Signed Sums of k th Powers

Julie Zhang

June 2017

Contents

1 Introduction 1
2 Preliminary Results 1
3 Proving Existence 5
4 The Algorithm 8
5 Concluding Remarks 12

1 Introduction

There are many problems in number theory that involve looking at the representation of the integers or real numbers in the form $n=\sum_{i=1}^{m} \epsilon_{i} a_{i}$, where $\left\{a_{i}\right\}$ is a given sequence and the ϵ_{i} have values restricted to a given set, and m is the number to be found. Some famous problems are the Egyptian Fractions, where $\left\{a_{i}\right\}=1 / i$ and $\epsilon_{i} \in\{0,1\}$, and we are examining representations of fractions, and Waring's Problem, which asks what is the minimum number of integers needed to present each natural number as the sum of a k th power. Many other problems of this sort can be formed with suitable choices of a_{i} and ϵ_{i}. In this paper, we will examine the result proved by Michael Bleicher [1], in which we choose $a_{i}=i^{k}$ for a fixed non-negative integer k, and $\epsilon_{i} \in\{-1,1\}$. We will prove that infinitely many representations of any integer n will exist and an algorithm will be determined for finding m, where the algorithm is of polynomial time. Lower bounds of m will be proved and asymptotic estimates of m will be given in each of the following cases (a) k fixed and $n \rightarrow \infty$ and (b) n fixed and $k \rightarrow \infty$.

2 Preliminary Results

Definition 1. For a non-negative integer k, define $\epsilon_{k, j}$ for $0 \leq j \leq 2^{k}$ to be

$$
\epsilon_{k, j}= \begin{cases}1 & k=0 \tag{1}\\ -\epsilon_{k-1, j} & \text { for } k>0 \text { and } 0 \leq j<2^{k-1} \\ \epsilon_{k-1, j-2^{k-1}} & \text { for } k>0 \text { and } 2^{k-1} \leq j<2^{k}\end{cases}
$$

Definition 2. For k and l non-negative integers and x real, define

$$
\begin{equation*}
D_{k, l}(x)=\sum_{i=0}^{2^{k}-1} \epsilon_{k, i}(x+i)^{l} \tag{2}
\end{equation*}
$$

By convention $0^{0}=1$.

We see that $D_{0,0}(x)=\sum_{i=0}^{0} \epsilon_{0, i}(x+i)^{0}=1$ and $D_{k, 0}(x)=\sum_{i=0}^{2^{k}-1} \epsilon_{k, i}=0$ for $k>0$ by the definition of $\epsilon_{k, i}$.

Definition 3. Let $f(x)$ be a function defined on the integers. We define $D_{k} f(x)$ inductively for $k>0$ by

$$
\begin{gather*}
D_{0} f(x)=f(x) \tag{3}\\
D_{k} f(x)=D_{k-1} f\left(x+2^{k-1}\right)-D_{k-1} f(x) \tag{4}
\end{gather*}
$$

Lemma 1. For all non-negative integers k,

$$
\begin{equation*}
D_{k} f(x)=\sum_{i=0}^{2^{k}-1} \epsilon_{k, i} f(x+i) \tag{5}
\end{equation*}
$$

Proof. We proceed by induction. For $k=0, D_{0} f(x)=\sum_{i=0}^{0} \epsilon_{0, i} f(x+i)=f(x)$, which is true by definition. Now, suppose the lemma holds for $D_{k-1} f(x)$. Then from (1) and (3), we get

$$
\begin{aligned}
\sum_{i=0}^{2^{k}-1} \epsilon_{k, i} f(x+i) & =\sum_{i=0}^{2^{k-1}-1} \epsilon_{k, i} f(x+i)+\sum_{i=2^{k-1}}^{2^{k}-1} \epsilon_{k, i} f(x+i) \\
& =\sum_{i=0}^{2^{k-1}-1}-\epsilon_{k-1, i} f(x+i)+\sum_{i=2^{k-1}}^{2^{k}-1} \epsilon_{k-1, i-2^{k-1}} f(x+i) \\
& =-D_{k-1} f(x)+\sum_{i=0}^{2^{k-1}-1} \epsilon_{k, i} f\left(x+2^{k-1}+i\right) \\
& =D_{k-1} f\left(x+2^{k-1}\right)-D_{k-1} f(x) \\
& =D_{k} f(x)
\end{aligned}
$$

Remark. If $f(x)=x^{l}$, we have $D_{k} f(x)=D_{k, l}(x)$ using (2) and (5).
Lemma 2. For all non-negative integers $k, D_{k, k}(x)$ is constant and $D_{k, l}(x)=0$ for $l<k$.
Proof. We first consider $k=l$ and prove by induction. For $k=0$, we have $D_{0,0}(x)=1$ by definition, so it is constant. Now, suppose the lemma holds for $k=m-1$. Then by Lemma 1 we have

$$
\begin{equation*}
D_{m, l}(x)=D_{m} x^{l}=D_{m-1}\left(x+2^{m-1}\right)^{l}-D_{m-1}(x)^{l} \tag{6}
\end{equation*}
$$

