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1 Introduction to Functional Convolution

The convolution of two functions is essential to filtering in image and signal processing, as filtering
is done by convolving signals with specifically designed kernels. In fact, the advent of computer
graphics allows us to visualize the effect of convolving two functions and is invaluable in education
and computer vision. There are limitless varieties of graphical effects that can be achieved simply
through 2D convolutions. In this paper, we will review the paper Convolutions and Computer
Graphics by A. Burns, where the author provides the basis of applying convolution in graphics
software to achieve various desired effects in image processing, such as edge detection, sharpening,
and blurs. Let f(x) and k(x) be real valued functions of real variables. Then, we define a convolution
of f with k as follows :

F (t) =

∫ ∞
−∞

f(x)k(t− x)dx

Here, f represents the input signal, and we define k as the kernel of F . In the operation of filtering,
a weighing kernel is convolved with an input signal to compute a weighted image as the output
signal F . In particular, we are interested in convolution with k as the Gaussian Kernel :

Gaussian Kernel, Gσ(x) =
e−x

2/2σ2

√
2πσ

, σ > 0

Gaussian convolution is a common operation and the basis of many sophisticated algorithms in
signal and image processing. It is commonly used as a means to blur 2D images, in effect re-
moving both noise (random variation in brightness) and detail from an image. Consequently, its
efficient computation is important and many approximations exist. In the following sections, I
will provide an extension to 2D convolution, various properties of the Gaussian, and one of many
approximations, discussing their connections with modern day computer graphics.

2 2D Convolution

Generalizing to two dimensions, we have the convolution of two real functions, f(x, y) and k(x, y)
as a new function of two variables as follows [1]:

F (s, t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)k(s− x, t− y)dxdy

Suppose the kernel has compact support as follows

k(x, y) = 0 if |x| > h, |y| > r

Then, we make the following substitution :

u = s− x

du = −dx

v = t− y

dv = −dy
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and hence we have

F (s, t) =

∫ ∞
−∞

∫ ∞
−∞

f(s− u, t− v)k(u, v)(−du)(−dv)

=

∫ ∞
−∞

∫ ∞
−∞

f(s− u, t− v)k(u, v)dudv

=

∫ r

−r

∫ h

−h
f(s− u, t− v)k(u, v)dudv

As we are concerned with graphics on a computer screen, let S be the discrete subspace of 2D
Euclidean space consisting of such points that have integer coordinates. Let x be defined as the
horizontal position and y be defined as the vertical position of a pixel. If we choose a kernel function
that is 0 outside of the rectangle {(x, y)| − h ≤ x ≤ h,−r ≤ y ≤ r}, then for all (x, y) ∈ Z ∗ Z the
convolution of f(x, y) and k(x, y) becomes :

F (s, t) =
r∑

v=−r

h∑
u=−h

f(s− u, t− v)k(u, v)

F (x, y) =

r∑
j=−r

h∑
i=−h

f(x− i, y − j)k(i, j)

Relating to a computer screen, consider the screen as a bounded subspace of S, where we have x-
coordinates from 0, 1, 2, 3, ..., X, and y-coordinates from 0, 1, 2, 3, ..., Y . This totals X+1 horizontal
pixels and Y + 1 vertical pixels. Our kernel function ranges from −h to h horizontally and −r to
r vertically. Hence, our kernel is applied to (h + h + 1)(r + r + 1) = (2h + 1)(2r + 1) pixels
surrounding f(x, y). Now, consider a function f(x, y) that is defined on our bounded subspace and
takes on integer values of 0, 1, 2, ..., N − 1, where N represents the number of colors available. One
example of such a function is the RGB(Red, Green, Blue) color model, which has N = 256. We
have functions fr(x, y), fg(x, y), fb(x, y) that represent respectively the values of the red, green, and
blue components of a pixel at (x, y). After convolving with a kernel k(i, j), we then have functions
Fr(x, y), Fg(x, y), Fb(x, y) which represent the color components of the pixel at (x, y) after filtering.
Then, these values are rounded and ensured to be lower-bounded by 0 and upper bounded at
255. Finally, we are able to synthesize the color of our output pixel using the composition of its
components.
Using our definition of the kernel function, we can visualize F (x, y) by picturing an array of kernel
values imposed upon the screen, centered at f(x, y). We have k(0, 0) is applied to f(x, y), k(0, 1)
applied to f(x, y − 1), and so on. When we sum up the (2h+ 1)(2r + 1) pixels surrounding (x, y)
after applying the kernel, the result is F (x, y), which we round to an integer representing the new
colored pixel shown on screen. It is noteworthy that this can also be thought of as (2r + 1) 1D
convolutions of a row of pixels of length 2h+ 1. This inevitably runs into problems as we approach
the boundary due to the fact that f(x,y) is undefined outside our domain of definition.

