A Mathematical Theory of Communication

Ben Eggers

Abstract

This paper defines information-theoretic entropy and proves some el-
ementary results about it. Notably, we prove that given a few basic as-
sumptions about a ”reasonable” measure of information, there is exactly
one function that satisfies them all. Then, as an application, we study
the well-known Huffman compression algorithm.

Contents

1 Introduction 3
1.1 Historical Background 3
1.2 Problem Statement oL 3
1.3 Information Sources as Markov Processes 4

2 Definitions 5
2.1 Entropy 5
2.2 Huffman Coding 6

3 Results 7
3.1 H=-KXp;logp; is Unique 7
3.2 Information-Theoretic Evaluation of Huffman Coding 10

4 Conclusion 10

1 Introduction

Information theory is a new field, but is rapidly becoming fundamentally im-
portant in fields as diverse as Computer Science, Linguistics, and Physics. In
information theory, the basic unit is a called a bit (shorthand for binary digit)
which represents a single yes-no decision. While there exist continuous versions
of the theory as well, in this paper I will only be expositing discrete informa-
tion theory. From now on, ”information theory” is meant to denote ”discrete
noiseless information theory.”

Sections 1.2 and 1.3 explain the information-theoretic model of communica-
tion, and Section 2 defines it formally, as well as defining the Huffman compres-
sion algorithm. Section 3 contains optimality results of entropy and analyzes
the efficiency of Huffman compression as an application of the theory.

1.1 Historical Background

In 1948, Claude Shannon of Bell Labs published his seminal paper on informa-
tion theory whose title shares this paper’s. In it, he defines precisely the problem
that information theory is meant to model and solve, and derives many impor-
tant mathematical results. More importantly, his work paved the way for other
information theory researchers to expand on his theory, giving us the mature and
usable mathematics we have today. Shannon’s paper did not come a moment
too soon: this was an age in which the atomic bomb had just been developed,
we were still a decade from the polio vaccine and Sputnik, and most pertinent,
transistors were only just beginning to replace vacuum tubes in the design of
digital machines (in fact, this is also thanks to Shannon). Information theory
gave engineers, mathematicians, and scientists the necessary tools to analyze
how well their machines were transmitting data to and from one another.

1.2 Problem Statement

Information theory seeks to study how information is transmitted between an
information source and an information receiver. For example, a computer send-
ing an email over the Internet could be viewed as an information source, with
the receiving computer acting as information receiver. This example already
illustrates an important point: there are not dedicated information sources and
information receivers, but rather, most machines can act as either one. In ad-
dition to the information source and information receiver, there is an encoding
mechanism, a channel on which the information is transmitted, and a decoding
mechanism.

Often, the information being transmitted has some semantic meaning (oth-
erwise, why bother to transmit it?). However, in information theory we do
not worry about meaning, and simply worry about measuring the efficacy of
our encoding. For example, a text message between friends might contain the
string, "wot r u up 2 m8?”. Information theory views such a string simply as
one chosen out of the finite number of strings of length 15. Some readers may
object to this. Indeed, there exist compression algorithms which exploit the
semantic structure of the text which they are compressing, but such algorithms
are not widely used or understood, and are beyond the scope of this paper. An-

SOURCE TRANSMITTER RECEIVER DESTINATION

1

—— —
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Figure 1: Model of information transmission. [1]

more information than, ”I'm excited!!”. The point, though, is that the former
was chosen out of a much larger universe of possible strings of equal length,
whereas latter had fewer possibilities. As stated before, the fundamental unit
in information theory is a choice, usually a yes-no choice, of the form, ”which
character comes next in this string?”, or more precisely, ”given the frequencies
that characters tend to appear, how much information did I just get by receiving
this particular one?”. These are the questions we seek to answer.

1.3 Information Sources as Markov Processes

In information theory, we are primarily concerned with the effectiveness of our
encoding, not with the information source. However, having a model for the
information source will be convenient as we develop our intuition and prove
results. The primary model for an information source is a Markov chain. A
Markov chain is a weighted directed graph where each vertex represents the
state of the system, and each edge represents a transition to another state,
weighted by the probability of making such a transition. Figure 2 is a Markov
chain which has two states: E and A. If the chain is in state E, the probability
of it transitioning to state E again is 0.3, and the probability of transitioning to
state A is 0.7. If it is in state A, it transitions to state E with probability 0.4
and to state A with probability 0.6.

An important note: a sensible interpretation of Figure 2 as an information
source is that when it transitions to a state, it produces the character label-
ing that state. We may also have Markov chains that produce characters on
transitions, however. For example, a Markov chain to select an English vowel
uniformly at random may have one state with 5 transitions back to itself, each
with probability 0.2 and each representing a different choice of vowel. These
two representations of Markov chains are isomorphic, so we will use whichever
is most suited to our purposes.

It is convenient to view information sources as Markov processes, with
states/transitions representing bits, characters, or even words or sentences in
a natural language.