Note that by the definition of $D_{k} f(x)$, we have $\frac{d}{d x} D_{k} f(x)=D_{k} f^{\prime}(x)$. Then by differentiating (6), we get

$$
\begin{aligned}
D_{m, l}^{\prime}(x) & =D_{m-1}^{\prime}\left(x+2^{m-1}\right)^{l}-D_{m-1}^{\prime}(x)^{l} \\
& =l D_{m-1}\left(x+2^{m-1}\right)^{l-1}-l D_{m-1}(x)^{l-1} \\
& =l\left(D_{m-1, l-1}\left(x+2^{m-1}\right)-D_{m-1, l-1}(x)\right)
\end{aligned}
$$

By the inductive hypothesis, $D_{m-1, l-1}\left(x+2^{m-1}\right)-D_{m-1, l-1}(x)=0$ for $m=l$. Thus $D_{m, m}^{\prime}(x)=0$, so $D_{m, m}(x)$ must be constant. Because $D_{l, l}(x)$ is constant, $D_{l+1, l}(x)=D_{l, l}\left(x+2^{l}\right)-D_{l, l}(x)=0$. Thus it is true that $D_{k, l}(x)=0$ for $k>l$.

Definition 4. $D_{k}=D_{k, k}(x)$
This will allow for the notation to be less cluttered.

Lemma 3. For every pair of non-negative integers k and n,

$$
\begin{equation*}
\sum_{i=1}^{n} i^{k}=\frac{n^{k+1}}{k+1}+\frac{n P_{k-1}(n)}{(k+1)!} \tag{7}
\end{equation*}
$$

where $P_{k-1}(n)$ is a integer polynomial in n of order $k-1$ with the convention that $P_{-1}(n)=0$.
Proof. We proceed by induction on k. For $k=0, \sum_{i=1}^{k} i^{0}=n=\frac{n^{1}}{1}+\frac{n P_{-1}(n)}{1!}$, so it is true for $k=0$. Now, suppose the lemma is true for all integers $j, 0 \leq j<k$, and we want to show it is true for $j=k$.
Define $c_{j}=j^{k+1}-(j-1)^{k+1}$. By the Binomial Theorem,

$$
\begin{aligned}
c_{j} & =j^{k-1}-\sum_{i=0}^{k+1}\binom{k+1}{i}(-1)^{i} j^{k+1-i} \\
& =-\sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i} j^{k+1-i}
\end{aligned}
$$

Note that $n^{k+1}=\sum_{j=1}^{n} c_{j}$ by the definition of c_{j}. Then by simplifying n^{k+1} and using the inductive hypothesis,

$$
\begin{aligned}
n^{k+1} & =-\sum_{j=1}^{n} \sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i} j^{k+1-i} \\
& =-\sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i} \sum_{j=1}^{n} j^{k+1-i} \\
& =-(-1)^{1}\binom{k+1}{1} \sum_{j=1}^{n} j^{k+1-1}-\sum_{i=2}^{k+1}\binom{k+1}{i}(-1)^{i} \sum_{j=1}^{n} j^{k+1-i} \\
& =(k+1) \sum_{j=1}^{n} j^{k}-\sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i}\left(\frac{n^{k+2-i}}{k+2-i}+\frac{n P_{k-i}(n)}{(k+2-i)!}\right)
\end{aligned}
$$

Because the highest order of $n P_{k-i}(n)$ is $k-2+1=k-1$ and the largest order of $(k+2-i)$! is $k+2-2=k$, $\sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i}\left(\frac{n^{k+2-i}}{k+2-i}+\frac{n P_{k-i}(n)}{(k+2-i)!}\right)$ can be written in the form $\frac{n P_{k-1}(n)}{k!}$. Then we can solve for $\sum_{j=1}^{n} j^{k}$.

$$
\begin{aligned}
n^{k+1} & =(k+1) \sum_{j=1}^{n} j^{k}-\frac{n P_{k-1}(n)}{k!} \\
\sum_{j=1}^{n} j^{k} & =\frac{n^{k+1}}{k+1}-\frac{n P_{k-1}(n)}{(k+1)!}
\end{aligned}
$$

which is the desired form. The proof is complete.
Lemma 4. For every positive integer n, and every non-negative integer k, there exists an integer N such that

$$
\begin{equation*}
\sum_{i=1}^{N} i^{k} \equiv 0(\bmod n) \tag{8}
\end{equation*}
$$

and N can be chosen such that $N \equiv 0(\bmod n)$.

Proof. We show that taking $N=n(k+1)$! proves the lemma. $N=n(k+1)!\equiv 0(\bmod n)$. By the previous lemma, we have

$$
\begin{aligned}
\sum_{i=1}^{n(k+1)!} i^{k} & =\frac{(n(k+1)!)^{k+1}}{k+1}-\frac{n(k+1)!P_{k-1}(n)}{(k+1)!} \\
& =\frac{(n(k+1)!)^{k+1}}{k+1}-n P_{k-1}(n) \\
& \equiv 0(\bmod n)
\end{aligned}
$$

Note that $N=n(k+1)$! is not the minimal value. For example, $N=4$ will work for $n=4, k=3$, but the value the proof yields is 96 .