3 Boundary Conditions

It is important that we consider the boundaries of an image when we apply convolution. As both
are finite in size, some f will lie outside the domain of definition. Consider a singular row of pixels.
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Let f(x) be defined for the finite row length N, then f(x) is defined for integers x = 0, 1, ..., N − 1.
In terms of 1D boundary handling, several possible options are

zero-padding, f̂(x) =

{
f(x) 0 ≤ x ≤ N − 1

0 otherwise

constant, f̂(x) = f(i), i = min(max (x, 0), N − 1)

symmetric, f̂(x) =


f(x) 0 ≤ x ≤ N − 1

f̂(−1− x) x < 0

f̂(2N − 1− x) x ≥ N

Using the 1D case provided in [2], we extend this to apply for f of 2 variables. Consider a 2D
image of N by M pixels. Let f(x, y) be defined for x = 0, 1, ..., N − 1 and y = 0, 1, ...,M − 1. We
have the options

zero-padding, f̂(x, y) =

{
f(x, y) (0 ≤ x ≤ N − 1), (0 ≤ y < M − 1)

0 otherwise

constant, f̂(x, y) = f(i, j), i = min(max (x, 0), N − 1), j = min(max (y, 0),M − 1)

symmetric, f̂(x, y) such that x,y follow

x =


x 0 ≤ x ≤ N − 1

−1− x x < 0

2N − 1− x x ≥ N

y =


y 0 ≤ y ≤M − 1

−1− y y < 0

2M − 1− y y ≥M

This allows us to extend f to be defined outside its domain of definition and therefore continue to
perform convolution for pixels involving the boundary.

4 Gaussian Properties

Compared to many convolution kernels, there are various interesting properties of the Gaussian
kernel that make it especially powerful.[2]
Separability : The Gaussian is separable.

e−(x
2+y2)/2σ2

= e−(x
2)/2σ2

e−(y
2)/2σ2

Semigroup Property : The convolution of two Gaussians is another Gaussian. Let Gσ denote a
Gaussian kernel. Then,

Gσ1 ∗Gσ2 = Gσ, σ =
√
σ12 + σ22
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Discretization of the Gaussian : We consider a discretization of the Gaussian so we can apply
it to a 1D signal like a row of pixels.

g(x) = Gσ(x), x ∈ Z

Normalization : We often normalize values to ensure they have unit sum.

gn(x) = Gσ(x)/S

S =
∞∑

x=−∞
Gσ(x)

Lemma 1 : For any σ > 0, the sum S is strictly greater than 1.
Proof : Using Poisson’s summation formula (

∑∞
n=−∞ f(n)e−2πnx =

∑∞
n=−∞ f̂(x−n)) and Ĝσ(k) =

e−2π
2σ2k2 we have

S =
∞∑

x=−∞
Gσ(x) =

∞∑
k=−∞

Ĝσ(k) = 1 + 2

∞∑
k=1

e−2π
2σ2k2 > 1

5 Finite Impulse Filtering

One of many implementations of Gaussian convolution is by approximating a finite impulse response
(FIR) filter, where the Gaussian is truncated to |x| ≤ r. In this section, I prove that the error from
using such a truncated filter as an approximation during convolution is bounded for a 1D signal.
Let us define the truncated filter as follows:

gtrun(x) = Gσ(x)/s(r), |x| ≤ r

s(r) =
r∑

x=−r
Gσ(x)

