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Fundamental Theorem of Algebra. Every nonconstant polynomial with complex coefficients has
a root in the complex numbers.

Some version of the statement of the Fundamental Theorem of Algebra first appeared early in
the 17th century in the writings of several mathematicians, including Peter Roth, Albert Girard,
and René Descartes. The first proof of the Fundamental Theorem was published by Jean Le Rond
d’Alembert in 1746 [2], but his proof was not very rigorous. Carl Friedrich Gauss is often credited
with producing the first correct proof in his doctoral dissertation of 1799 [15], although this proof
also had gaps. (For a comparison of these two proofs, see [26, pp. 195–200].) Today there are many
known proofs of the Fundamental Theorem of Algebra, including proofs using methods of algebra,
analysis, and topology. (The references include many papers and books containing proofs of the
Fundamental Theorem; [14] alone contains 11 proofs.) Our focus in this paper will be on the use
of pictures to see why the theorem is true.

Of course, if we want to use pictures to display the behavior of polynomials defined on the com-
plex numbers, we are immediately faced with a difficulty: the complex numbers are two-dimensional,
so it appears that a graph of a complex-valued function on the complex numbers will require four
dimensions. Our solution to this problem will be to use color to represent some dimensions.

We begin by assigning a color to every number in the complex plane. Figure 1 is a picture of
the complex plane in which every point has been assigned a different color.1 The origin is colored
black. Traveling counterclockwise around a circle centered at the origin, we go through the colors
of a standard color wheel: red, yellow, green, cyan, blue, magenta, and back to red. Points near
the origin have dark colors, with the color assigned to a complex number z approaching black as
z approaches 0. Points far from the origin are light, with the color of z approaching white as
|z| approaches infinity. Every complex number has a different color in this picture, so a complex
number can be uniquely specified by giving its color.

We can now use this color scheme to draw a picture of a function f : C → C as follows: we
simply color each point z in the complex plane with the color corresponding to the value of f(z).
From such a picture, we can read off the value of f(z), for any complex number z, by determining
the color of the point z in the picture, and then consulting Figure 1 to see what complex number
is represented by that color.

1All of the figures can be found at the end of the paper.
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For example, Figure 2 is a picture of the function f(z) = z3. Three things are immediately
evident in this picture. First, we see that the center of the picture is very dark. This is because
when z is small, z3 is very small, and therefore the color assigned to z3 is very dark. Second, the
colors fade out quickly when we move toward the outside of the picture. This is because when z
is large, z3 is very large, and therefore its color is very light. But what is most striking about the
picture is that when we go counterclockwise around a circle centered at the origin, we go through
the colors of the color wheel three times. This illustrates the fact that the argument of z3 is three
times the argument of z, and therefore the image of a circle centered at the origin under the cubing
function wraps around the origin three times.

As an illustration of how such a picture can help us understand a function, note that it is
immediately evident from Figure 2 that every nonzero complex number has three cube roots. For
example, the color assigned to the number 1 in Figure 1 is a deep red. Therefore, the three cube
roots of 1 are the three points in Figure 2 that are colored this particular shade of red.

Let us consider now a more complicated function. Figure 3 is a picture of the polynomial
f(z) = z8 − 2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 5z2 + 4z − 4. Perhaps the first thing one notices in
this picture is that the Fundamental Theorem of Algebra does, indeed, hold for f . Since the color
assigned to the number 0 is black, the roots of f appear in this picture as six black dots. The fact
that the polynomial has degree eight also shows up in the picture. For large z, the z8 term in f(z)
dominates the other terms, and therefore the outer parts of the picture look similar to a picture of
the function z8: the colors begin to fade toward white as we move toward the edges of the picture,
but before they fade out we can see that, as we go around the picture counterclockwise, the colors
of the color wheel are repeated eight times.

Why does f , a polynomial of degree eight, have only six roots? The reason is that two of the
roots are double roots, and this fact is also evident in the picture. The single roots occur at the
points −1, 2, and (−1± i

√
7)/2, and the double roots are at (1± i

√
3)/2. The regions around the

double roots are somewhat darker than those around the single roots, and at the double roots the
colors of the color wheel wrap around the root twice, whereas at the single roots they wrap around
only once.

In general, if a polynomial f has a root of multiplicity k at a point z0, then when f(z) is
expanded in powers of z − z0 it will have the form

f(z) = c(z − z0)
k + (higher degree terms).