Lemma 5. For every positive integer n and non-negative integer k, there is a positive integer $N, N \equiv 0$ $(\bmod n)$ such that for every integer l

$$
\begin{equation*}
\sum_{i=l+1}^{l+N} i^{k} \equiv 0(\bmod n) \tag{9}
\end{equation*}
$$

Proof. Choose N as in Lemma 4. Then the sum in (9) covers the identical range $(\bmod n)$ as the sum in Lemma 4 independent of l, and thus has sum $\equiv 0(\bmod n)$.

Let N be the number that depends only on n given by Lemma 5 .
Lemma 6. For every positive integer n, non-negative integer k, and j with $0 \leq j<n$, there is a number M_{j} and some choice of ϵ_{i} such that

$$
\begin{equation*}
j \equiv \sum_{i=1}^{m_{j}} \epsilon_{i} i^{k}(\bmod n) \tag{10}
\end{equation*}
$$

For $k>0$, we can choose M_{j} to satisfy

$$
\begin{equation*}
M_{j} \leq\left(\frac{j+2}{2}\right) n(k+1)! \tag{11}
\end{equation*}
$$

For $k=0$, we satisfy (10) and (11) but choosing $M_{j}=j, \epsilon_{i}=1$.
Proof. It is obvious that $j \equiv \sum_{i=1}^{j} \epsilon_{i}(\bmod n)$, where $\epsilon_{i}=1$ for all i. For $j=0$ and $k>0$, (8) gives a representation with $M_{j}=N$ and $\epsilon_{i}=1$ for all i. It is clear that $N \leq(2 / 2) n(k+1)!=n(k+1)!=N$, so it satisfies (11).
Consider $j>0$ and $k>0$. Take $l=q N$ for any positive integer q, and by Lemma 6 , we see $\sum_{i=q N+1}^{(q+1) N} i^{k} \equiv$ $0(\bmod n)$. Because $N \equiv 0(\bmod n),(q N+1)^{k} \equiv 0(\bmod n)$. We have $(q N+1)^{k}=\sum_{i=q N+1}^{(q+1) N} i^{k}-$ $\sum_{i=q N+2}^{(q+1) N} i^{k} \equiv-\sum_{i=q N+2}^{(q+1) N} i^{k}(\bmod n) \equiv 1(\bmod n)$. Given $j, 0<j<n$, we see

$$
j \equiv \begin{cases}\sum_{q=0}^{j / 2-1}\left[(q N+1)^{k} \sum_{q N+2}^{(q+1) N} i^{k}\right] & j \text { even } \tag{12}\\ \left.\sum_{q=0}^{\lfloor j / 2\rfloor-1}\left[(q N+1)^{k} \sum_{q N+2}^{(q+1) N} i^{k}\right]+(N[j / 2]+1)^{k}\right) & j \text { odd }\end{cases}
$$

For j even, $M_{j}=N(j / 2-1) \leq\left(\frac{j+2}{2}\right) n(k+1)$!. For j odd, $[j / 2]<\frac{j+2}{2}$, so $[j / 2]-1<\frac{j-2}{2}$ and $N \leq n(k+1)$!. Then $M_{j} \leq\left(\frac{j+2}{2}\right) n(k+1)$!. Thus (11) holds.

We will now proceed to prove our main result.

3 Proving Existence

First the existence of a representation of the form $n=\sum_{i=1}^{m} \epsilon_{i} i^{k}$ for every n will be proved. Then an algorithm for how to find m will be given and some estimates will be made on the length of the expansion. This result is due to Michael Bleicher [1].

Theorem 1. For every positive integer n and non-negative integer k, there is a positive integer m and choices of $\epsilon_{i}= \pm 1$ such that

$$
n=\sum_{i=1}^{m} \epsilon_{i} i^{k}
$$

Proof. We apply Lemma 6 with $n=D_{k}$. Then for $0 \leq j<D_{k}$,

$$
\begin{equation*}
j \equiv \sum_{i=1}^{M_{j}} \epsilon_{i} i^{k}\left(\bmod D_{k}\right) \tag{13}
\end{equation*}
$$

