by definition, so it is
constant. Now, suppose the lemma holds for k = m− 1. Then by Lemma 1 we have

Dm,l(x) = Dmx
l = Dm−1(x+ 2m−1)l −Dm−1(x)l (6)

Note that by the definition of Dkf(x), we have d
dxDkf(x) = Dkf

′(x). Then by differentiating (6), we get

D′m,l(x) = D′m−1(x+ 2m−1)l −D′m−1(x)l

= lDm−1(x+ 2m−1)l−1 − lDm−1(x)l−1

= l(Dm−1,l−1(x+ 2m−1)−Dm−1,l−1(x))

By the inductive hypothesis, Dm−1,l−1(x + 2m−1) − Dm−1,l−1(x) = 0 for m = l. Thus D′m,m(x) = 0, so

Dm,m(x) must be constant. Because Dl,l(x) is constant, Dl+1,l(x) = Dl,l(x + 2l) −Dl,l(x) = 0. Thus it is
true that Dk,l(x) = 0 for k > l.

Definition 4. Dk = Dk,k(x)

This will allow for the notation to be less cluttered.
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Lemma 3. For every pair of non-negative integers k and n,

n∑
i=1

ik =
nk+1

k + 1
+
nPk−1(n)

(k + 1)!
(7)

where Pk−1(n) is a integer polynomial in n of order k − 1 with the convention that P−1(n) = 0.

Proof. We proceed by induction on k. For k = 0,
∑k

i=1 i
0 = n = n1

1 + nP−1(n)
1! , so it is true for k = 0. Now,

suppose the lemma is true for all integers j, 0 ≤ j < k, and we want to show it is true for j = k.
Define cj = jk+1 − (j − 1)k+1. By the Binomial Theorem,

cj = jk−1 −
k+1∑
i=0

(
k + 1

i

)
(−1)ijk+1−i

= −
k+1∑
i=1

(
k + 1

i

)
(−1)ijk+1−i

Note that nk+1 =
∑n

j=1 cj by the definition of cj . Then by simplifying nk+1 and using the inductive
hypothesis,

nk+1 = −
n∑

j=1

k+1∑
i=1

(
k + 1

i

)
(−1)ijk+1−i

= −
k+1∑
i=1

(
k + 1

i

)
(−1)i

n∑
j=1

jk+1−i

= −(−1)1
(
k + 1

1

) n∑
j=1

jk+1−1 −
k+1∑
i=2

(
k + 1

i

)
(−1)i

n∑
j=1

jk+1−i

= (k + 1)

n∑
j=1

jk −
k+1∑
i=1

(
k + 1

i

)
(−1)i

( nk+2−i

k + 2− i
+

nPk−i(n)

(k + 2− i)!

)
Because the highest order of nPk−i(n) is k−2+1 = k−1 and the largest order of (k+2− i)! is k+2−2 = k,∑k+1

i=1

(
k+1
i

)
(−1)i

(
nk+2−i

k+2−i + nPk−i(n)
(k+2−i)!

)
can be written in the form nPk−1(n)

k! . Then we can solve for
∑n

j=1 j
k.

nk+1 = (k + 1)

n∑
j=1

jk − nPk−1(n)

k!

n∑
j=1

jk =
nk+1

k + 1
− nPk−1(n)

(k + 1)!

which is the desired form. The proof is complete.

Lemma 4. For every positive integer n, and every non-negative integer k, there exists an integer N such
that

N∑
i=1

ik ≡ 0 (mod n) (8)

and N can be chosen such that N ≡ 0 (mod n).
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Proof. We show that taking N = n(k + 1)! proves the lemma. N = n(k + 1)! ≡ 0 (mod n). By the previous
lemma, we have

n(k+1)!∑
i=1

ik =
(n(k + 1)!)k+1

k + 1
− n(k + 1)!Pk−1(n)

(k + 1)!

=
(n(k + 1)!)k+1

k + 1
− nPk−1(n)

≡ 0 (mod n)

Note that N = n(k + 1)! is not the minimal value. For example, N = 4 will work for n = 4, k = 3, but
the value the proof yields is 96.