For z close to z0, the first term in this expansion will dominate the higher degree terms, and therefore
we have f(z) ≈ c(z − z0)

k. Thus, near the point z0, the picture of f will be similar to the picture
of the function czk near 0. In particular, the colors of the color wheel will wrap around the point
z0 k times, and the larger k is, the darker the picture will be near z0. (It is not hard to see that
the effect of the coefficient c on the picture is to alter the darkness of the picture near z0, and also
to rotate the arrangement of colors around z0. For example, near the root at −1 in Figure 3, the
colors have been rotated 180 degrees, so that red is to the left of the root rather than to the right.
This is because when f(z) is expanded in powers of z + 1, the coefficient of z + 1 is a negative real
number.)

We might describe this situation by saying that at a single root, f is “locally linear”, at a
double root it is “locally quadratic”, etc. In fact, a similar principle applies even at points that are
not roots, although this is a little harder to see in our pictures. For any complex number z0, by
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expanding f(z) in powers of z − z0 we can find complex numbers b and c and a positive integer k
such that

f(z) = b + c(z − z0)
k + (higher degree terms).

It follows that for z near z0 we will have f(z) ≈ b + c(z − z0)
k. We have already seen that the

picture of the function c(z − z0)
k has a black dot at z0, with the colors that surround 0 in Figure 1

wrapping around z0 k times. The effect of adding b to this function is to “shift” the colors in the
color space of Figure 1 from 0 to b. The result is that z0 will be colored with the color assigned to
b, and it is the colors surrounding b in Figure 1 that will wrap around z0 k times.

For example, we have already observed that in Figure 3 there is a single root at −1, and another
above it and slightly to the right at (−1 + i

√
7)/2. About halfway between these roots there is a

point that is colored light green. Let us call this point p. Moving up from p, the colors become
greenish-yellow and then yellow; moving down, they shift toward cyan. To the left there is a lighter
shade of green, and to the right the shade of green gets darker. Referring to Figure 1, we see that
these are the colors that surround light green in our color scheme. Thus, the colors surrounding light
green wrap around p once; the polynomial is locally linear at p. (There are five points, other than
the two double roots, at which the polynomial in Figure 3 is locally quadratic. It is an interesting
exercise to try and locate them. Hint: There is one just below and to the right of the root at
(−1 + i

√
7)/2.)

Notice that one of the colors near p in Figure 3 is a darker shade of green. The reason, again, is
that one of the colors near light green in Figure 1 is a darker green, and all of the colors surrounding
light green are wrapped one or more times around every light green point in Figure 3. More generally,
for every color in Figure 1 other than black, one of the nearby colors is a darker shade of the same
color, and therefore in any picture of a nonconstant polynomial, any point that is not black will
have a nearby point that is darker. It will be convenient to have a name for this principle:

Darker Neighbor Principle. In any picture of a nonconstant polynomial, for any point that is
not black, there is a nearby point that is darker.

Using the Darker Neighbor Principle, we can now see why the Fundamental Theorem of Algebra
is true. Suppose f is a nonconstant polynomial. Draw a picture of f on the square S = {x + iy :
−R ≤ x ≤ R,−R ≤ y ≤ R}, for some R. Since S is compact and |f(z)| is continuous, there is a
point in S at which |f(z)| achieves its minimum value. This point will be the darkest point in the
picture. We have already observed that, since the highest degree term of f(z) will dominate the
others when z is large, the colors in the picture will fade out toward white around the outside of
the picture, if R is sufficiently large. It follows that the darkest point in the picture cannot be on
the boundary of S, so this darkest point will be in the interior of S. But then this point must be
black, because if it were not, then, by the Darker Neighbor Principle, some nearby point would be
darker. This black point is a root of f .

The argument we have just given might be called a “colorized” version of d’Alembert’s proof of
1746. The Darker Neighbor Principle is a colorized version of the key lemma of d’Alembert’s proof:

D’Alembert’s Lemma. Suppose f is a nonconstant polynomial, and f(z0) 6= 0. Then for every
ε > 0 there is some z such that |z − z0| < ε and |f(z)| < |f(z0)|.

D’Alembert’s proof of this lemma was not very rigorous, and it was unnecessarily complicated.
(A simpler proof of the lemma was given by Jean-Robert Argand in 1806 [3].) Furthermore, the
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proof of the Fundamental Theorem of Algebra from d’Alembert’s Lemma relies on the fact that a
continuous real-valued function on a compact set achieves a minimum value, a fact that had not yet
been rigorously proven in d’Alembert’s time. Thus, d’Alembert’s proof, while fairly easy to make
rigorous using modern methods (see [13], [14, section 3.5, pp. 31–33], [20, problem 5.3, p. 44], [24],
[27]), was not entirely convincing when d’Alembert published it.