Then j and $\sum_{i=1}^{m_{j}} \epsilon_{i} i^{k}$ differ by a multiple of D_{k}. Let this difference be $\Delta= \pm l D_{k}$, where $l \geq 0$. Since D_{k} is constant, $D_{k}=D_{k, k}\left(i 2^{k}+M_{j}+1\right)=\sum_{n=0}^{2^{k}-1} \epsilon_{k, n}\left(i 2^{k}+M_{j}+1+n\right)^{k}=\sum_{n=i 2^{k}+M_{j}+1}^{(i+1) 2^{k}+M_{j}} \epsilon_{k, n} n^{k}$. Suppose that $\Delta>0$, then

$$
\begin{align*}
\Delta & =l D_{k} \\
& =\sum_{i=0}^{l-1} D_{k} \\
& =\sum_{i=1}^{l-1}\left(\sum_{n=i 2^{k}+M_{j}+1}^{(i+1) 2^{k}+M_{j}} \epsilon_{k, n} n^{k}\right) \\
& =\sum_{i=M_{j}+1}^{l 2^{k}+M_{j}} \epsilon_{i} i^{k} \tag{14}
\end{align*}
$$

We add (14) to (13) to get

$$
\begin{aligned}
\sum_{i=1}^{m} \epsilon_{i} i^{k} & =j+\Delta \\
& =\sum_{i=1}^{M_{j}} \epsilon_{i} i^{k}+\sum_{i=M_{j}+1}^{l 2^{k}+M_{j}} \epsilon_{i} i^{k} \\
& =\sum_{i=1}^{l 2^{k}+M_{j}} \epsilon_{i} i^{k}
\end{aligned}
$$

If $\Delta<0$, then we add $-\Delta$ to (13). If $\Delta=0$, then $j=n$, and $l=0$. In each case, we get $n=\sum_{i=1}^{l 2^{k}+M_{j}} \epsilon_{i} i^{k}$, so a representation in the desired form is produced with $m=l 2^{k}+M_{j}$.

This gives one representation of each integer n in the desired form, but the construction of m seems to be not efficient for large values of n. Some bounds on the least value of such an integer m will be given later in the text. Here are some examples on the expansion.
Example 1. We find an expansion for $n=160, k=3: 160=-1^{3}-2^{3}-3^{3}-4^{3}-5^{3}+6^{3}-7^{3}+8^{3}=\sum_{i=1}^{8} \epsilon_{i} i^{3}$. One expansion of $n=160$ can be achieved with $m=8$.

Example 2. We find an expansion for $n=15, k=4$: $15=1^{4}+2^{4}-3^{4}+4^{4}-5^{4}-6^{4}+7^{4}-8^{4}-9^{4}+10^{4}=$ $\sum_{i=1}^{10} \epsilon_{i} i^{4}$. One expansion of $n=15$ can be achieved with $m=10$.
Example 3. We find multiple expansions for $n=5, k=2: 5=1^{2}+2^{2}=\sum_{i=1}^{2} \epsilon_{i} i^{2}$, with $m=2$. Another representation gives $5=-1^{2}-2^{2}+3^{2}-4^{2}+5^{2}=\sum_{i=1}^{5} \epsilon_{i} i^{2}$, with $m=5$. Alternatively, $5=$ $1^{2}-2^{2}+3^{2}-4^{2}-5^{2}+6^{2}+7^{2}-8^{2}-9^{2}+10^{2}=\sum_{i=1}^{1} 0 \epsilon_{i} i^{2}$, with $m=10$. It becomes obvious that there can be many representations of n for fixed k.

We see that some integers have multiple expansions, so this leads to proving there are infinitely many representations of n with fixed n and k.

Corollary 1. For very positive integer n and non-negative integer k, there are infinitely many positive integers m and choices of $\epsilon_{j}= \pm 1$ such that

$$
n=\sum_{i=0}^{m} \epsilon_{i} i^{k}
$$

Proof. By Lemma 2, we know that D_{k} is constant, so

$$
\begin{aligned}
D_{k}(x)-D_{k}\left(x+2^{k}\right) & =\sum_{i=0}^{2^{k}-1} \epsilon_{i}(x+i)^{k}-\sum_{i=0}^{2^{k}-1} \epsilon_{i}\left(x+2^{k}+i\right)^{k} \\
0 & =\sum_{i=x}^{2^{k}-1+x} \epsilon_{i} i^{k}+\sum_{i=x+2^{k}}^{2^{k+1}-1+x} \epsilon_{i} i^{k} \\
& =\sum_{i=x}^{2^{k+1}-1+x} \epsilon_{i} i^{k}
\end{aligned}
$$

since ϵ_{i} can be multiplied by -1 to get the equality. Given a representation $n=\sum_{i=0}^{m} \epsilon_{i} i^{k}$, we can take $x=m+1$ and add $\sum_{i=x}^{2^{k+1}-1+x} \epsilon_{i} i^{k}$ to n to get $n=\sum_{i=0}^{m+2^{k+1}} \epsilon_{i} i^{k}$ which is a new representation. This process can be repeated infinitely many times. Thus there are infinitely many representations of n in the desired form.

We will proceed to give a better representation of j, where $j=\sum_{i=1}^{M_{j}} \epsilon_{i} i^{k}$ by modifying our procedure. Some definitions will be given to make notation easier.

Definition 5. Fix a positive integer k. Let $D=D_{k}$.
Definition 6. Let m_{j} be the least integer which yields the the expansion of j guaranteed by Theorem 1 for the fixed k.