We will show that when approximating (g ∗ f̂) with (gtrunc ∗ f̂), the error is bounded. Consider the
distance between g and gtrunc.

||g − gtrunc||1 =
∑
|x|≤r

Gσ(x)

s(r)
− Gσ(x)

s(∞)
+

∑
|x|>r

Gσ(x)

s(∞)

We rewrite the first sum through factoring.∑
|x|≤r

Gσ(x)

s(r)
− Gσ(x)

s(∞)
= s(r)(

1

s(r)
− 1

s(∞)
)

= 1− s(r)

s(∞)

=
s(∞)− s(r)

s(∞)

=
1

s(∞)

∑
|x|>r

Gσ(x)
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Substituting back into the difference, we have

||g − gtrunc||1 =
2

s(∞)

∑
|x|>r

Gσ(x)

=
4

s(∞)

∞∑
x=r+1

Gσ(x)

≤ 4

s(∞)

∫ ∞
r

e−x
2/2σ2

√
2πσ2

dx

=
4

s(∞)
∗ 0.5 ∗

√
σ2/σ2 ∗ erfc( r√

2σ2
)

=
2

s(∞)
erfc(

r√
2σ2

)

Here, erfc is the complementary error function erfc(x) = 1−erf(x) =
2√
π

∫∞
x e−t

2
dt. Using lemma

1, we have
2

s(∞)
< 2. Hence, by Young’s inequality for function convolution (||f ∗g|| = ||f || ∗ ||g||),

we have
||g ∗ f̂ − gtrunc ∗ f̂ ||∞ ≤ 2erfc(

r√
2σ2

)||f ||∞

The result is powerful in that it can tell us how large of a radius r we need for a desired level of
accuracy. Select r as d

√
2erfc−1(t/2)σe, this ensures error E(t) ≤ t ∗ ||f ||∞. For example, using

σ = 1 and t = 10−2, we have r = d
√

2erfc−1(t/2)e ≈ d2.8e = 3. In a conventional RGB system,
we have E(0.01) ≤ 0.01 ∗ 255 = 2.55, hence the error in each color is off by a maximum of 3 color
values.
The results easily extend into 2D as the Gaussian is separable. For (x, y), the 2D Gaussian is
e−(x

2+y2)/2σ2
. We can fix y and do 1D convolution x, multiplying by e−y

2/2σ2
when complete. In

actuality we are doing convolution per row, multiplying by a pre-defined constants, then summing
the results for all rows.

6 Applications

As I mentioned earlier in the introduction, computer graphics now allow us to visualize the effects
or convolving functions. I present several images to display the results discussed above. All images
are generated using the CSE457 Impressionist project, which implements constants for boundary
handling.
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Original Image

Convolved Image, r = 3, σ = 1
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Convolved Image, r =∞, σ = 1

Convolved Image, r = 3, σ = 3
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Convolved Image, r =∞, σ = 1

It is quite evident that there aren’t really any visible differences between r = 3 and r = ∞ when
σ = 1. This is visual proof that using a truncated Gaussian for a small r and small σ is enough to
create very accurate approximations. However, for σ = 3, we can see noticeable differences between
r = 3 and r = ∞, as it would take a t ≈ 0.7, leading to E(0.7) ≤ 0.7 ∗ 255 = 178.5, which means
that each color component can be offset by a huge amount.

7 Concluding Remarks

Functional convolution with the Gaussian kernel is good baseline to use for elementary image
filtering in computer graphics. We discussed convolution in the context of infinite integrals and
explored its discretization in context of our everyday computer screens. We defined various ways
to extend an colored image beyond its domain of definition that is essential to discrete convolution.
Finally, we proved that the FIR filter provides a means to approximate Gaussian convolution that
is bounded. Overall, FIR filtering works well when σ is small but care is needed in applying it to
large σ as it becomes quite costly in terms of accuracy when σ is big.
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