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1 Introduction

In a dynamical system representing the stimulation of neurons, bifurcations arise due to the fact that when
stimulated by a constant amplitude current to drive the cell of the neuron to fire, the membrane goes from
having a resting potential voltage to an oscillatory voltage as a result of the bifurcation of the input into the
dynamical systems.

There are a multitude of bifurcations that exist in representing the behavior of neurons, however the use
cases of each depends on the specific experiment that is being conducted. For single neuron dynamics, the
saddle node on a an invariant circle (SNIC) and the Hopf Bifurcation are the most common bifurcations
to arise out of the most common models for neuronal behavior, namely Hodgkin-Huxley and Morris-Lecar
equations.

In a small neuronal network, the bifurcations that arise have some edge cases in when they may oscillate
as a network. As such, expressing the bifurcations in terms of the single neuron bifurcations is not going to
be sufficient and instead we will look at how they function as a group.

2 Definitions

Dynamical System: A system in which a function describes the time dependence of a point in geometrical
space. Usually represented as a differential equation of the following form,

dx

dt
= F (x, µ) (1)

where x is an n-dimensional vector of unknowns and µ is an m-dimensional vector of parameters, and F
is simply a function that depends on both.
Bifurcation Theory: A family of differential equations that depending on a parameter α such that

Y ′(t) = F (α, Y (t)) (2)

where Y (t) ∈ Rn. Bifurcation theory examines the changes in the qualitative behavior as α varies in the
dynamical system. For the sake of this paper we will be referencing the most elementary types of bifurcations
that is, equilibrium bifurcations.
Equilibrium Bifurcation: Qualitative changes that relate to changes in the properties of of an equilibrium
in a system.

3 Hodgkin-Huxley Model

Also known as the conductance based model, the Hodgkin-Huxley model is a 2 dimensional model that
simulates the response of action potentials in neurons. The model represents the cell as a circuit with lipid
bilayer of the cell has some capacitance Cm, each ion channel within the cell has some conductance gn where
n denotes a specific ion channel, gL the conductance of the Leak channels, and finally En and EL denote
the emf generated by the difference in electrochemical ions, in this case, sodium and potassium ions.

The leak current can be expressed by the following balance

IL = Icap + Iion

where

Icap = Cm
dVm
dt

and

Iion = gn(Vm − Vion)
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Therefore the total current through the membrane with sodium and potassium channels mentioned prior
is,

Itotal = Icap + IK+ + INa+ + IL

which is

Itotal = Cm
dVm
dt

+ gK(VM − EK) + gNa(Vm − ENa) + gL(VM − EL) (3)

Furthermore, in the Hodgkin-Huxley model, there exist gating variables which determine the probability
of a channel opening. From empirical analysis we have that the probability that the potassium channel opens
is n4 and for sodium we have that it is m3. There is also the probability that the sodium inactivation gate
is open, that is something that is a result of the inhibitory process due to bursting or a refractory period so
to speak and this has the variable h usually denoting it. Therefore our Hodgkin-Huxley model now takes
the form,

Itotal = Cm
dVm
dt

+ gKn
4(VM − EK) + gNam

3h(Vm − ENa) + gL(VM − EL) (4)

It is also important to know that each of these gating variables have their own first-order differential
equation that they satisfy.

dn

dt
= αn(V )(1− n)− βn(V )n (5)

dm

dt
= αm(V )(1−m)− βm(V )m (6)

dh

dt
= αh(V )(1− h)− βh(V )h (7)

Now if we let p = n,m or h then we have that,

p∞(V ) =
αp(V )

αp(V ) + βp(V )
(8)

and

τp(V ) =
1

αp(V ) + βp(V )
(9)

4 Morris-Lecar Model

Similar to the Hodgkin-Huxley model, this model instead of being based off a sodium channel, it is instead
based off a calcium channel. The model follows quite similarly to the Hodgkin-Huxley and takes the form
of the following,

CM
dV

dt
= I − gL(V − EL)− gKn(V − EK)− gCam∞(V )(V − ECa (10)

dn

dt
= φ(n∞(V )− n)/τn(V ) (11)

where
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m∞(V ) =
1

2
[1 + tanh((V − V1)/2)] (12)

τn(V ) = 1/cosh((V − V3)/(2V4)) (13)

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)] (14)

and V1, V2, V3 and V4 are chosen parameters such that they satisfy the voltage-clamp data or satisfy the
steady state and time constant and φ is a reference frequency.