Definition 7. Let $M=\max \left\{m_{j}: 0 \leq j<D\right\}$
Since D only depends on k, by Lemma 6 the upper bound of M_{j} depends only on k. Thus M is determined by k.

Definition 8. Let Q_{j} be the greatest positive integer such that

$$
\begin{equation*}
\sum_{i=m_{j}+1}^{Q_{j} N+m_{j}} i^{k}<\sum_{Q_{j} N+m_{j}+1}^{\left(Q_{j}+1\right) N+m_{j}} i^{k} \tag{15}
\end{equation*}
$$

Let $Q=\max \left\{Q_{j}: 0 \leq j<D\right\}$

We see that such a Q_{j} must exist because the left hand side of (15) is of order Q_{j}^{k+1} by Lemma 3 and the upper bound of the right hand side of (15) is $\left.\left(\left(Q_{j}+1\right) N+m_{j}\right)-\left(Q_{j} N+m_{j}+1\right)+1\right)\left(\left(Q_{j}+1\right) N+m_{j}\right)^{k}=$ $N\left(\left(Q_{j}+1\right) N+m_{j}\right)^{k}$, which is of order Q_{j}^{k}. Also, $Q>1$. We now find a lower bound for m_{j}.

Lemma 7. For each positive integer j, the length of its shortest expansion m_{j} satisfies

$$
\begin{equation*}
m_{j} \geq\left[((k+1) j)^{1 /(k+1)}\right] \geq\left[j^{1 /(k+1)}\right] \tag{16}
\end{equation*}
$$

Proof. For $k=0$, the expansion of j is $\sum_{i=0}^{j} i^{0}$, so $m_{j}=j$ which satisfies (16). Now suppose $k>0$. By Theorem 1,

$$
\begin{gathered}
j=\sum i=0^{m_{j}} \epsilon_{i} i^{k} \\
\leq m_{j}^{k}+\sum_{i=0}^{m_{j}-1} i^{k} \\
\leq m_{j}^{k}+\int_{0}^{m_{j}} t^{k} d t \\
=m_{j}^{k}+\frac{m_{j}^{k+1}}{k+1} \\
(k+1) j
\end{gathered}
$$

The last inequality holds because we are working with all integers. Since $(k+1)^{1 /(k+1)}>1,((k+1) j)^{1 /(k+1)}>$ $j^{1 /(k+1)}$, so $m_{j} \geq\left[((k+1) j)^{1 /(k+1)}\right] \geq\left[j^{1 /(k+1)}\right]$, which proves the lemma.

We will need one more lemma before we can define the algorithm.
Lemma 8. Let $\left\{a_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence of positive integers that for every $r>1$, satisfies

$$
\begin{equation*}
\sum_{i=1}^{r} a_{i} \geq a_{r+1} \tag{17}
\end{equation*}
$$

For fixed n and m, if $\sum_{i=1}^{m} a_{i} \geq|n|$, then there is a choice of $\epsilon_{i}= \pm 1$ such that

$$
\begin{equation*}
\left|n-\sum_{i=1}^{m} \epsilon_{i} a_{i}\right|<a_{2} \tag{18}
\end{equation*}
$$

Proof. It is sufficient to prove such an approximation exists for $n>0$, since the approximation for $-n$ can be found by changing the signs for all of the ϵ_{i}.

We prove by induction on m. For $m=1$, we want to show that $\left|n-\epsilon_{1} a_{1}\right|<a_{2}$. The hypothesis gives $n \leq a_{1}$ and because $\left\{a_{i}\right\}$ is an increasing sequence, $n \leq a_{1}<a_{2}$. Let $\epsilon_{1}=1$. Then it follows $\left|n-\epsilon_{1} a_{1}\right| \leq a_{1}<a_{2}$, so (18) is satisfied. If $m=2$, then we either have $\left|n-\left(a_{1}+a_{2}\right)\right|<a_{2}$ or $\left|n-\left(a_{1}+a_{2}\right)\right| \geq a_{2}$. If it is case 1 , then we are done. For case 2 , from the hypothesis $n \leq a_{1}+a_{2}$, we obtain $a_{1}+a_{2}-n \geq a_{2}$. Then by subtracting $2 a_{1}$ from both sides, $a_{2}-a_{1}-n \geq a_{2}-2 a_{1}$. Because a_{1} and n are positive, $a_{2}>a_{2}-a_{1}-n$. Since $a_{1}<a_{2}, a_{2}-2 a_{1}>a_{1}-2 a_{1}=-a_{1}>-a_{2}$. Putting all inequalities together yields $a_{2}>a_{2}-a_{1}-n>-a_{2}$, so $\left|n-\left(-a_{1}+a_{2}\right)\right|<a_{2}$. Thus we have found $\epsilon_{1}=-1, \epsilon_{2}=1$ such
that (18) is satisfied for $m=2$.
Assume the lemma holds for $l<m$, we want to show (18) holds for $l=m$, where $m>2$. From the hypothesis,

$$
\begin{equation*}
n<\sum_{i=1}^{m} a_{i} \tag{19}
\end{equation*}
$$

Since $n \geq 0$ and $m>2$ and (17) is true for $r=m$, subtracting a_{m} from both sides of (19) gives

$$
\begin{aligned}
& n-a_{m}<\sum_{i=1}^{m-1} a_{i} \\
& -a_{m} \leq n-a_{m}<\sum_{i=1}^{m-1} a_{i} \\
& \sum_{i=1}^{m-1}-a_{i}<-a_{m} \leq n-a_{m}<\sum_{i=1}^{m-1} a_{i}
\end{aligned}
$$

