Maximum Principle

This is an improved (I hope) exposition of the one I gave in class.

Theorem 1. Let u be harmonic on a bounded open set Ω . Suppose that

$$\limsup_{z \to p} u(z) \le M,$$

for every $p \in \partial \Omega$. Then

$$u(z) \le M,$$

for all $z \in \Omega$.

Proof. Let $\delta > 0$. Let $W = \{z : u(z) > M + \delta\}$. Then

 $\partial W \subset \overline{\Omega}.$

Then I claim $\partial W \cap \partial \Omega = \emptyset$. For if $p \in \partial W \cap \partial \Omega$, then $\limsup_{z \to p} u(z) \leq M$, and $\limsup_{z \to p} u(z) \geq M + \delta$, which is a contradiction. So $\partial W \subset \Omega$, and hence $\overline{W} \subset \Omega$ and \overline{W} is a compact set on which u is continuous. If $p \in \partial W$ then there must be nearby points which are in W and not in W. Thus there is a sequence of of points in $z_j \in \Omega$ with $z_j \to p$ with $u(z_j) \leq M + \delta$ so the boundary values of u on ∂W are less than $M + \delta$. This implies that $u(z) \leq M + \delta$ for $z \in W$. This is a contradiction. So $W = \emptyset$, and hence $u(z) \leq M + \delta$ for all $z \in \Omega$. Since $\delta > 0$ is arbitrary, $u(z) \leq M$ for all $z \in \Omega$.