Lemma 5. For every positive integer n and non-negative integer k, there is a positive integer N , N ≡ 0
(mod n) such that for every integer l

l+N∑
i=l+1

ik ≡ 0 (mod n) (9)

Proof. Choose N as in Lemma 4. Then the sum in (9) covers the identical range (mod n) as the sum in
Lemma 4 independent of l, and thus has sum ≡ 0 (mod n).

Let N be the number that depends only on n given by Lemma 5.

Lemma 6. For every positive integer n, non-negative integer k, and j with 0 ≤ j < n, there is a number
Mj and some choice of εi such that

j ≡
mj∑
i=1

εii
k (mod n) (10)

For k > 0, we can choose Mj to satisfy

Mj ≤
(j + 2

2

)
n(k + 1)! (11)

For k = 0, we satisfy (10) and (11) but choosing Mj = j, εi = 1.

Proof. It is obvious that j ≡
∑j

i=1 εi (mod n), where εi = 1 for all i. For j = 0 and k > 0, (8) gives a
representation with Mj = N and εi = 1 for all i. It is clear that N ≤ (2/2)n(k + 1)! = n(k + 1)! = N , so it
satisfies (11).

Consider j > 0 and k > 0. Take l = qN for any positive integer q, and by Lemma 6, we see
∑(q+1)N

i=qN+1 i
k ≡

0 (mod n). Because N ≡ 0 (mod n), (qN + 1)k ≡ 0 (mod n). We have (qN + 1)k =
∑(q+1)N

i=qN+1 i
k −∑(q+1)N

i=qN+2 i
k ≡ −

∑(q+1)N
i=qN+2 i

k (mod n) ≡ 1 (mod n). Given j, 0 < j < n, we see

j ≡


∑j/2−1

q=0

[
(qN + 1)k

∑(q+1)N
qN+2 ik

]
j even∑bj/2c−1

q=0

[
(qN + 1)k

∑(q+1)N
qN+2 ik

]
+
(
N [j/2] + 1)k

)
j odd

(12)

For j even, Mj = N(j/2−1) ≤
(
j+2
2

)
n(k+1)!. For j odd, [j/2] < j+2

2 , so [j/2]−1 < j−2
2 and N ≤ n(k+1)!.

Then Mj ≤
(
j+2
2

)
n(k + 1)!. Thus (11) holds.

We will now proceed to prove our main result.
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3 Proving Existence

First the existence of a representation of the form n =
∑m

i=1 εii
k for every n will be proved. Then an

algorithm for how to find m will be given and some estimates will be made on the length of the expansion.
This result is due to Michael Bleicher [1].

Theorem 1. For every positive integer n and non-negative integer k, there is a positive integer m and
choices of εi = ±1 such that

n =

m∑
i=1

εii
k

Proof. We apply Lemma 6 with n = Dk. Then for 0 ≤ j < Dk,

j ≡
Mj∑
i=1

εii
k (mod Dk) (13)

Then j and
∑mj

i=1 εii
k differ by a multiple of Dk. Let this difference be ∆ = ±lDk, where l ≥ 0. Since Dk is

constant, Dk = Dk,k(i2k +Mj + 1) =
∑2k−1

n=0 εk,n(i2k +Mj + 1 + n)k =
∑(i+1)2k+Mj

n=i2k+Mj+1
εk,nn

k. Suppose that

∆ > 0, then

∆ = lDk

=

l−1∑
i=0

Dk

=

l−1∑
i=1

( (i+1)2k+Mj∑
n=i2k+Mj+1

εk,nn
k
)

=

l2k+Mj∑
i=Mj+1

εii
k (14)

We add (14) to (13) to get

m∑
i=1

εii
k = j + ∆

=

Mj∑
i=1

εii
k +

l2k+Mj∑
i=Mj+1

εii
k

=

l2k+Mj∑
i=1

εii
k

If ∆ < 0, then we add −∆ to (13). If ∆ = 0, then j = n, and l = 0. In each case, we get n =
∑l2k+Mj

i=1 εii
k,

so a representation in the desired form is produced with m = l2k +Mj .

This gives one representation of each integer n in the desired form, but the construction of m seems to
be not efficient for large values of n. Some bounds on the least value of such an integer m will be given later
in the text. Here are some examples on the expansion.