Thus $\left|n-a_{m}\right|$ satisfies (17) with $l=m-1$, so for a choice $\epsilon_{i}= \pm 1$,

$$
\left|\left|n-a_{m}\right|-\sum_{i=1}^{m=1} \epsilon_{i} a_{i}\right|<a_{2}
$$

Then for $n \geq a_{m}$, we can choose $\epsilon_{m}=1$ and for $n<a_{m}$, we can choose $\epsilon_{m}=-1$ such that

$$
\left|n-\sum_{i=1}^{m} \epsilon_{i} a_{i}\right|<a_{2}
$$

This concludes the inductive hypothesis, so the lemma has been proved for all m.
We can now define the algorithm.

4 The Algorithm

Given $n \in \mathbb{Z}$ and $k \in \mathbb{N}$, we want to find T such that $n=\sum_{i=1}^{T} \epsilon_{i} i^{k}$, where $\epsilon_{i} \in\{-1,1\}$. The algorithm for finding T will be presented below.

Step 1: Compute D from Definition 5 with the given k.
Step 2: Choose $j, 0 \leq j<D$ such that $n \equiv j(\bmod D)$.
Step 3: Find the expansion of j in the desired form (10), which is of length m_{j}. From Lemma 6 with $n=D$, there is an upper bound on $m_{j} \leq M$, so this is a finite process.

Step 4: For each value of $j, j<D$, define a sequence satisfying the hypothesis of Lemma 8 as follows:
Definition 9. Let $a_{1}^{(j)}=\sum_{i=m_{j}+1}^{Q_{j} N+m_{j}} i^{k}$. For $m \geq 1$, let

$$
a_{m+1}^{(j)}=\sum_{i=\left(m-1+Q_{j}\right) N+m_{j}+1}^{\left(m+Q_{j}\right) N+m_{j}} i^{k}
$$

For any $l>m, a_{l}^{(j)}>a_{m}^{(j)}$ by looking at the bounds of the summation. Using the definition of Q_{j} from Definition 8, we see that $\sum_{i=1}^{r} a_{i}^{(j)}>a_{r+1}^{(j)}$. Thus $\left\{a_{m}^{(j)}\right\}$ is a sequence that satisfies the hypothesis of Lemma 8. Note also by the definition of N in Definition 7, we have $a_{m}^{(j)} \equiv 0(\bmod D)$ for all m.

Step 5: Given n, let L_{n} be the least integer such that

$$
n \leq \sum_{m=1}^{L_{n}} a_{m}^{(j)}
$$

Following the inductive procedure in the proof of Lemma 8, we can find a sequence of $\epsilon_{i}= \pm 1$ such that $\left|n-\sum_{i=1}^{m} \epsilon_{i} a_{i}^{(j)}\right|<a_{2}^{(j)}$. We expand the $a_{i}^{(j)}$'s and redefine a new sequence of ϵ_{i} 's to get

$$
\begin{aligned}
a_{2}^{(j)} & >\left|n-\sum_{i=1}^{L_{n}} \epsilon_{i} a_{i}^{(j)}\right| \\
& =\left|n-\left(\sum_{i=m_{j}+1}^{Q_{j} N+m_{j}} \epsilon_{1} i^{k}+\sum_{i=Q_{j} N+m_{j}+1}^{\left(1+Q_{j}\right) N+m_{j}} \epsilon_{2} i^{k}+\ldots+\sum_{i=\left(L_{n}-2+Q_{j}\right) N+m_{j}+1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{L_{n}} i^{k}\right)\right| \\
& =\left|n-\sum_{i=m_{j}+1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}\right|
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\left|n-\sum_{i=m_{j}+1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}\right|<a_{2}^{(j)} \tag{20}
\end{equation*}
$$

Step 6: Since all the $a_{i}^{(j)} \equiv 0(\bmod D)$, we gave $a_{2}^{(j)} \equiv 0(\bmod D)$. Then by the choice of m_{j} in Definition $5,(20)$, and Lemma 7, we have

$$
n \equiv \sum_{i=m_{j}+1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}(\bmod D)
$$