5 Stability

Before progressing on, it is important that we discuss when our linear and non-linear differential equations
are stable due to the fact that we will be discussing equilibrium bifurcations.

5.1 Linear ODE

For linear ODE’s of the first order we can find their points of stability by solving and examining the
eigenvalues of the autonomous function,

Ax = λx (15)

We say that this solution is asymptotically as t → ∞ if and only if for all eigenvalues of A, Re(λ) < 0.
It is asymptotically stable for t→ −∞ if and only if for all eigenvalues of A, Re(λ) > 0.

5.2 Non-linear ODE

Taking the linearization of a system of two differential equations at a fixed point, we can find stability by
taking the Jacobian of that matrix.

Similar to our linear reference we have that if both of the eigenvalues of the two dimensional Jacobian
matrix have negative real values.

In the case of our models it would be similar to the following,

dV

dt
= f(V, n) (16)

dn

dt
= g(V, n) (17)

Let M denote the linearized Jacobian matrix about a fixed point, then we have that,

M =

∣∣∣∣ ∂f
∂V (VR, nR) ∂f

∂n (VR, nR)
∂g
∂V (VR, nR) ∂g

∂n (VR, nR)

∣∣∣∣ (18)

6 Andronov-Hopf Bifurcation

As a parameter is varied in the Morris-Lecar model, it naturally will follow that points of stability will
become unstable. What Andronov-Hopf bifurcation looks at in particular is the transition of stability from
a complex eigenvalue to another part in the imaginary axis.

The Hopf bifurcation theorem states that there exists values of the parameter I near I1 and I2 such that
there exist periodic solutions that lie near fixed points (VR(I), nR(I)). That is to say there is a critical point
such that the dynamical system’s stability switches and periodic solutions arise.
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In most cases the Hopf bifurcation is a two dimensional prototype, in this case let us consider a function
F : R× R2 → R2. If

1. F (x, 0) = 0 for some x in a neighborhood of x0

2. DF (x, 0) has two non-real eigenvalues |λ(x)| and λ(x) for x in a neighborhood of x0 and that the
modulus of eigenvalue about x0 is 1

3. d
dx |λ(x)| > 0 at x = x0

4. λk(0) 6= 1 for k = 1, 2, 3, 4

Then there exists a smooth x-dependent change of coordinates bringing F into the form F (x, µ) =
f(x, µ) + O(||x||5). This is due to the fact that the map we are looking at is a C4 map so we don’t want
our eigenvalue to satisfy the first four roots of unity as well as getting an order of degree 5 on the mapping
function.

Now we want to represent this in terms of polar coordinates as it is easier to handle, that is we now have,

f =

∣∣∣∣ |λ(x)|r − α(x)r3

θ + γ(x) + β(x)r2

∣∣∣∣ (19)

where α(x), β(x), and γ(x) are smooth arbitrary functions.
We consider the bifurcation subcritical if the term α(x0) < 0 and the case of α(x0) = 0 is undetermined.
We consider the bifurcation supercritical if the function is determinable at α(x0) = 0 is asymptotically

stable about that point and furthermore that the term itself α(x0) > 0.
Do note that there are more specific Hopf bifurcations such as the Hopf-Hopf Bifurcation, normal form

Hopf Bifurcation, but in this context we are simply just talking about the generic Hopf bifurcation.

7 Saddle Node on an Invariant Circle Bifurcation

To begin with we will go over what a Saddle Node Bifurcation is and then progress onto the case of it being
on the invariant circle.