Shortly after d’Alembert’s proof, Leonhard Euler published an algebraic proof of the Funda-
mental Theorem of Algebra [11]. Euler’s proof had a number of gaps in it, most of which were filled
by Joseph-Louis Lagrange [19]. However, one significant gap remained: Euler and Lagrange both
assumed that a polynomial of degree n would have n roots, and that the only thing that had to be
proven was that these roots were complex numbers. (Today such reasoning could be justified by
passing to an extension of C over which the polynomial splits, but in the 18th century the concepts
needed to justify this reasoning had not yet been developed. See [29, Chapter 9].)

The first person to notice this gap was Gauss. In his doctoral dissertation in 1799, Gauss
criticized Euler’s proof:

Since we cannot imagine forms of magnitudes other than real and imaginary magnitudes
a+ b

√
−1, it is not entirely clear how what is to be proved differs from what is assumed

as [an axiom]; but granted one could think of other forms of magnitudes, say F , F ′, F ′′,
. . . , even then one could not assume without proof that every equation is satisfied either
by a real value of x, or by a value of the form a + b

√
−1, or by a value of the form F ,

or of the form F ′, and so on. Therefore the [aforementioned axiom] can have only the
following sense: every equation can be satisfied either by a real value of the unknown, or
by an imaginary of the form a + b

√
−1, or, possibly, by a value of some as yet unknown

form, or by a value not representable in any form. How these magnitudes, of which we
can form no representation whatever—these shadows of shadows—are to be added or
multiplied, this cannot be stated with the kind of clarity required in mathematics.2

Gauss also wrote:

. . . if one carries out operations with these impossible roots, as though they really existed,
and says for example, the sum of all roots of the equation xm +axm−1 + bxm−2 + · · · = 0
is equal to −a even though some of them may be impossible (which really means: even
if some are non-existent and therefore missing), then I can only say that I thoroughly
disapprove of this type of argument.3

Gauss then went on to give his own proof of the Fundamental Theorem of Algebra. We can
illustrate the idea behind Gauss’s proof in Figure 3. Gauss suggested that we consider separately
the points where the real part of f(z) is 0 and the points where the imaginary part is 0. Now, a
complex number whose imaginary part is 0 is just a real number, and in Figure 1 we can see that the
color assigned to a real number is either some shade of red (if the number is positive) or some shade
of cyan (if it is negative). Similarly, complex numbers whose real part is 0 are those whose color is
some shade of either yellow-green or magenta-blue. Thus, we can locate points in Figure 3 where

2The original text for this quotation, in Latin, can be found in [15, p. 14]. The translation is from [4, p. 98],
but minor changes, indicated by brackets, have been made in the translation to clarify the meaning of the second
sentence. My thanks to Cynthia Damon of the Amherst College Classics Department for help with the translation.

3The original Latin text can be found in [15, p. 5], and the translation is from [21].
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the real or imaginary part of f(z) is 0 by looking for these particular colors. Figure 4 is a copy of
Figure 3 in which all of these points have been marked. The red curves in Figure 4 are the points
where the real part of f(z) is 0, and the green curves are the points where the imaginary part is 0.
Notice that the red curves pass through points whose color is either yellow-green or magenta-blue,
and the green curves pass through points whose color is either red or cyan.

As we observed earlier, going around the border of Figure 3, the color wheel cycle of colors is
repeated eight times. Each cycle includes all four of the colors red, yellow-green, cyan, and magenta-
blue, in order, and so along the border of Figure 4 there are 32 ends of curves, alternating red and
green. Gauss asserted, without proof, that if we start at any one of these curve ends and follow the
curve into the picture, we will emerge at another curve end of the same color. For example, starting
at the red curve end just above the middle of the right side of Figure 4, we emerge at the red curve
end just below the middle of the right side. Assuming that Gauss’s assertion is correct, one can then
use the fact that the colors of the curve ends around the border of the picture alternate between
red and green to show that somewhere in the picture a red and green curve must intersect. This
intersection point will be a point where the real and imaginary parts of f(z) are both 0; in other
words, it will be a root of f . Indeed, in Figure 4 we see that the red and green curves intersect at
all six of the roots of f .

