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1 Introduction

There are many problems in number theory that involve looking at the representation of the integers or
real numbers in the form n = Z:’;l €;a;, where {a;} is a given sequence and the ¢; have values restricted to
a given set, and m is the number to be found. Some famous problems are the Egyptian Fractions, where
{a;} =1/i and ¢; € {0,1}, and we are examining representations of fractions, and Waring’s Problem, which
asks what is the minimum number of integers needed to present each natural number as the sum of a kth
power. Many other problems of this sort can be formed with suitable choices of a; and ¢;. In this paper, we
will examine the result proved by Michael Bleicher [1], in which we choose a; = i* for a fixed non-negative
integer k, and ¢; € {—1,1}. We will prove that infinitely many representations of any integer n will exist and
an algorithm will be determined for finding m, where the algorithm is of polynomial time. Lower bounds of
m will be proved and asymptotic estimates of m will be given in each of the following cases (a) k fixed and
n — oo and (b) n fixed and k — oo.

2 Preliminary Results
Definition 1. For a non-negative integer k, define €, ; for 0 < j < 2% to be

1 k=0
€hj = —€h—1, for k> 0and 0 < j < 2F~1 (1)
€f—1,j—2k—1 for k > 0 and ok—1 < j < ok
Definition 2. For k and [ non-negative integers and x real, define

2k _1

Dy () = Z eri(x+1) (2)

i=0

By convention 0° = 1.



2k_1

We see that Dgo(z) = Z?:o €0,i(x+1)°=1and Dyo(z) =Y,y €k =0 for k> 0 by the definition of

Gk’i.

Definition 3. Let f(x) be a function defined on the integers. We define Dy, f(z) inductively for k > 0 by

Dof(z) = f(x) (3)
Dy f(x) = Dp_1 f(z+2°71) — Dy f (=) (4)
Lemma 1. For all non-negative integers k,
2k _1
Dif(x) = ) erif(z+1) (5)
1=0

Proof. We proceed by induction. For k =0, Do f(x) = Z?:o €0.if(x+1) = f(z), which is true by definition.
Now, suppose the lemma holds for Dy_; f(z). Then from (1) and (3), we get

2k_1 2k=1_1 2k_1
Saif@+i)= > eif(r+i)+ > eniflz+i)
i=0 i=0 j=2k—1
2k—1_1 2k _1
= Z —ep—1,if (T +1i) + Z €h—1,i—or—1 f (2 +14)
=0 j=2k—1
2k—1_1
=—Di_1f(z) + Z erif (@ + 21 +1)
i=0
=Dy_1f(x+28Y) — D1 f(2)
= Dy f(x)

Remark. If f(x) =z, we have Dy f(z) = Dy, (z) using (2) and (5).
Lemma 2. For all non-negative integers k, Dy, (x) is constant and Dy (x) =0 for 1 < k.

Proof. We first consider k = [ and prove by induction. For k = 0, we have Dy ¢(z) = 1 by definition, so it is
constant. Now, suppose the lemma holds for k = m — 1. Then by Lemma 1 we have

Dyi() = Dyt = Dy (427! = D1 (2)! (6)
Note that by the definition of Dy f(x), we have d%Dkf(a:) = Dy f'(z). Then by differentiating (6), we get
(@) =Dy (x+2"" 1 = Dy (2)f

m,l
=Dy 1(z 42" )" — 1D, (2) !
=I(Dm-11-1(x+2" 1 = Dp1,-1(2))

By the inductive hypothesis, D,,—1,-1(z +2™71) — D,,_1,-1(z) = 0 for m = [. Thus D;nm(x) =0, so
Dy () must be constant. Because D ;(z) is constant, Dji1(x) = Dyy(z +2') — Dy (x) = 0. Thus it is
true that Dy ;(z) =0 for k > I. O

Definition 4. Dy = Dy, ;(z)

This will allow for the notation to be less cluttered.



Lemma 3. For every pair of non-negative integers k and n,
n k+1
) n nPy_1(n
> it = 1 () (7)
k+1 (k+1)!

i=1

where Py_1(n) is a integer polynomial in n of order k — 1 with the convention that P_1(n) = 0.