Example 1. We find an expansion for n = 160, k = 3: 160 = −13−23−33−43−53+63−73+83 =
∑8

i=1 εii
3.

One expansion of n = 160 can be achieved with m = 8.
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Example 2. We find an expansion for n = 15, k = 4: 15 = 14 + 24 − 34 + 44 − 54 − 64 + 74 − 84 − 94 + 104 =∑10
i=1 εii

4. One expansion of n = 15 can be achieved with m = 10.

Example 3. We find multiple expansions for n = 5, k = 2: 5 = 12 + 22 =
∑2

i=1 εii
2, with m = 2.

Another representation gives 5 = −12 − 22 + 32 − 42 + 52 =
∑5

i=1 εii
2, with m = 5. Alternatively, 5 =

12 − 22 + 32 − 42 − 52 + 62 + 72 − 82 − 92 + 102 =
∑1

i=1 0εii
2, with m = 10. It becomes obvious that there

can be many representations of n for fixed k.

We see that some integers have multiple expansions, so this leads to proving there are infinitely many
representations of n with fixed n and k.

Corollary 1. For very positive integer n and non-negative integer k, there are infinitely many positive
integers m and choices of εj = ±1 such that

n =

m∑
i=0

εii
k

Proof. By Lemma 2, we know that Dk is constant, so

Dk(x)−Dk(x+ 2k) =

2k−1∑
i=0

εi(x+ i)k −
2k−1∑
i=0

εi(x+ 2k + i)k

0 =

2k−1+x∑
i=x

εii
k +

2k+1−1+x∑
i=x+2k

εii
k

=

2k+1−1+x∑
i=x

εii
k

since εi can be multiplied by −1 to get the equality. Given a representation n =
∑m

i=0 εii
k, we can take

x = m+1 and add
∑2k+1−1+x

i=x εii
k to n to get n =

∑m+2k+1

i=0 εii
k which is a new representation. This process

can be repeated infinitely many times. Thus there are infinitely many representations of n in the desired
form.

We will proceed to give a better representation of j, where j =
∑Mj

i=1 εii
k by modifying our procedure.

Some definitions will be given to make notation easier.

Definition 5. Fix a positive integer k. Let D = Dk.

Definition 6. Let mj be the least integer which yields the the expansion of j guaranteed by Theorem 1 for
the fixed k.

Definition 7. Let M = max{mj : 0 ≤ j < D}

Since D only depends on k, by Lemma 6 the upper bound of Mj depends only on k. Thus M is determined
by k.

Definition 8. Let Qj be the greatest positive integer such that

QjN+mj∑
i=mj+1

ik <

(Qj+1)N+mj∑
QjN+mj+1

ik (15)

Let Q = max{Qj : 0 ≤ j < D}
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We see that such a Qj must exist because the left hand side of (15) is of order Qk+1
j by Lemma 3 and the

upper bound of the right hand side of (15) is ((Qj + 1)N +mj)− (QjN +mj + 1) + 1)((Qj + 1)N +mj)
k =

N((Qj + 1)N +mj)
k, which is of order Qk

j . Also, Q > 1. We now find a lower bound for mj .

Lemma 7. For each positive integer j, the length of its shortest expansion mj satisfies

mj ≥ [((k + 1)j)1/(k+1)] ≥ [j1/(k+1)] (16)

Proof. For k = 0, the expansion of j is
∑j

i=0 i
0, so mj = j which satisfies (16). Now suppose k > 0. By

Theorem 1,

j =
∑

i = 0mj εii
k

≤ mk
j +

mj−1∑
i=0

ik

≤ mk
j +

∫ mj

0

tkdt

= mk
j +

mk+1
j

k + 1

(k + 1)j ≤ mk+1
j + (k + 1)mk

j

< (mj + 1)k+1

mj + 1 > ((k + 1)j)1/(k+1)

mj ≥ ((k + 1)j)1/(k+1)

The last inequality holds because we are working with all integers. Since (k+1)1/(k+1) > 1, ((k+1)j)1/(k+1) >
j1/(k+1), so mj ≥ [((k + 1)j)1/(k+1)] ≥ [j1/(k+1)], which proves the lemma.