Although Gauss was critical of earlier attempts at proving the Fundamental Theorem, as we have
seen his proof also included a step that was not rigorously justified. The first rigorous justification
for this step was given in 1920 by Alexander Ostrowski [22]. Fortunately, Gauss eventually gave
three more proofs of the theorem. His second proof, published in 1816 [16], was similar to Euler’s
proof, but did not assume the existence of the roots of the polynomial. This proof was perhaps the
first essentially complete and correct published proof of the Fundamental Theorem of Algebra.

There is one more proof of the Fundamental Theorem that can be illustrated by reference to
Figure 3. Imagine drawing a circle of some radius r, centered at the origin, on the picture in Figure
3. If r is small, then this circle will stay entirely in a region of the picture in which all points have a
color that is close to some shade of cyan. It follows that the image of this circle under the function
f will be a small closed curve in the complex plane that stays near some negative real number. On
the other hand, if r is large then the circle will pass through eight cycles of the colors of the color
wheel, and it follows that the image of the circle will be a closed curve that wraps around the origin
eight times. This is confirmed by Figures 5 and 6, which show the images of circles of radius 0.1 and
3 respectively. If we now continuously increase r from 0.1 to 3, the first curve will be transformed
continuously into the second. It seems clear that at some point in this transformation the curve
must pass through the origin, which means that there must be some z such that f(z) = 0. Figure 7
shows what happens for a sequence of values of r ranging from 0.1 to 1.2 in steps of 0.1. (A similar
argument can be found in [8].)

This intuitive argument can be turned into a rigorous proof by using the concept of the winding
number of a closed curve. Suppose f is a polynomial of degree n > 0, and f(0) 6= 0. Then for
sufficiently small r, the image under f of a circle of radius r centered at the origin will be a closed
curve whose winding number around the origin is 0. For large r, the image will be a curve with
winding number n. But the winding number of a closed curve around the origin is unchanged if the
curve is continuously transformed without passing through the origin. It follows that for some r,
the image of the circle of radius r must pass through the origin. Details of this proof can be found
in [14, Proof Five, pp. 134–136].

Although we have concentrated on pictures of polynomials in this paper, the scheme used in
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Figure 3 can be used to make pictures of any function f : C → C. For the reader’s amusement, we
include in Figures 8 and 9 pictures of ez and a branch of log(z). In Figure 8, it is evident that the
magnitude and argument of ez are determined by the real and imaginary parts of z, respectively.
In Figure 9, the pole at 0 appears as a white dot, and a branch cut is visible along the negative real
axis. Similar pictures can be found in [9], [12], and [28].
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5 (1749), 222–288, reprinted in Opera Omnia Series Prima, vol. 6, 78–147.

[12] Frank A. Farris, Visualizing complex-valued functions in the plane,
http://www.maa.org/pubs/amm complements/complex.html.

[13] Charles Fefferman, An easy proof of the fundamental theorem of algebra, Amer. Math. Monthly
74 (1967), 854–855.

6



[14] Benjamin Fine and Gerhard Rosenberger, The Fundamental Theorem of Algebra, Springer-
Verlag, New York, 1997.

[15] Carl Friedrich Gauss, Demonstratio nova theorematis omnem functionem algebraicum ratio-
nalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse, Helm-
stedt dissertation, 1799, reprinted in Werke, Vol. 3, 1–30.

[16] Carl Friedrich Gauss, Demonstratio nova altera theorematis omnem functionem algebraicum
rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse,
Comm. Recentiores (Gottingae) 3 (1816), 107–142, reprinted in Werke, Vol. 3, 31–56.

[17] Javier Gomez-Calderon and David M. Wells, Why polynomials have roots, College Math. J.
27 (1996), 90–91.

[18] Michael D. Hirschhorn, The fundamental theorem of algebra, College Math. J. 29 (1998), 276–
277.

[19] Joseph-Louis Lagrange, Sur la forme des racines imaginaires des équations, Nouv. Mém. Acad.
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Figure 1: Assigning a color to each point in the complex plane.
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Figure 2: f(z) = z3.
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Figure 3: f(z) = z8 − 2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 5z2 + 4z − 4.

10



-1 0 1 2

-2

-1

0

1

2

Figure 4: Guass’s first proof of the Fundamental Theorem of Algebra.
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Figure 5: Image of a circle of radius 0.1 under f .
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Figure 6: Image of a circle of radius 3 under f .
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Figure 7: Images of circles with radii from 0.1 to 1.2 under f .
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Figure 8: f(z) = ez.
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Figure 9: A branch of f(z) = log z.
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