Proof. We proceed by induction on k. For k = 0, Zle i"=n= "Tl + ”’117}(”), so it is true for k = 0. Now,

suppose the lemma is true for all integers j, 0 < j < k, and we want to show it is true for j = k.
Define ¢; = j**! — (j — 1)*+1. By the Binomial Theorem,

k+1
e k+1 i kl—i
¢ :]k 1_2( . )(_1) ]k+1

=0
k+1
:_Z<k+1) lzjk+1z

Note that n**' = 37" ¢; by the definition of ¢;. Then by simplifying n*
hypothesis,

*1 and using the inductive

nk+1i1§(k+1) 1)i k=i

Jj=11:=1
k+1 n
1 )
:—Z(k+ ) 17,ij'+1—l
j=1
n k+1 n
R RS A B
— _(_1)1( ) ) Z]k+1 1 _ Z ( ) ij+1
j=1 =2 j=1

n ' k+1 k41 . nkt2—i nP,_;(n
(k+1)§_:1‘7k_2< i )H) </~s+2—z‘+(k+k2£i)>!>

is k—2+4+1 = k—1 and the largest order of (k+2—4)!is k+2—2 =k,

Because the highest order of nPy_ Z(
) nPk_ 1 (n)
1 k!

k+1 (k+1 kt2—i nPy_;
Zi:l ( i )(_1) (k+2 i (kJI;2

n
) can be written in the form . Then we can solve for 2?21 g*.

k+1 _ S gk nPe_1(n)
n =(k+1) Zy B
j=1

Zn:jk _ nht! ~ nPy1(n)

o !
= k+1 (k+1)!
which is the desired form. The proof is complete. O

Lemma 4. For every positive integer n, and every non-negative integer k, there exists an integer N such

that
N

Zik =0 (mod n) (8)

i=1
and N can be chosen such that N =0 (mod n).



Proof. We show that taking N = n(k + 1)! proves the lemma. N = n(k+ 1)! =0 (mod n). By the previous
lemma, we have

n(k+1)!
5 (n(E4+ DN n(k+1)1P_q(n)
; i = k+1 (k+ 1)
n 1k+1
I
=0 (mod n)

O

Note that N = n(k + 1)! is not the minimal value. For example, N = 4 will work for n = 4, k = 3, but
the value the proof yields is 96.

Lemma 5. For every positive integer n and non-negative integer k, there is a positive integer N, N = 0

(mod n) such that for every integer
I+N

Z i* = 0 (mod n) (9)

i=l+1

Proof. Choose N as in Lemma 4. Then the sum in (9) covers the identical range (mod n) as the sum in
Lemma 4 independent of [, and thus has sum = 0 (mod n). O

Let N be the number that depends only on n given by Lemma 5.

Lemma 6. For every positive integer n, non-negative integer k, and j with 0 < j < n, there is a number
M; and some choice of €; such that

m;j
j= ZGiik (mod n) (10)
i=1
For k > 0, we can choose Mj to satisfy
Jj+2
< !
M; ( . ) (k+1) (11)

For k =0, we satisfy (10) and (11) but choosing M; = j, ¢; = 1.

Proof. Tt is obvious that j = Zzzl €; (mod n), where ¢; = 1 for all &. For j = 0 and k > 0, (8) gives a
representation with M; = N and ¢; = 1 for all 4. It is clear that N < (2/2)n(k+ 1)! =n(k+1)! = N, so it
satisfies (11).

Consider j > 0 and k > 0. Take [ = gN for any positive integer ¢, and by Lemma 6, we see qui}zlvfl ik =
0 (mod n). Because N = 0 (mod n), (¢N + 1)* = 0 (mod n). We have (¢gN + 1)* qu'gjl\;fl * -
quz}\?% k= — quz}gfé i* (mod n) =1 (mod n). Given j, 0 < j < n, we see

2 [N+ DY ] j even

L _ (12)
Sl 1{(qNJrl) Sy k} ( /2] + ’“) j odd

j=

For j even, M; = N(j/2—1) < (Z2)n(k+1)!. For j odd, [j/2] < 52,50 [j/2] -1 < 5% and N < n(k+1)L.
Then M; < (ﬂg2) (k4 1)!. Thus ( 1) holds. O

We will now proceed to prove our main result.