Figure 2: Markov Chain example [3]

2 Definitions

2.1 Entropy

Suppose we have n possible events, with the ith event having probability p; such
that 3;p; = 1. We will use "entropy” to denote the total information encoded
in a system, denoted by H(p1, ..., pn). Alternatively, one can think of entropy as
the amount of randomness present in a system. A system that is in state 1 with
probability 0.99 and state 2 with probability 0.01 will not have much entropy,
then, but a system which has two states with equal probability will have more.
In other words, H(0.99,0.01) < H(3,3). Let us formalize this notion a bit
more.

There are three properties we would like our measure of information to have:

1. It should be a continuous function of the p;s.

2. fpy=...=p, = %, then H should be a monotonically increasing function
of n. When there are more choices, there is more uncertainty, and our
function should reflect that.

3. It should be possible to break a choice down into sub-choices, with the
information of the final choice being the weighted sum of the information
from the sub-choices. See Figure 3 for an example from Shannon’s own

paper.

We show in §3.1 that there is only one possible function suiting our needs,
and it is given in the following definition:

Definition 1 The entropy of a set of discrete events 1, 2, ..., n, with
probabilities p1, p2, ..., Pn Such that Xp; =1 is:

H = —Kp;logp;.

Here, K is arbitrary and can be thought of as the units.

2 Ya

2 % g

1/6 s
1/6

Figure 3: Breaking a choice into sub-choices. In this example, instead of making
a three-way choice with probabilities %, %, % (left), we first make a yes-no choice
with probability % for either option, then make another yes-no choice with

1[:)1r]obabilities 2, % (right). In this case, we want H(3, %, ¢) = H(3,3)+3H(3,3).

2.2 Huffman Coding

Huffman coding was invented in 1952 by David Huffman of MIT. In typical
ASCII text encoding on a computer, each character uses 8 bits, giving 28 =
256 possible characters, each with equal-length bit encodings. In ASCII, the
character ’a’ has the encoding 01100001, 'b’ is 01100010, and so on. In Huffman
coding, more frequent characters are given shorter encodings, while less frequent
characters are given longer encodings. For example, the English character ”e”
is very common, and may be encoded by ”001”. The character ”z” is very
infrequent, however, so may be encoded by ”7010001110010”. The key thing to
notice is the variable length.

Informally, the Huffman Coding problem may be stated as follows: Given a
set of symbols and their probabilities, construct a prefix-free binary code with
minimum expected codeword length. By prefix-free, we mean that no code word
for a symbol is a prefix of another code word. For concreteness, suppose 001 is
the code word for some symbol s. Then for every symbol ¢ # s, t’s code word
is not of the form 001c where ¢ is any binary sequence.

The formal problem statement and algorithm are given below. The algorithm
constructs an object known as a Huffman Tree. It is a binary (each node has 0,
1, or 2 children) tree in which each leaf node (node with no children) corresponds
to one character. The code for a character can be obtained by tracing the path
from the root of the tree to the character’s leaf node, adding a ’0’ to the code if
the path takes the left child of a node, and a ’1’ if the path takes the right child.
For example, if the path to some character ¢ goes left, then right, then left from
the root, the code word for ¢ would be 010. Figure 4 provides an example of a
tree’s construction and meaning.

It can be proven using standard computer science techniques that Huffman
Coding produces the optimal code for symbol-by-symbol encoding, but such
a proof lies beyond this paper. Here, we simply introduce Huffman Coding
because it is amenable to analysis via our definition of entropy.

Algorithm 1: Huffman Code
Input: An alphabet A = {a1,as,...,a,} and a set of probabilities
P ={pi1,...,pn} such that ¥p = 1.
Output: A code C = {¢y, ..., ¢, } where ¢; is the code word for a; and no
¢; is the prefix of any c¢;. There are many such codes, and we wish to find
a (not necessarily unique) code which minimizes expected code word
length X[p; x length(c;)].
Algorithm :

1 Create a tree node for each symbol. Tree node n; corresponds to
character a; which has probability p;. Call this set of nodes T

2 While |T| > 1:

e Remove the two lowest-probability nodes from T'. Call them n; and n;.

e Construct a new node, ny, with children n; and n;. It’s "probability”
will be p; + p;.

3 The one remaining node in T is the root of the Huffman Tree.

3 Results

3.1 H = —K2XYp;logp; is Unique

In this section, we show that H = —Kp;logp; is the only function which sat-
isfies the three desired properties stated earlier. The properties are reproduced
here:

1. It should be a continuous function of the p;s.

2. fpy=...=p, = %, then H should be a monotonically increasing function
of n. When there are more choices, there is more uncertainty, and our
function should reflect that.

3. It is possible to break a choice down into sub-choices, with the information
of the final choice being the weighted sum of the information from the sub-
choices. See Figure 3 for an example from Shannon’s own paper.

The following proof is borrowed almost directly from Shannon [1].