By adding $\sum_{i=1}^{m_{j}} i^{k}$ to both sides of (20), we get

$$
\begin{align*}
\left|n-\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}\right| & <a_{2}^{(j)}+\sum_{i=1}^{m_{j}} i^{k} \\
& <\sum_{i=Q_{j} N+m_{j}+1}^{\left(1+Q_{j}\right) N+m_{j}} i^{k}+\sum_{i=1}^{m_{j}} i^{k} \tag{21}
\end{align*}
$$

Replacing m_{j} and Q_{j} by M and Q respectively increases the right-hand side of (21), so we get

$$
\begin{equation*}
\left|n-\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}\right|<\sum_{i=Q N+M+1}^{(1+Q) N+M} i^{k}+\sum_{i=1}^{m_{j}} i^{k} \tag{22}
\end{equation*}
$$

The right-hand side of (22) is independent of both n and j, so there is a constant C that depends only on k such that

$$
\left|n-\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}\right|<C
$$

Therefore, for some $l, 0<l<C / D$, it follows that

$$
\begin{equation*}
n-\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k}= \pm l D \tag{23}
\end{equation*}
$$

Then from Definition 3, a possible redefinition of ϵ_{i} and the fact that $D=D_{k, k}(x)$ is independent of x, where the \pm agrees with (23), we have

$$
\begin{aligned}
n & =\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k} \pm \sum_{i=1}^{l} D_{k, k}\left(\left(L_{n}-1+Q_{j}\right) N+m_{j}+1+(i-1) 2^{k}\right) \\
& =\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}} \epsilon_{i} i^{k} \pm \sum_{i=\left(L_{n}-1+Q_{j}\right) N+m_{j}+1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}+l 2^{k}} \epsilon_{i} i^{k} \\
& =\sum_{i=1}^{\left(L_{n}-1+Q_{j}\right) N+m_{j}+l 2^{k}} \epsilon_{i} i^{k}
\end{aligned}
$$

Thus we have the desired expansion of

$$
n=\sum_{i=1}^{T} \epsilon_{i} i^{k}
$$

where $T=T(n)=\left(L_{n}-1+Q_{j}\right) N+m_{j}+l 2^{k}$. The algorithm is of polynomial time if it is upper bounded by a polynomial expression in its input size, which is true in our case because $T(n)$ is given in a polynomial in n. This completes the algorithm.

It remains to calculate an upper bound for the length of the expansion $T(n)$. Since m_{j} 's are bounded above by M and Q_{j} 's are bounded above by Q, and Q, N, M and l only depend on k, L_{n} is the only term in $T(n)$ that depends on n. In the following proofs, we suppress the subscript in j to make the notation simpler, where $a_{m}^{(j)}$ will be replaced by a_{m} and we will write Q and M instead of Q_{j} and m_{j}.

Lemma 9. For fixed k and sufficiently large n, the length of the sum $T(n)$ determined by the algorithm satisfies the following inequality:

$$
\begin{equation*}
T(N) \leq\left[((k+1) n)^{1 /(k+1)}\right]+l 2^{k}+1 \tag{24}
\end{equation*}
$$

Proof. We examine L_{n} found in Step 4 of the algorithm. By its definition and the definition of a_{m+1}, it follows that

$$
\begin{aligned}
n & >\sum_{m=1}^{L_{n}-1} a_{m} \\
& =a_{1}+\sum_{m=1}^{L_{n}-2} a_{m+1} \\
& >\sum_{i=M+1}^{Q N+M} i^{k}+\sum_{m=1}^{L_{n}+2}\left(\sum_{i=(m-1+Q) N+M+1}^{(m+Q) N+M} i^{k}\right) \\
& =\sum_{i=M+1}^{Q N+M} i^{k}+\sum_{i=Q N+M+1}^{\left(L_{n}-1+Q\right) N+M} i^{k}
\end{aligned}
$$

From the definition of $T(n)=\left(L_{n}-1+Q_{j}\right) N+m_{j}+l 2^{k}$, we see that

$$
n>\sum_{i=M+1}^{T-l 2^{k}} i^{k}
$$

We use a lower integral approximation on the sum to obtain

$$
\begin{aligned}
n & >\int_{M+1}^{T-l 2^{k}} i^{k} d i \\
& =\frac{\left(T-l 2^{k}\right)^{k+1}}{k+1}-\frac{M^{k+1}}{k+1} \\
(k+1) n & >\left(T-l 2^{k}\right)^{k+1}-M^{k+1}
\end{aligned}
$$

Since T depends only on n, and T grows arbitrarily large as $n \rightarrow \infty$, for sufficiently large n

$$
\begin{aligned}
(k+1) n & >\left(T-l 2^{k}\right)^{k+1}-M^{k+1} \\
& >\left(T-l 2^{k}-1\right)^{k+1} \\
((k+1) n)^{1 /(k+1)} & >T-l 2^{k}-1 \\
T & <\left[((k+1) n)^{1 /(k+1)}\right]+l 2^{k}+1
\end{aligned}
$$

Since T must be an integer, we obtain $T \leq\left[((k+1) n)^{1 /(k+1)}\right]+l 2^{k}+1$, which proves the lemma.
Theorem 2. If for fixed $k, L(n)$ is the length of the shortest expansion of n as a sum in the desired form, then $L(n)$ is asymptotic to $[(k+1) n]^{1 /(k+1)}$ as $n \rightarrow \infty$.