3 Proving Existence

First the existence of a representation of the form n = >0, €;i* for every n will be proved. Then an

algorithm for how to find m will be given and some estimates will be made on the length of the expansion.
This result is due to Michael Bleicher [1].

Theorem 1. For every positive integer n and mon-negative integer k, there is a positive integer m and
choices of ¢, = 1 such that

Proof. We apply Lemma 6 with n = Dy. Then for 0 < j < Dy,

M;
j= Zeiik (mod Dy) (13)
i=1

Then j and Z:’;Jl €;i* differ by a multiple of Dy. Let this difference be A = 41Dy, where [ > 0. Since Dy, is
k . k )

constant, Dy, = Dy, (2% + M; +1) = Zi:_ol k(28 + M; +1+n)k = 252512)3-5-}1];411 €r.nnk. Suppose that

A > 0, then

A

o~

Dy,
1
Dy,

I
=)

i
1 (124 My

> at)

=1 n=i2k+M;+1

<

125+ M;

i=M;+1

We add (14) to (13) to get

m
E Eiik = ] + A
i=1
M; 125 4 M;
= E Eiik + E Giik
i=1 i=M;+1
125 4 M;

= E Eiik

=1

koL
If A <0, then we add —A to (13). If A =0, then j = n, and [ = 0. In each case, we get n = Zéi;rM] €i",

so a representation in the desired form is produced with m = [2% + M;. O

This gives one representation of each integer n in the desired form, but the construction of m seems to
be not efficient for large values of n. Some bounds on the least value of such an integer m will be given later
in the text. Here are some examples on the expansion.

Ezample 1. We find an expansion for n = 160, k = 3: 160 = —13—-23-33-43 53463 —-73483 = 2?21 €;13.
One expansion of n = 160 can be achieved with m = 8.



Example 2. We find an expansion for n =15, k=4: 15 =14 424 —34 444 — 54 64+ 74 -84 —9* + 10% =
Zjﬂl eii*. One expansion of n = 15 can be achieved with m = 10.
Ezample 3. We find multiple expansions for n = 5, k = 2: 5 = 12 + 22 = Z?:l €12, with m = 2.
Another representation gives 5 = —12 — 22 432 — 42 + 52 = Ele €;12, with m = 5. Alternatively, 5 =
122243242 -52462+72-82-92+102 = 23:1 0e;i%, with m = 10. It becomes obvious that there
can be many representations of n for fixed k.

We see that some integers have multiple expansions, so this leads to proving there are infinitely many
representations of n with fixed n and k.

Corollary 1. For very positive integer n and non-negative integer k, there are infinitely many positive
integers m and choices of ¢; = £1 such that

m
n = E Eiik
i=0

Proof. By Lemma 2, we know that Dy is constant, so

2k _1 2k _1
Dy(z) — Dy(z +2%) = Z ez + i)k — Z ei(z +2F i)k

i=0 i=0
2k 142 2kl 142

i=x i=x+2F
okl 144

= Z Giik
1=

since ¢; can be multiplied by —1 to get the equality. Given a representation n = Y .- €;i%, we can take

2k . PLEEE S . .
x=m+1and add }_; T eii* ton to get n = Z?;E €;* which is a new representation. This process

1=T
can be repeated infinitely many times. Thus there are infinitely many representations of n in the desired
form. O

We will proceed to give a better representation of j, where j = Zf\ijl €;i® by modifying our procedure.
Some definitions will be given to make notation easier.

Definition 5. Fix a positive integer k. Let D = Dy,.

Definition 6. Let m; be the least integer which yields the the expansion of j guaranteed by Theorem 1 for
the fixed k.