We will need one more lemma before we can define the algorithm.

Lemma 8. Let {ai}∞i=1 be an increasing sequence of positive integers that for every r > 1, satisfies

r∑
i=1

ai ≥ ar+1 (17)

For fixed n and m, if
∑m

i=1 ai ≥ |n|, then there is a choice of εi = ±1 such that

∣∣∣n− m∑
i=1

εiai

∣∣∣ < a2 (18)

Proof. It is sufficient to prove such an approximation exists for n > 0, since the approximation for −n can
be found by changing the signs for all of the εi.

We prove by induction on m. For m = 1, we want to show that |n − ε1a1| < a2. The hypothesis
gives n ≤ a1 and because {ai} is an increasing sequence, n ≤ a1 < a2. Let ε1 = 1. Then it fol-
lows |n − ε1a1| ≤ a1 < a2, so (18) is satisfied. If m = 2, then we either have |n − (a1 + a2)| < a2 or
|n − (a1 + a2)| ≥ a2. If it is case 1, then we are done. For case 2, from the hypothesis n ≤ a1 + a2, we
obtain a1 + a2 − n ≥ a2. Then by subtracting 2a1 from both sides, a2 − a1 − n ≥ a2 − 2a1. Because a1 and
n are positive, a2 > a2 − a1 − n. Since a1 < a2, a2 − 2a1 > a1 − 2a1 = −a1 > −a2. Putting all inequalities
together yields a2 > a2 − a1 − n > −a2, so |n− (−a1 + a2)| < a2. Thus we have found ε1 = −1, ε2 = 1 such
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that (18) is satisfied for m = 2.

Assume the lemma holds for l < m, we want to show (18) holds for l = m, where m > 2. From the
hypothesis,

n <

m∑
i=1

ai (19)

Since n ≥ 0 and m > 2 and (17) is true for r = m, subtracting am from both sides of (19) gives

n− am <

m−1∑
i=1

ai

− am ≤ n− am <

m−1∑
i=1

ai

m−1∑
i=1

−ai < −am ≤ n− am <

m−1∑
i=1

ai

Thus |n− am| satisfies (17) with l = m− 1, so for a choice εi = ±1,

∣∣∣|n− am| − m=1∑
i=1

εiai

∣∣∣ < a2

Then for n ≥ am, we can choose εm = 1 and for n < am, we can choose εm = −1 such that∣∣∣n− m∑
i=1

εiai

∣∣∣ < a2

This concludes the inductive hypothesis, so the lemma has been proved for all m.

We can now define the algorithm.

4 The Algorithm

Given n ∈ Z and k ∈ N, we want to find T such that n =
∑T

i=1 εii
k, where εi ∈ {−1, 1}. The algorithm for

finding T will be presented below.

Step 1: Compute D from Definition 5 with the given k.

Step 2: Choose j, 0 ≤ j < D such that n ≡ j (mod D).

Step 3: Find the expansion of j in the desired form (10), which is of length mj .
From Lemma 6 with n = D, there is an upper bound on mj ≤M , so this is a finite process.

Step 4: For each value of j, j < D, define a sequence satisfying the hypothesis of Lemma 8 as follows:

Definition 9. Let a
(j)
1 =

∑QjN+mj

i=mj+1 ik. For m ≥ 1, let

a
(j)
m+1 =

(m+Qj)N+mj∑
i=(m−1+Qj)N+mj+1

ik

8



For any l > m, a
(j)
l > a

(j)
m by looking at the bounds of the summation. Using the definition of Qj from

Definition 8, we see that
∑r

i=1 a
(j)
i > a

(j)
r+1. Thus {a(j)m } is a sequence that satisfies the hypothesis of Lemma

8. Note also by the definition of N in Definition 7, we have a
(j)
m ≡ 0 (mod D) for all m.

Step 5: Given n, let Ln be the least integer such that

n ≤
Ln∑
m=1

a(j)m

Following the inductive procedure in the proof of Lemma 8, we can find a sequence of εi = ±1 such that