Proof. We want to show that $\lim _{n \rightarrow \infty} \frac{L(n)}{[(k+1) n]^{1 /(k+1)}}=1$. The upper bound of $L(n)$ is $\left[((k+1) n)^{1 /(k+1)}\right]+$ $l 2^{k}+1$ by Lemma 9 and the lower bound of $L(n)$ is $\left[((k+1) n)^{1 /(k+1)}\right]$ by Lemma 7 . Using the Squeeze Theorem, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left[((k+1) n)^{1 /(k+1)}\right]}{[(k+1) n]^{1 /(k+1)}} \leq \lim _{n \rightarrow \infty} \frac{L(n)}{[(k+1) n]^{1 /(k+1)}} \leq \lim _{n \rightarrow \infty} \frac{\left[((k+1) n)^{1 /(k+1)}\right]+l 2^{k}+1}{[(k+1) n]^{1 /(k+1)}} \\
& 1 \leq \lim _{n \rightarrow \infty} \frac{L(n)}{[(k+1) n]^{1 /(k+1)}} \leq 1 \\
& \lim _{n \rightarrow \infty} \frac{L(n)}{[(k+1) n]^{1 /(k+1)}}=1
\end{aligned}
$$

Thus $L(n)$ is asymptotic to $[(k+1) n]^{1 /(k+1)}$ as $n \rightarrow \infty$.
We now change our perspective to what happens if n is fixed and k tends to infinity.
Theorem 3. For a fixed value of n, let $l(k)$ be the shortest expansion of n as a sum in the desired form. Then $l(k) \geq k+2$ as $k \rightarrow \infty$.

Proof. Let us denote $l(k)$ by l. Since $n=\sum_{i=1}^{l} i^{k}=l^{k}+\sum_{i=1}^{l-1} i^{k}$, for k large enough such that $2^{k}>n$, we must have

$$
l^{k}-\sum_{i=1}^{l-1} i^{k}<n
$$

By replacing the sum with an upper integral approximation, we get

$$
\begin{align*}
n & >l^{k}-\left(1+\int_{2}^{l} x^{k} d x\right) \\
& =l^{k}-1-\frac{l^{k+1}}{k+1}+\frac{2^{k+1}}{k+1} \\
l^{k}\left(1-\frac{l}{k+1}\right) & <n-\frac{2^{k+1}}{k+1}+1 \\
l^{k}\left(\frac{l}{k+1}-1\right) & >\frac{2^{k+1}}{k+1}-n-1 \tag{25}
\end{align*}
$$

For k large enough such that $\frac{2^{k}}{k+1}>n+1,(25)$ and the fact that $l^{k}>0$ yields

$$
\begin{aligned}
& l^{k}\left(\frac{l}{k+1}-1\right)>0 \\
& \frac{l}{k+1}-1>0 \\
& \frac{l}{k+1}>1 \\
& l>k+1 \\
& l \geq k+2
\end{aligned}
$$

The last inequality yields because we are dealing with integers. Thus we have an asymptotic estimate of l as $k \rightarrow \infty$ with n fixed. As a direct consequence, for fixed $n, \lim _{\inf }{ }_{k \rightarrow \infty} \frac{l(k)}{k} \geq 1$ because $l(k)$ is lower bounded by $k+2$.

This concludes our main findings. We will turn our attention to further conjectures of the same sort by changing the choices of ϵ_{i} or the choices of a_{i}.

5 Concluding Remarks

There have been several generalizations of this problem. Bleicher [1] poses one question about generalization, which asks whether we can generalize the problem to $\left\{a_{i}\right\}$ being an increasing sequence of integers such that $a_{i}>c^{i}$ for a constant $c>0$ and every positive integer i, and whether or not there is an upper bound on the possible choices of c. These are answered by Feng-Juan Chen and Yong-Gao Chen [2], with the first problem in the affirmative and the second problem in the negative. Yu [3] generalizes this result to a polynomial $a_{i}=f(i)$ with the condition that there does not exist an integer $d>1$ such that it divides the values $f(x)$ for all x and proves that for a given l, every integer n can be written as $n=\sum_{i=l}^{m} \epsilon_{i} f(i)$. There are infinitely more questions of this sort that are waiting to be answered.

References

[1] Michael N. Bleicher. On Prielipp's Problem on Signed Sums of kth Powers. Journal of Number Theory 56(1996):36-51.
[2] Feng-Juan Chen and Yong-Gao Chen. Signed Sums of Terms of a Sequence. Proceedings of the American Mathematical Society. 141(2013):1105-1111
[3] Hong Bing Yu. Signed Sums of Polynomial Values. Proceedings of the American Mathematical Society. 130(2001):1623-1627.