Definition 7. Let M = max{m; : 0 < j < D}

Since D only depends on £, by Lemma 6 the upper bound of M; depends only on k. Thus M is determined
by k.

Definition 8. Let Q; be the greatest positive integer such that

QjN+m; (Qj+1N+m;
D D (15)
i=mj+1 QjN+mj +1

Let Q@ = max{Q; : 0 <j < D}



We see that such a @); must exist because the left hand side of (15) is of order Q?H by Lemma 3 and the
upper bound of the right hand side of (15) is ((Q; +1)N +m;) — (Q;N +m; + 1)+ 1)((Q; + 1)N +m;)* =
N((Q; +1)N + m;)*, which is of order Q?. Also, @ > 1. We now find a lower bound for m,;.

Lemma 7. For each positive integer j, the length of its shortest expansion m; satisfies
my 2 [((k + 1))V V] > [/ 0] (16)

Proof. For k = 0, the expansion of j is ZZ:O i, so m; = j which satisfies (16). Now suppose k > 0. By
Theorem 1,

A
3
Sl
+
M
o

A
3
<o
_l’_
S—
3
P%‘
S

. k+1 k
(k+1)j <mi* 4 (k + 1)mb
< (mj + 1)k+1
m; 4+ 1> ((k+1)5)Y *+D)
m; > ((k+1)7)"/*+Y

The last inequality holds because we are working with all integers. Since (k-+1)"/*+D > 1 ((k41)7)Y/*+D >
GV D 5o my > [((k + 1))/ *+D] > [/ E+D] which proves the lemma. O

We will need one more lemma before we can define the algorithm.

Lemma 8. Let {a;}52, be an increasing sequence of positive integers that for every r > 1, satisfies
T
Z a; Z QAyr41 (17)
i=1
For fized n and m, if >\, a; > |n|, then there is a choice of ¢; = +1 such that
m
’n — Z €;Q;
i=1

Proof. Tt is sufficient to prove such an approximation exists for n > 0, since the approximation for —n can
be found by changing the signs for all of the ¢;.

< a2 (18)

We prove by induction on m. For m = 1, we want to show that |n — eja1| < az. The hypothesis
gives n < aj and because {a;} is an increasing sequence, n < a3 < ay. Let e = 1. Then it fol-
lows |n — €1a1] < a1 < ag, so (18) is satisfied. If m = 2, then we either have |n — (a1 + az2)| < ag or
|n — (a1 + az)| > as. If it is case 1, then we are done. For case 2, from the hypothesis n < ay + ag, we
obtain a; + as —n > as. Then by subtracting 2a; from both sides, as — a; —n > as — 2a;. Because a; and
n are positive, as > as — a1 —n. Since a1 < ag, as — 2a1 > a1 — 2a; = —ay > —as. Putting all inequalities
together yields as > as —a; —n > —asg, so |n — (—ay + a2)| < az. Thus we have found ¢; = —1, 5 = 1 such



that (18) is satisfied for m = 2.

Assume the lemma holds for I < m, we want to show (18) holds for I = m, where m > 2. From the
hypothesis,

n < zm:ai (19)
i=1

Since n > 0 and m > 2 and (17) is true for » = m, subtracting a,, from both sides of (19) gives

m—1
n—=ay, < Z a;
i=1
m—1

—CLHLSTL—CLm< E a;
i=1

m—1

-1
Z—ai<—am§n—am<m2ai
i=1

i=1

Thus |n — a,| satisfies (17) with [ = m — 1, so for a choice ¢; = £1,

m=1

‘|n—am\ — Z €:0;

i=1

< as

Then for n > a,,, we can choose ¢, = 1 and for n < a,,, we can choose €,, = —1 such that

m
’TL— E €;Q;
i=1

This concludes the inductive hypothesis, so the lemma has been proved for all m. O

< ao

We can now define the algorithm.

4 The Algorithm

Given n € Z and k € N, we want to find 7" such that n = ZiT:1 €ii®, where ¢; € {—1,1}. The algorithm for
finding T" will be presented below.