|n−
∑m

i=1 εia
(j)
i | < a

(j)
2 . We expand the a

(j)
i ’s and redefine a new sequence of εi’s to get

a
(j)
2 >

∣∣∣n− Ln∑
i=1

εia
(j)
i

∣∣∣
=
∣∣∣n− (QjN+mj∑

i=mj+1

ε1i
k +

(1+Qj)N+mj∑
i=QjN+mj+1

ε2i
k + ...+

(Ln−1+Qj)N+mj∑
i=(Ln−2+Qj)N+mj+1

εLn
ik
)∣∣∣

=
∣∣∣n− (Ln−1+Qj)N+mj∑

i=mj+1

εii
k
∣∣∣

Thus we have ∣∣∣n− (Ln−1+Qj)N+mj∑
i=mj+1

εii
k
∣∣∣ < a

(j)
2 (20)

Step 6: Since all the a
(j)
i ≡ 0 (mod D), we gave a

(j)
2 ≡ 0 (mod D). Then by the choice of mj in Definition

5, (20), and Lemma 7, we have

n ≡
(Ln−1+Qj)N+mj∑

i=mj+1

εii
k (mod D)

By adding
∑mj

i=1 i
k to both sides of (20), we get

∣∣∣n− (Ln−1+Qj)N+mj∑
i=1

εii
k
∣∣∣ < a

(j)
2 +

mj∑
i=1

ik

<

(1+Qj)N+mj∑
i=QjN+mj+1

ik +

mj∑
i=1

ik (21)

Replacing mj and Qj by M and Q respectively increases the right-hand side of (21), so we get

∣∣∣n− (Ln−1+Qj)N+mj∑
i=1

εii
k
∣∣∣ < (1+Q)N+M∑

i=QN+M+1

ik +

mj∑
i=1

ik (22)

The right-hand side of (22) is independent of both n and j, so there is a constant C that depends only on k
such that ∣∣∣n− (Ln−1+Qj)N+mj∑

i=1

εii
k
∣∣∣ < C
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Therefore, for some l, 0 < l < C/D, it follows that

n−
(Ln−1+Qj)N+mj∑

i=1

εii
k = ±lD (23)

Then from Definition 3, a possible redefinition of εi and the fact that D = Dk,k(x) is independent of x,
where the ± agrees with (23), we have

n =

(Ln−1+Qj)N+mj∑
i=1

εii
k ±

l∑
i=1

Dk,k((Ln − 1 +Qj)N +mj + 1 + (i− 1)2k)

=

(Ln−1+Qj)N+mj∑
i=1

εii
k ±

(Ln−1+Qj)N+mj+l2k∑
i=(Ln−1+Qj)N+mj+1

εii
k

=

(Ln−1+Qj)N+mj+l2k∑
i=1

εii
k

Thus we have the desired expansion of

n =

T∑
i=1

εii
k

where T = T (n) = (Ln − 1 +Qj)N +mj + l2k. The algorithm is of polynomial time if it is upper bounded
by a polynomial expression in its input size, which is true in our case because T (n) is given in a polynomial
in n. This completes the algorithm.

It remains to calculate an upper bound for the length of the expansion T (n). Since mj ’s are bounded
above by M and Qj ’s are bounded above by Q, and Q,N,M and l only depend on k, Ln is the only term
in T (n) that depends on n. In the following proofs, we suppress the subscript in j to make the notation

simpler, where a
(j)
m will be replaced by am and we will write Q and M instead of Qj and mj .

Lemma 9. For fixed k and sufficiently large n, the length of the sum T (n) determined by the algorithm
satisfies the following inequality:

T (N) ≤ [((k + 1)n)1/(k+1)] + l2k + 1 (24)

Proof. We examine Ln found in Step 4 of the algorithm. By its definition and the definition of am+1, it
follows that

n >

Ln−1∑
m=1

am

= a1 +

Ln−2∑
m=1

am+1

>

QN+M∑
i=M+1

ik +

Ln+2∑
m=1

( (m+Q)N+M∑
i=(m−1+Q)N+M+1

ik
)