Let A(n) = H(%,...,1). By condition (3) above, we can decompose a choice
of s™ equally likely choices into a sequence of m choices from s equally likely
elements. In other words, instead of just choosing an element from the s™
possible choices, we can construct a ”choice tree” that is m levels deep, with

each node on the i # n level having s children. Therefore,

A(s™) = mA(s)

For some other equally likely ¢t events, we also have

A(t™) = nA(t).

© ®OOBO
; 1@6@ [

°:®
@ .

Figure 4: An example run of the Huffman Tree algorithm. We start with
5 characters. In this image, the numbers represent number of occurences in
the text to be compressed, not probabilities. Probabilities can be obtained by
normalizing the numbers so they sum to one. We start by taking the two lowest-
frequency characters, 'D’ and 'E’, and creating a node with them as children.
We continue this process until we have a tree with all the initial nodes. To get
the code word for a character, we trace the path from the root to the node,
adding a ’0’ to the code if we go left, and a '1’ if we go right. In this example,
the code for A’ would be ’0’, the code for 'B’ would be ’100’, etc. [4]

Now, for fixed s,t we take n arbitrarily large and find an m such that

m <tn <Sm+1

By taking logarithms and dividing everything by nlogs,

m logt m 1
n logs n on

Since n is arbitrarily large, this gives us

m logt

n logs

(1)

for any € > 0. We will revisit this inequality in a moment, but first must
prove another useful inequality. With our same choices of s,t,n,m above, by
the monotonicity condition we have

A(s™) < A(t™) < A(s™Th)

and

mA(s) < nA(t) < (m+1)A(s).

Dividing the second inequality by nA(s), we obtain

<

Once again, since n is arbitrarily large, we have

m A(t)

n A(s)

(2)

for any € > 0. Combining inequalities (1) and (2), we get our initial result:

AW togt
A(s) logs
and so
A(z) = Klogx (3)

where K must be positive to satisfy the monotonicity condition. This shows
that for n equally likely choices, the information content grows logarithmically
in n. Now, we will generalize our entropy function to non-uniform probability
distributions.

Suppose we want to make a choice from n possibilities, each with proba-
bility p; = E”n where the n; are integers. By condition (3), we can convert a
choice from Yn; possibilities into a choice from n possibilites with probabilities
D1, ---, P, then if the ith was chosen, a choice from n; with equal probabilites.
Putting this into math,

Klog(¥n;) = H(p1, ..., pn) + KXp;logp;.

Therefore

H(p1,...,pn) = K[XpilogEn; — Ep;logn; = —KXp;log ;1

—KXp;logp;

3

If the n; are rational, we can use the same method. If they are irrational,
they can be approximated arbitrarily closely by rational numbers since condition
(1) states that the function need be continuous (and indeed, our function is).
So H = —K¥p;logp; holds in general.

English letter |Frequency of use English letter |Frequency of use
E 11.1607% M 3.0129%
A 8.4966% H 3.0034%
R 7.5809% G 2.4705%
I 7.5448% B 2.0720%
(6] 7.1635% F 1.8121%
T 6.9509% Y 1.7779%
N 6.6544% w 1.2899%
S 5.7351% K 1.1016%
L 5.4893% v 1.0074%
C 4.5388% X 0.2902%
U 3.6308% Z 0.2722%
D 3.3844% J 0.1965%
P 3.1671% Q 0.1962%

Figure 5: Frequencies of English characters in an ”average” piece of text. For
more details, see [5]

3.2 Information-Theoretic Evaluation of Huffman Coding

4 Conclusion

In Section 1, we introduced the problem that information theory attempts to
solve, and gave a brief explanation of its history. In Section 2, we defined
information-theoretic entropy, and we saw that it was exactly the same formula
as entropy in statistical mechanics, justifying our choice of name. In Section
2 we also defined the Huffman compression algorithm. In Section 3 we proved
optimality results—our choice of entropy equation is the only one that suits our
demands, and Huffman coding is the optimal byte-by-byte encoding scheme. In
Section 4 we used our definition of entropy to analyze how well Huffman coding
compresses an average English text, and found that it gives us a compression
factor of approximately ?7.

References

[1] Shannon, Claude E. (July—October 1948). ”A Mathematical Theory
of Communication”. Bell System Technical Journal 27 (3): 379-423.
d0i:10.1002/j.1538-7305.1948.tb01338.x.

[2] Huffman, D. (1952). "A Method for the Construction of Minimum-
Redundancy Codes”. Proceedings of the IRE 40 (9): 1098-1101.
doi:10.1109/JRPROC.1952.273898

[3] "Markovkate 01” Joxemaid - Own work. Licensed under CC BY-SA 3.0 via
Wikimedia Commons

[4] http://commons.wikimedia.org/wiki/File:HuffmanCodeAlg.png Licensed
under the GNU Free Documentation License

10

[5] Method for inputting words in an electronic ap-
pliance with buttons of inputting words Eun, I.
http://www.google.com/patents/ WO2007046567A1%7cl=en 2007 Google
Patents WO Patent App. PCT/KR2005/003,525

11