Step 1: Compute D from Definition 5 with the given k.
Step 2: Choose j, 0 < j < D such that n = j (mod D).

Step 3: Find the expansion of j in the desired form (10), which is of length m;.
From Lemma 6 with n = D, there is an upper bound on m; < M, so this is a finite process.

Step 4: For each value of 7, j < D, define a sequence satisfying the hypothesis of Lemma 8 as follows:

Definition 9. Let agj) = Z?:Jn]jj—rll” i*. For m > 1, let

(m+Q;)N+m;

a%)ﬂ = Z i*

i:(m71+Qj)N+mj+1



For any [ > m, al(j ) > a%) by looking at the bounds of the summation. Using the definition of ¢); from

Definition 8, we see that >_._, al(-j ) > agj_zl. Thus {a%)} is a sequence that satisfies the hypothesis of Lemma

8. Note also by the definition of N in Definition 7, we have a$’ = 0 (mod D) for all m.
Step 5: Given n, let L, be the least integer such that
Ln
ne 3
m=1

Following the inductive procedure in the proof of Lemma 8, we can find a sequence of ¢;, = 41 such that
In—>0", eial(j)\ < aéj). We expand the a\)’s and redefine a new sequence of €;'s to get

i

Ly
agj) > n— Zeiaz(-])‘
i=1

Q;N+m; (1+Q;)N+m; (Lyn—14+Q;)N+m;
S D SRCT.E D SR TLE R SRR |
i=mj+1 i=Q; N+mj;+1 i=(L,—24Q;)N+m;+1

(Ln—14Q;)N+m;

=|n— g eiik‘

i:mj+1

Thus we have
(L,,,—l—Q—Qj)N—',-mj

)n - 3 eiik‘ <dy (20)

i=m;+1

Step 6: Since all the agj) =0 (mod D), we gave a) =0 (mod D). Then by the choice of m; in Definition
5, (20), and Lemma 7, we have
(Ln—14Q;)N+m;

n= Z €;i® (mod D)

i:mj+1
By adding > ;" i* to both sides of (20), we get

(Ln—14Q;)N+m;

™

K () ik

’n— Z eiz‘<a2 —|—Zz
i=1

=1
(14Q;)N+m; m;
< Y i) (21)
i=Q; N+m;+1 i=1

Replacing m; and Q; by M and () respectively increases the right-hand side of (21), so we get

(Lpn—=14+Q;)N+m; (1+Q)N+M m;
’n _ S ezk‘ DD (22)
i=1 i=QN+M+1 i=1

The right-hand side of (22) is independent of both n and j, so there is a constant C' that depends only on k

such that
(Ln—=14+Q;)N+m;

‘n— Z eiik‘ <C

i=1



Therefore, for some I, 0 <1 < C/D, it follows that

(Ln—14Q;)N+m;
n— > €;i* = +ID (23)

i=1

Then from Definition 3, a possible redefinition of €; and the fact that D = Dy, ;(z) is independent of z,
where the £ agrees with (23), we have

(Ln—=14Q;)N+m; l
n= > €ii" £ Dy ((Ln — 14 Q)N +my + 1+ (i — 1)2F)
1=1 =1
(Ln—14Q;)N+m; (L —14+Q;)N+m, +12"
= > i + > €;iF
=1 i=(Lp—14Q;)N+m;+1

(Ln—14Q;)N4m;+i2F

= E €i7:k

i=1

Thus we have the desired expansion of

n= Z eiik
i=1
where T'=T(n) = (L, — 1 + Q;)N + m; + [2*. The algorithm is of polynomial time if it is upper bounded
by a polynomial expression in its input size, which is true in our case because T'(n) is given in a polynomial
in n. This completes the algorithm.

It remains to calculate an upper bound for the length of the expansion T'(n). Since m;’s are bounded
above by M and @;’s are bounded above by @, and @, N, M and [ only depend on k, L,, is the only term
in T'(n) that depends on n. In the following proofs, we suppress the subscript in j to make the notation
simpler, where a%) will be replaced by a,, and we will write Q and M instead of @); and m;.