=

QN+M∑
i=M+1

ik +

(Ln−1+Q)N+M∑
i=QN+M+1

ik
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From the definition of T (n) = (Ln − 1 +Qj)N +mj + l2k, we see that

n >

T−l2k∑
i=M+1

ik

We use a lower integral approximation on the sum to obtain

n >

∫ T−l2k

M+1

ikdi

=
(T − l2k)k+1

k + 1
− Mk+1

k + 1

(k + 1)n > (T − l2k)k+1 −Mk+1

Since T depends only on n, and T grows arbitrarily large as n→∞, for sufficiently large n

(k + 1)n > (T − l2k)k+1 −Mk+1

> (T − l2k − 1)k+1

((k + 1)n)1/(k+1) > T − l2k − 1

T < [((k + 1)n)1/(k+1)] + l2k + 1

Since T must be an integer, we obtain T ≤ [((k + 1)n)1/(k+1)] + l2k + 1, which proves the lemma.

Theorem 2. If for fixed k, L(n) is the length of the shortest expansion of n as a sum in the desired form,
then L(n) is asymptotic to [(k + 1)n]1/(k+1) as n→∞.

Proof. We want to show that limn→∞
L(n)

[(k+1)n]1/(k+1) = 1. The upper bound of L(n) is [((k + 1)n)1/(k+1)] +

l2k + 1 by Lemma 9 and the lower bound of L(n) is [((k + 1)n)1/(k+1)] by Lemma 7. Using the Squeeze
Theorem, we obtain

lim
n→∞

[((k + 1)n)1/(k+1)]

[(k + 1)n]1/(k+1)
≤ lim

n→∞

L(n)

[(k + 1)n]1/(k+1)
≤ lim

n→∞

[((k + 1)n)1/(k+1)] + l2k + 1

[(k + 1)n]1/(k+1)

1 ≤ lim
n→∞

L(n)

[(k + 1)n]1/(k+1)
≤ 1

lim
n→∞

L(n)

[(k + 1)n]1/(k+1)
= 1

Thus L(n) is asymptotic to [(k + 1)n]1/(k+1) as n→∞.

We now change our perspective to what happens if n is fixed and k tends to infinity.

Theorem 3. For a fixed value of n, let l(k) be the shortest expansion of n as a sum in the desired form.
Then l(k) ≥ k + 2 as k →∞.

Proof. Let us denote l(k) by l. Since n =
∑l

i=1 i
k = lk +

∑l−1
i=1 i

k, for k large enough such that 2k > n, we
must have

lk −
l−1∑
i=1

ik < n
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By replacing the sum with an upper integral approximation, we get

n > lk −
(

1 +

∫ l

2

xkdx
)

= lk − 1− lk+1

k + 1
+

2k+1

k + 1

lk
(

1− l

k + 1

)
< n− 2k+1

k + 1
+ 1

lk
( l

k + 1
− 1
)
>

2k+1

k + 1
− n− 1 (25)

For k large enough such that 2k

k+1 > n+ 1, (25) and the fact that lk > 0 yields

lk
( l

k + 1
− 1
)
> 0

l

k + 1
− 1 > 0

l

k + 1
> 1

l > k + 1

l ≥ k + 2

The last inequality yields because we are dealing with integers. Thus we have an asymptotic estimate of l as

k →∞ with n fixed. As a direct consequence, for fixed n, lim infk→∞
l(k)
k ≥ 1 because l(k) is lower bounded

by k + 2.

This concludes our main findings. We will turn our attention to further conjectures of the same sort by
changing the choices of εi or the choices of ai.

5 Concluding Remarks

There have been several generalizations of this problem. Bleicher [1] poses one question about generalization,
which asks whether we can generalize the problem to {ai} being an increasing sequence of integers such that
ai > ci for a constant c > 0 and every positive integer i, and whether or not there is an upper bound on the
possible choices of c. These are answered by Feng-Juan Chen and Yong-Gao Chen [2], with the first problem
in the affirmative and the second problem in the negative. Yu [3] generalizes this result to a polynomial
ai = f(i) with the condition that there does not exist an integer d > 1 such that it divides the values f(x)
for all x and proves that for a given l, every integer n can be written as n =

∑m
i=l εif(i). There are infinitely

more questions of this sort that are waiting to be answered.
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