7.1 Saddle Node Bifurcation Normal Form

A saddle node bifurcation is a bifurcation that has the properties that as one varies the parameter α
the appearance of fixed points being equilibrium will collide and eventually disappear. The saddle node
bifurcation differential equation often takes the form of,

Y ′(t) = α+ Y (t)2 (20)

where α is a our varying parameter. Solving for stability we see that the equilibria points only exist at
the solution to the quadratic equation,

Y (t) = ±
√
−α (21)

Now notice that we have three scenarios,

1. If α < 0 we have that there exists two equilibrium points, one at −
√
α and one at

√
−α. Notice

furthermore, the stable equilibrium point is at the negative value and unstable at the positive. This
can be represented by the following diagram of the quadratic equation,
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2. If α = 0 we see that we only have one point of equilibria and that is at the origin, however this equilibria
is upon a saddle point, therefore unsurprisingly we call it a saddle node bifurcation,

3. Finally if α > 0 we see that r can only be imaginary meaning that there is no equilibria on the real
domain, therefore we have no equilibria and a graph that looks as following,

Therefore the term saddle-node bifurcation comes about because you either have a stable point or a saddle
node point for bifurcations. Furthermore, the visualization that as α changes over time we see that the we
go from a stable equilibria to the colliding of them before the disappearance of the equilibria altogether.

7.2 Saddle Node Bifurcation Two Dimensions

In two dimensions we have the following form that the differential equations tend to take,

dx

dt
= α− x2 (22)

dy

dt
= −y (23)

For this section there will be no diagrams depicting the stability and instability of the equilibria as I am
incapable of producing such diagrams.

However similar to the normal form we have 3 cases that are a result of the changing parameter α.
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1. The first in this case is when α < 0 we notice that this time because of how the differential equation
is set up in respect to dx

dt we have that there are no equilibrium points.

2. The second is when α = 0, we once again have that there exists a saddle point.

3. Finally when we have α > 0 this time we have that these are where the two points of equilibrium,
but this time however one of the points is a saddle point and the other is a node, one that will either
attract (stable) or repel (unstable).

Once again with the varying α we see in this case in reverse that we have that there exist a two equilibrium
that collide before disappearing.

7.3 Saddle Node on an Invariant Circle

The SNIC is a standard saddle node bifurcation except that it occurs on an invariant circle. Furthermore,
the path that the varying parameter takes is that of a heteroclinic trajectory, or a orbital path in phase space
that joins the two equilibrium points together. Note that if the equlibrium point start and end desintation
is the same, then we call this a homoclinic trajectory. We call the circle an invariant because any solution
that starts on the circle remains on the circle.

So for the SNIC, we have that we have a heteroclinic trajectory connecting the node and the saddle that
were mentioned in section 7.2. As we know about saddle node bifurcations, the node and the saddle point
will eventually coalesce, as this happens, the direct trajectory shrinks, our heteroclinic trajectory that is
larger slowly becomes a homoclinic trajectory on the invariant circle because the equilibrium has become
one. Finally once the point disappears, we get that the circle becomes a limit-cycle, which is simply when a
trajectory becomes closed and infinite.

8 Relation to Neuroscience

The bifurcations are important because when a neuron is in it’s resting state, it is excitable and we can
treat that mathematically that it is near a bifurcation. Therefore when we inject a ramp current, that is as
we increase the amount of DC current going into the neuron, we are causing the parameters to change or
varying α at this point.

The reason the two aforementioned bifurcations were chosen for this is because as the current changes
we have two bifurcations that result in part due to the eigenvalues of the Jacobian of our dynamical system,

1. We get a negative eigenvalue that increases and becomes zero which happens at the saddle-node
bifurcation, and as we know from above this causes the equilibrium to disappear entirely.

2. The next is that we have two complex-conjugate eigenvalues with negative real parts. These real
parts become purely imaginary as we vary current, and in this case this is exactly the Andronov-Hopf
Bifurcation previously mentioned, so we see that the equilibrium becomes unstable but unlike the
saddle node bifurcation it does not disappear.

As such these two bifurcations are quintessential to modeling the behavior of how neurons act with
regard to current ramp injections. The current ramp injections are a means of essentially activating the
action potential and getting the neuron to fire.
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