Lemma 9. For fized k and sufficiently large n, the length of the sum T(n) determined by the algorithm
satisfies the following inequality:

T(N) < [((k+ Dn)/ D] 4125 41 (24)

Proof. We examine L,, found in Step 4 of the algorithm. By its definition and the definition of a,,41, it
follows that

m=1
L,—2
=a; + Z Am+1
m=1
QN+M L, +2 (m+Q)N+M
> )iy ( > i’“)
i=M+1 m=1  i=(m—14Q)N+M+1
QN+M (Ln—14+Q)N+M
= > i+ > i*
i=M+1 i=QN+M+1

10



From the definition of T(n) = (L, — 1+ Q;)N + m; + I2¥, we see that

T—12F

n>z:il€

i=M+1

We use a lower integral approximation on the sum to obtain

T—12%
n > / ik di
M+1

7 (T o le)kJrl Mk+1
B kE+1 kE+1
(k+1)n > (T — 128k — piHt

Since T depends only on n, and T grows arbitrarily large as n — oo, for sufficiently large n

(k4 )n > (T — 128K — pitt
> (T —12F — 1)k+?
((k+ D))/ *+D) S 7 9k g
T < [((k+ 1)n)Y/ D] 4128 41

Since T must be an integer, we obtain 7' < [((k + 1)n)Y/(**+1] 412 4+ 1, which proves the lemma. O

Theorem 2. If for fized k, L(n) is the length of the shortest expansion of n as a sum in the desired form,
then L(n) is asymptotic to [(k 4+ 1)n]/*+1) as n — oo.

Proof. We want to show that limy, o % = 1. The upper bound of L(n) is [((k + 1)n)*/*+1)] 4
12k + 1 by Lemma 9 and the lower bound of L(n) is [((k 4+ 1)n)*/**D] by Lemma 7. Using the Squeeze
Theorem, we obtain

i e < i e < i
L= b Mﬁzum =1
X Mﬂ% =1
Thus L(n) is asymptotic to [(k + 1)n]"/*+1) as n — oo. O

We now change our perspective to what happens if n is fixed and k tends to infinity.

Theorem 3. For a fixed value of n, let I(k) be the shortest expansion of n as a sum in the desired form.
Then l(k) > k+2 as k — oc.

Proof. Let us denote I(k) by I. Since n = 22:1 ik =1k + Zi;} ik, for k large enough such that 2% > n, we

must have
-1
k- sz <n
i=1

11



By replacing the sum with an upper integral approximation, we get

7z>lk——(1+lélxkdx>

lk+1 2k+1

=k -1-——+ =
K+l kot
l 2k+1
I 1—7) _ 1
rr1l) S T Rr T
i l 2k+1
) e B (25)

For k large enough such that 2 St 1, (25) and the fact that [¥ > 0 yields

k+1
ﬁ(—if—1)>o

I
L 1so
Kyl
I
LI
rrl
I>k+1

I>k+2

The last inequality yields because we are dealing with integers. Thus we have an asymptotic estimate of [ as
k — oo with n fixed. As a direct consequence, for fixed n, liminfy_, o @ > 1 because (k) is lower bounded

by k + 2. O

This concludes our main findings. We will turn our attention to further conjectures of the same sort by
changing the choices of ¢; or the choices of a;.

5 Concluding Remarks

There have been several generalizations of this problem. Bleicher [1] poses one question about generalization,
which asks whether we can generalize the problem to {a;} being an increasing sequence of integers such that
a; > ¢ for a constant ¢ > 0 and every positive integer i, and whether or not there is an upper bound on the
possible choices of ¢. These are answered by Feng-Juan Chen and Yong-Gao Chen [2], with the first problem
in the affirmative and the second problem in the negative. Yu [3] generalizes this result to a polynomial
a; = f(i) with the condition that there does not exist an integer d > 1 such that it divides the values f(x)
for all z and proves that for a given [, every integer n can be written asn = >, €; f(¢). There are infinitely
more questions of this sort that are waiting to be answered.
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